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Abstract

Look-up table (LUT)-based methods have shown the
great efficacy in single image super-resolution (SR) task.
However, previous methods ignore the essential reason of
restricted receptive field (RF) size in LUT, which is caused
by the interaction of space and channel features in vanilla
convolution. They can only increase the RF at the cost
of linearly increasing LUT size. To enlarge RF with con-
tained LUT sizes, we propose a novel Reconstructed Con-
volution (RC) module, which decouples channel-wise and
spatial calculation. It can be formulated as n2 1D LUTs to
maintain n × n receptive field, which is obviously smaller
than n × nD LUT formulated before. The LUT generated
by our RC module reaches less than 1/10000 storage com-
pared with SR-LUT baseline. The proposed Reconstructed
Convolution module based LUT method, termed as RCLUT,
can enlarge the RF size by 9 times than the state-of-the-art
LUT-based SR method and achieve superior performance
on five popular benchmark dataset. Moreover, the efficient
and robust RC module can be used as a plugin to improve
other LUT-based SR methods. The code is available at
https://github.com/liuguandu/RC-LUT.

1. Introduction

Single image super-resolution (SR) aims to recover the
high-resolution (HR) image from a low-resolution (LR) im-
age and to bring back clearer edges, textures, and details
while increasing the resolution of the input. In the past
decade, deep learning-based SR methods [43, 23, 18, 44,
35, 20, 13, 26, 27] have made remarkable improvements
compared with traditional SR methods (e.g., interpolation
based [17], sparse coding based [34, 33, 40, 5, 12]). How-
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Figure 1. Comparison of PSNR and storage on Set5 benchmark
dataset for ×4 SR task. We compare our method with prior LUT-
based SR methods. Our method achieves the superior performance
with relatively less LUT storage.

ever, such kind of methods often possess huge amount of
parameters, which has high computation cost and cannot be
practically used on devices with limited computational re-
sources. Exploring the pratical and real-time SR solutions
have been a growing trend in the single image super resolu-
tion (SISR) community.

Look-up table (LUT) based super-resolution (SR) meth-
ods like SR-LUT [16] cache trained SR network results
for every potential input in a LUT, simplifying inference by
replacing runtime computation with faster indexing. How-
ever, this strategy requires a limited receptive field (RF), as
the input space size grows exponentially with an increase
in input pixels. Specifically, SR-LUT has a 2 × 2 input
size, yielding a 3× 3 RF by rotation ensemble, and requires
b2×2× r2 bytes to store its LUT for upscaling by a factor of
r (b = 255). For example, a 3× 3 vanilla convolution gen-
erates 2559 mappings, consuming 1.72 TB in LUT form.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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A larger RF allows a model to capture more intricate se-
mantics and structures within an image, playing a critical
role in the training process. However, for SR-LUT, the ex-
ponential growth of LUT size significantly limits RF im-
provements. Attempts to solve this, such as MuLUT [22]
and SPLUT [24], propose cascading multiple parallel LUTs
to expand the RF to 9 × 9 and 6 × 6, respectively. These
methods attempt to divide the entire LUT into several sub-
LUTs, with a linear increase in LUT size. However, they
don’t address the primary cause of restricted RF size in
LUT-based methods. Furthermore, the RF size of these
LUT-based methods falls short compared to DNN SR meth-
ods, resulting in performance inferior to simple DNN mod-
els, such as FSRCNN[9].

Vanilla convolution amalgamates features across both
spatial and channel dimensions, necessitating that the LUT
format traverses all potential combinations and permuta-
tions of input pixels. Essentially, spatially dependent con-
volution refers to other feature points within the spatial
neighborhood to generate the input-output mapping of the
current feature point. Given that the most significant fac-
tor constraining the performance of LUT-based methods
is spatially dependent convolution, we question the status
quo. Specifically, we contemplate decoupling the spatial
and channel calculations of the convolution process and
propose storing the LUT with spatially independent con-
volution. This could potentially address the inherent limita-
tions of existing LUT-based methods, providing a new way
forward for this class of algorithms.

In this paper, we propose a novel Reconstructed Con-
volution (RC) method designed to decouple the spatial and
channel calculations, thus effectively increasing the RF of
the LUT while significantly reducing storage requirements.
This decoupled operation enables the network to circum-
vent the constraints posed by the necessity of traversing all
spatial pixel combinations. As a result, our method can
employ n × n 1D LUTs to approximate the effect of an
n× n convolution layer, cutting the LUT size from the ini-
tial bn

2

to b×n2.Building on our RC approach, we introduce
a practical Reconstructed Convolution module-based LUT
method (RCLUT) tailored for the SR task, allowing for an
expansion of the RF with minimal storage consumption. As
illustrated in Figure 1, our RCLUT attains competitive per-
formance with minimal LUT size, demonstrating an optimal
balance between performance and LUT storage.

Additionally, our RC method can be efficiently inte-
grated as a plugin module. Although the RC module sac-
rifices the interactive information between two-dimensional
features, its minimal storage requirements and large recep-
tive field successfully offset the shortcomings of previous
LUT-based methods. In our implementation, we integrate
the RC module on top of SRLUT, resulting in a cost of only
about 1/10,000 of the original storage for a 13-fold improve-

ment in the RF size.
To conclude, the contribution of our work includes:

• We propose a novel Reconstructed Convolution (RC)
method with large RF, which decouples the spatial and
channel calculation of convolution. Based on the RC
method, our RCLUT model achieves significant per-
formance with less storage.

• Our RC method can be designed as a plugin module,
which brings improvement to LUT-based SR methods
with slight increasing size.

• Extensive results show that our method obtains supe-
rior performance compared with SR methods based on
LUT. It is a new state-of-the-arts LUT method in SR
task.

2. Related Work
2.1. Traditional Super-Resolution

Interpolation-based methods such as Nearest, Bilin-
ear, and Bicubic [17] are highly efficient but often yield
blurry results as they overlook the content of images.
Sparse coding-based methods [33, 34, 39, 36, 4, 12] of-
fer promising results superior to interpolation-based meth-
ods by restoring low-resolution images to high-resolution
ones via a learned sparse dictionary, albeit at a significantly
increased runtime cost. The RAISR method [28], which
learns a set of filters for different patch attributes, provides
satisfying visual results. However, it requires the calcu-
lation of patch gradients and angles during the prediction
phase, making it slower than interpolation methods.

2.2. Deep Learning Based Super-Resolution

Deep learning-based SR methods have seen tremen-
dous progress, with architectures like SRCNN [8], VDSR,
EDSR, and RCAN [18, 23, 43] aiming for performance
enhancement. However, these methods require substantial
computational resources. To mitigate this, ESPCN [29] and
FSRCNN [9] utilize smaller networks. Other strategies in-
clude parameter reduction [2, 35, 6, 41, 38, 7] or quanti-
zation [21, 30, 42, 3], maintaining performance while re-
ducing computational demand. Nonetheless, these models
remain too heavy for devices with limited computational re-
sources, like mobile devices.

2.3. LUT Based Super-Resolution

As mentioned in Section 1, Jo and Kim propose a pio-
neering work (SR-LUT), which utilizes LUTs in SR [16].
They train a simple deep SR network with limited recep-
tive field (RF), and transfer inputs (as indices) and network
outputs (positions as indices and pixel intensities as values)
to a LUT. The LUT is used to generate final results during
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Figure 2. Overview of RCLUT networks. (a) The overall framework of our RCLUT networks. It contains two cascaded stages, each stage
module has three branches with different receptive field RC Blocks. (b) The details of RC method for N ×N RF size. It is composed of
Linear and Average Pooling operations. (c) The illustration of various convolution blocks in RC Block. The input and out values of Conv
Block4-1 are 4 and 1, respectively. The Conv Block1-4 contains 1 input value and 4 output value for less storage. The Conv Block4-4,
which references 4 values as input and predicts 4 output values, is only used once in the second stage module of RCLUT.

the test phase. Since there are no additional calculations re-
quired, SR-LUT can run as fast as interpolation based SR
methods, i.e. tens of milliseconds, on mobile devices. Since
the size of a LUT increases exponentially with the indexing
capacity, the RF is limited to 3 × 3 in SR-LUT. However,
the size of RF is proved crucial according to [11] and SR-
LUT naturally obtains inferior performance. Li et al. [22]
propose MuLUT, which increases the RF by introducing
hand-crafted indexing patterns and cascading LUTs. By
these two schemes, MuLUT achieves significant improve-
ment over SR-LUT with the cost of a linear growth of the
total LUT size. Similarly, Ma et al. [24] also adapt the
idea of cascading LUTs to enlarge the RF. They propose
a framework of series-parallel LUT (SPLUT) which intro-
duces channel-level LUTs and parallelly processes the two
components separated from the original 8-bits input. These
two method devides the single LUT of SR-LUT to multi-
LUTs to increase the RF of SR models.

However, their good performance is based on the linear

growth of lut size at the expense of large amounts of stor-
age resources. The trade-off between the RF and LUT size
is still a challenging problem. Our method overcomes the
burden of heavy LUT size when increasing the RF, thanks
to the novel reconstructed convolution (RC) method, which
approximates a vanilla convolution performance with exag-
geratedly small LUT size.

3. Method

3.1. Overview

To tackle the challenge of LUT size growth when en-
larging the receptive field (RF), we propose a reconstructed
convolution (RC) method. RC can represent a n×n RF con-
volution as n×n 1D LUTs, approximating the performance
of vanilla convolution. Using this efficient RC method, we
develop a Reconstructed Convolution module-based LUT
method, dubbed as RCLUT, which employs parallel and
cascaded structures. Moreover, the RC module can act as

12219



a flexible Plugin module, capable of enhancing the perfor-
mance of other LUT-based methods.

3.2. Reconstructed Convolution Module

First, we delve into the issue of LUT size escalation with
the increase in RF. As stated in [22], the LUT size expo-
nentially balloons with an increase in indexing inputs, as an
RF of size n×n should be cached into a LUT of dimension
n × n. To detail this, consider the convolution of an 8-bit
n×n input to an 8-bit r×r output. The full SR-LUT would
require (28)(n

2) × r2 bytes. Each pixel offers 28 potential
values, thus the whole n × n input can manifest (28)(n

2)

different possible combinations of pixel values. For each
input, there are r2 output pixels. This indicates that the in-
put size is the primary factor responsible for the explosion
in SR-LUT size.

In order to overcome the problem of Look-Up Table
(LUT) size explosion with increasing receptive field (RF),
we introduce a novel formulation of convolution known as
Reconstructed Convolution (RC). Unlike the conventional
convolution with n× n× c out filters that calculates n× n
spatial features and then adds up the c out results in the
channel dimensions, our RC method reverses this order. It
initially breaks the interconnections between different pix-
els and uses a minimal network to perform channel-wise
increment and reduction operations on each pixel individ-
ually. This is followed by an average pooling operation
to generate the final feature map. In order to represent an
N × N RF, the RC method first uses N2 linear operations
(with c in=1, c out=C) to enhance the dimensionality of the
N×N patches to obtain a feature map of N×N×C. Sub-
sequently, another set of N2 linear operations (with c in=C,
c out=1) is employed to reduce the feature map channel to
1, leading to an N ×N ×1 feature map. Finally, an average
pooling operation merges the spatial features to produce the
output value. The training process of reconstructed convo-
lution can be formulated as

z(m+i,m+j) = W ′T
ij (WT

ijx(m+i,n+j) + bij) + b′ij ,

ymn =
1

N2

N−1∑
i=0

N−1∑
j=0

z(m+i,m+j).
(1)

In this formula, m,n are the coordinates of the pixels to
be computed in the current feature map, and N is the
kernel size of reconstructed convolution. W ∈ R1×C ,
maps single-channel pixels into high-dimensional features,
while W ′ ∈ RC×1 maps high-dimensional features back to
single-channel features. b, b′ represent the bias terms. In
this setup, the reconstructed convolution for each pixel can
be transformed into a 1D look-up table (LUT), and an aver-
age pooling operation is used to cheaply expand the recep-
tive field (RF), as shown in Figure 3(b). In comparison with
the 4D LUT format of SR-LUT, shown in Figure 3(a), our

1D LUTs offer advantages in storage and inference speed.
As to the inference stage, for anchor I0 in Figure 3(b), the
corresponding SR values V′ from reconstructed convolu-
tion are obtained by

V′ =
1

N2

N2−1∑
i=0

(LUTi[Ii]). (2)

While N represents the size of reconstructed convolution.
And it needs N2 LUTs for pixel retrieval. The total size
of all 1D-LUT is 28 × n2 × r2. As shown in Table2, by
transforming n× n convolutions to n2 1D LUTs (followed
by global pooling), the explosion of LUT sizes with respect
to RF can be successfully contained.

3.3. RCLUT Network Architecture

RC module processes spatial and channel-wise feature
separately, which lacks interactive information between
both of them. As it somewhat prevents model performance,
we add Conv block [14] behind the RC module to com-
plement interactive information from the space and channel
features. Specifically, we build the Reconstructed Convo-
lution Block, which contains one RC Modue and one Conv
Block [14]. Its corresponding SR values V can be obtained
from V′,

V(0,0) = LUT [V′
(0,0)][V

′
(0,1)][V

′
(1,0)][V

′
(1,1)]. (3)

The RC module allows for easy expansion of the receptive
field (RF) without a significant increase in computational
load. Inspired by this, we utilize RC blocks with different
RF sizes to capture diverse image details. Specifically, we
construct a Reconstructed Convolution based Look-Up Ta-
ble (RCLUT) network, which employs multiple RC blocks.
The RCLUT network (shown in Figure 2(a)) consists of two
cascaded stages, each containing three parallel branches. To
achieve different scale feature maps like [32], these RFs of
three branches respectively are 3× 3, 5× 5, 7× 7 through
our RC Blocks.

In addition, within the first stage of our network, three
Conv Block4-1 are utilized after the RC modules. In the
second stage, an RC module with 5× 5 RF is coupled with
a Conv Block4-4, which provides upscaling capabilities. To
minimize the overall LUT size, two Conv Block1-4s are
placed after the other two branches. This is because the
Conv Block1-4 in the LUT format only requires (28)× 4B
storage, while the Conv Block4-4 demands (28)4×4B stor-
age, without LUT-sampling. Working in tandem with the
two cascaded stages and the rotation strategy from [22, 24],
the RCLUT network can achieve a 27 × 27 RF size while
maintaining only a 1.515MB LUT size by sampling to 24.
Compared to MuLUT, the RF size of RCLUT is 9× larger,
but the LUT size is 2.68× smaller. Our RCLUT method of-
fers a far more efficient approach to balancing the trade-off
between RF and LUT size.
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Figure 3. The different LUT inference formulations of SR-LUT
and RC module

Discuss the receptive field (RF) size between RCLUT
and MuLUT. Assuming that the RF size of RC module in
1st stage/2nd stage is N1/N2 and Conv Block is M1/M2.
For RCLUT, it couples the two modules to increase the RF
size to M1 +N1 − 1. Thanks to the rotation operation [16,
22], the RF size of RCLUT 1st stage can further achieve to

RF1 = 2(M1 +N1 − 1)− 1. (4)

For 2nd stage, since the anchor point in convolution process
becomes the central point, RF1 will shrink by half. Thus
the RF size of RCLUT is

RF2 = 2(
(RF1 − 1)

2
+M2 +N2 − 1)− 1

= 2M1 + 2M2 + 2N1 + 2N2 − 7.
(5)

While for MuLUT, its RF size increases to 2M1−1 through
rotation. Furthermore, the cascading 2nd stage also helps to
increase the RF size to

RF ′
2 = 2(

((2M1 − 1)− 1)

2
+M2 − 1)− 1

= 2M1 + 2M2 − 3.
(6)

RCLUT’s RF size can be 2N1 + 2N2 − 4 more than
MuULT’s in the case that M1 and M2 of the two meth-
ods correspond equally. We select the branch where 7x7

module to calculate the final RF size of the network, where
N1 = 7,M1 = 2, N2 = 7,M2 = 1. Under this setting,
RCLUT’s RF size is 27 × 27. The RF size of MuLUT is
9× 9, where M1 = 3,M2 = 3.

3.4. RC-Plugin Module

In order to further demonstrate the effectiveness of the
Reconstructed Convolution method, we design our RC
method as a Plugin module, featuring a 5 × 5 RF size as
shown in Figure 2(b). This RC-Plugin Module can be flex-
ibly incorporated into LUT based SR methods (e.g., SR-
LUT and MuLUT). With a 5 × 5 RF size, the RC-Plugin
Module can extend the RF size of the base LUT methods,
adding only 0.415 KB to the LUT size by sampling to 24.
To easily integrate our RC-Plugin module, we only position
it ahead of other LUT methods. Given the different archi-
tectures of base models, we add three RC-Plugin modules
in MuLUT and one in SR-LUT, as shown in Figure 4. This
helps to extend the RF size of the MuLUT network from
9× 9 to 17× 17.

4. Experiment
In this section, we first introduce the datasets and train-

ing details of our proposed RCLUT networks. Following
this, we compare RCLUT with several state-of-the-art LUT-
based SR methods through quantitative and qualitative eval-
uations. Additionally, we quantify the advantages of our
RC-Plugin module when incorporated into other LUT-based
methods. Finally, we conduct ablation studies to demon-
strate the effectiveness of our RCLUT model and the RC
module.

4.1. Datasets and Experimental Setting.

Datasets and Metrics. We train the RCLUT Networks
on the DIV2K dataset [1], which consists of 2K resolution
images for the SR task. We utilize the widely used 800
training images from DIV2K to train our RCLUT model.
Our focus is on the ×4 upscaling factor in the SR task,
where low-resolution (LR) images are simply downscaled
via Bicubic interpolation. We evaluate the performance
of our method using public benchmarks of Set5, Set14,
BSD100 [25], Urban100 [15], and Manga109 [10]. For fair
comparison, we use only the Peak Signal-to-Noise Ratio
(PSNR) and structural similarity index (SSIM) [37] both at
the Y-channel as evaluation metrics. Additionally, we con-
sider the storage size of the LUTs to assess the efficiency of
other methods.

Training Setting. Our training setup is as follows: We
set the channel increasing number C in the RC Linear Op-
eration to 64. Our RCLUT model is trained for 200, 000
iterations using the Adam optimizer [19], with a learning
rate of 1e−4 and a batch size of 32. The mean-squared er-
ror (MSE) loss function is selected as the optimization ob-
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Table 1. The comparison with other methods.
Method RF Size LUT size Set5 Set14 BSDS100 Urban100 Manga109

Interpolation
Nearest 1× 1 - 26.25/0.7372 24.65/0.6529 25.03/0.6293 22.17/0.6154 23.45/0.7414
Bilinear 2× 2 - 27.55/0.7884 25.42/0.6792 25.54/0.6460 22.69/0.6346 24.21/0.7666
Bicubic 4× 4 - 28.42/0.8101 26.00/0.7023 25.96/0.6672 23.14/0.6574 24.91/0.7871

LUT

SR-LUT [16] 3× 3 1.274MB 29.82/0.8478 27.01/0.7355 26.53/0.6953 24.02/0.6990 26.80/0.8380
SPLUT-L [24] 18MB 30.52/0.8631 27.54/0.7520 26.87/0.7091 24.46/0.7191 27.70/0.8581
MuLUT [22] 9× 9 4.062MB 30.60/0.8653 27.60/0.7541 26.86/0.7110 24.46/0.7194 27.90/0.8633

RCLUT (Ours) 27× 27 1.513MB 30.72/0.8677 27.67/0.7577 26.95/0.7145 24.57/0.7253 28.05/0.8655

Sparse coding

NE + LLE [5] - - 29.62/0.8404 26.82/0.7346 26.49/0.6970 23.84/0.6942 26.10/0.8195
Zeyde [40] - - 26.69/0.8429 26.90/0.7354 26.53/0.6968 23.90/0.6962 26.24/0.8241
ANR [33] - - 29.70/0.8422 26.86/0.7368 26.52/0.6992 23.89/0.6964 26.18/0.8214
A+ [34] - - 30.27/0.8602 27.30/0.7498 26.73/0.7088 24.33/0.7189 26.91/0.8480

DNN FSRCNN [9] 17× 17 - 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610

jective. We also employ the rotation training strategy to
enhance performance and the RF. Data augmentation tech-
niques such as random flip and rotation are used to improve
our model’s capabilities. We train the RCLUT model using
PyTorch [31] on Nvidia V100 GPUs.

Caching LUT Setting. When the model converges, we
convert the RCLUT networks to a multi-LUTs format with
an interval of 24 to reduce the size. Due to the cascade strat-
egy, results from the first stage need to be quantized to in-
tegers, so we employ the same Re-indexing method as used
in MuLUT. Additionally, to ensure that the performance of
the LUTs is on par with that of the networks, we also adopt
the LUT-aware Finetuning Strategy proposed by MuLUT.

4.2. Quantitative Evaluation

We compare our method with various SR methods, in-
cluding 3 interpolation based methods(nearest neighbor, bi-
linear and bicubic interpolation), 4 sparse coding meth-
ods(NE+LLE [5], Zeyde et al. [40], ANR [33] and A+ [34]),
1 DNN-based method(FSRCNN [9]) and 3 LUT-based
method(SR-LUT [16], MuLUT [22] and SPLUT [24]).

The quantitative results are showcased in Table 1. It
can be seen that, thanks to the substantially larger RF size,
our RCLUT model delivers the highest PSNR performance

amongst LUT-based and sparse coding methods. Compared
with the prior state-of-the-art method [22], we manage to
improve the PSNR value by 0.12dB on the Set5 dataset,
leveraging the benefits of the 27×27 RF size. Furthermore,
RCLUT outperforms FSRCNN on the Set14 and Manga109
benchmark datasets and yields competitive performance on
other datasets.

In order to compare efficiency, we also report the statis-
tics of multiplications, additions and LUT storage sizes of
LUT-based methods. As indicated in Table 1, our RCLUT
model delivers superior performance but maintains a sim-
ilar LUT size as SR-LUT, which is only 0.39 MB larger.
Additionally, RCLUT’s LUT size is 11.88× smaller than
that of SPLUT-L, but still achieves a 0.2dB higher PSNR
value on the Set5 dataset. Even though the performance is
boosted by an average of 0.11dB PSNR value, RCLUT’s
size is only 2.68× smaller than MuLUT’s.

The extensive performance and LUT size comparisons
confirm that our RCLUT is a more efficient method than
previous LUT-based methods, providing a better balance
between accuracy and storage. The RCLUT incorporates
considerably more pixel information to ensure restoration
ability with less increase in size, achieved through the RC
module.
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Figure 5. Visual comparison for ×4 SR task on benchmark datasets. The results show our RCLUT can generate sharp edges without severe
artifacts compared with other methods.

Table 2. SR-LUT and 1D-LUT size estimation when storing 8bit output for 8bit input with upscaling factor r = 4. SR-LUT becomes
unpractical when RF is larger than 2× 2.

RF Full size SR-LUT Sampled SR-LUT Full size 1D-LUT

2× 2 64GB 1.274MB 16KB
3× 3 6.7× 107PB 1.726TB 36KB
5× 5 2.3× 1046PB 8.2× 1016PB 100KB
n× n (28)(n

2) × r2B (24 + 1)(n
2) × r2B 28 × n2 × r2B

4.3. Qualitative Evaluation

In this section, we primarily compare our method with
3 LUT-based SR methods and the FSRCNN network. Fig-
ure 5 illustrates the visual quality of 5 cases in benchmark
datasets, and additional visual results are provided in sup-
plementary material. As observed in the first and the last ex-
ample, Bicubic interpolation results in blurry outputs, SR-
LUT introduces noticeable blocking artifacts due to the lim-
ited RF size, FSRCNN produces serious checkerboard ar-
tifacts, and MuLUT and SPLUT present relatively better
quality than SR-LUT but still contain noise. In contrast,
our method achieves more satisfactory results, illustrating
sharper edges and fewer artifacts. The other three examples

demonstrate that our RCLUT model recovers clearer edges
and more natural textures, even when compared with the
DNN method (FSRCNN). These progressive visual results
verify the effectiveness of RCLUT in leveraging an exag-
gerated RF size.

4.4. The effectiveness of RC-Plugin Module

One additional experiment verifies that the RC method
can be utilized as a plugin module, providing benefits to
other LUT-based methods due to its efficiency and flexi-
bility. We employ an RC module with a 5 × 5 RF size
as the RC-Plugin module, termed as RC-5, and place one
RC-Plugin module ahead of SR-LUT and three RC-Plugin
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Table 3. The effectiveness RC-Plugin module.
Method Set5 Set14 BSDS100 Urban100 Manga109 Volume

MuLUT [22] 30.60 27.60 26.86 24.46 27.90 4.062 MB
RC-5 + MuLUT 30.77 27.71 26.96 24.58 28.11 4.062 MB (+ 1.245 KB)

modules ahead of each branch in MuLUT, as illustrated in
Figure 4. As demonstrated in Table 3 and the first and third
rows in Table 2, when equipped with the RC-Plugin mod-
ule, RC-5+SR-LUT and RC-5+MuLUT respectively gain
0.54dB and 0.17dB PSNR value over the base methods
on the Set5 dataset. As indicated by the table size in Ta-
ble 3 and Table 2, the LUT size increase is negligible when
equipped with the RC-Plugin module. This validates that
our RC-Plugin module is both effective and efficient.

4.5. Ablation Studies

In this section, we discuss the effectiveness of RCLUT
networks and the implement of RC module.

The effectiveness of Linear operations in RC mod-
ule. Our Reconstructed Convolution is founded on Linear
and Average Pooling operations. This section will discuss
the impact of Linear operations in the RC module. As de-
picted in Table 4, when equipped with only Average Pooling
and followed by a Conv Block4-4, the method can achieve
a 5 × 5 RF size, but it diminishes the efficacy of Conv
Block4-4 (as seen in the SR-LUT baseline). Conversely,
the 5 × 5 RC module with both Linear and Average Pool-
ing operations, termed as RC-5, enhances the subsequent
method by over 6.21dB in terms of PSNR value on the Set5
dataset. This experiment demonstrates that channel-wise
features are critical to the SR model and our Linear opera-
tions provide an ability to extract deep features. Conversely,
the combination of Conv Block1-4 and RC-5 exhibits per-
formance decline compared to the model of Conv Block4-4
and RC-5. We surmise that our RC module is deficient in
spatial features fusion and needs to be combined with tradi-
tional convolution blocks, like Conv Block4-4, to achieve a
complementary effect.

The effectiveness of RF of RC module. We have exam-
ined the impact of receptive field (RF) size, ranging from
3 × 3 to 9 × 9, on the RCLUT model. These tests were
conducted on a single-stage, single-branch network archi-
tecture for ease of implementation. As shown in Table 5,
the SR-LUT augmented with a 3 × 3 RC module, dubbed
RC-3, sees a PSNR increase of 0.48 dB on the Set5 dataset.
Additionally, RF sizes of 5 × 5 and 7 × 7 respectively im-
prove the PSNR value by 0.06dB and 0.09dB over the RC-3
module. However, an RF size of 9 × 9 only yields a 0.02
PSNR increase over the RC-7. These results suggest that as
the RF size increases, our RC module continues to enhance
performance up to an inflection point around 7 × 7. This
explains our choice of 7× 7 as the maximum RF size in the

RC Blocks.
The effectiveness of cascade and parallel branches in

RCLUT. We experimented with single-stage models incor-
porating varying RC modules and Conv Block4-4 configu-
rations. RCLUT-3 refers to the single-stage model with a
3 × 3 RC module, while RCLUT-3 5 represents a single-
stage model with two branches comprising 3× 3 and 5× 5
RC Blocks. As presented in Table 6, it is observed that
a multi-branch architecture enhances the performance of
the RCLUT model. In particular, RCLUT-3 5 7 achieves
a 0.34 dB higher PSNR value than RCLUT-3 on the Set5
dataset. Interestingly, RCLUT-5 7 9 exhibits comparable
performance to RCLUT-3 5 7, which suggests that a 7 × 7
RF size is sufficient for our RCLUT model, aligning with
the findings in the previous section. Moreover, the two-
stage cascaded model RCLUT-3 5 7-X×2 shows a 0.04dB
PSNR performance improvement on the Set5 dataset com-
pared to the single-stage model RCLUT-5 7 9. These ex-
periments underscore the effectiveness of the cascading and
parallel branches architecture adopted in RCLUT.

The inference speed of LUT-based methods. In our
experiments, we generate a high-definition (HD) image of
1280 × 720 using a super-resolution (SR) factor of 4x.
These tests were conducted following the same setup as de-
scribed in the MuLUT [22] research. For these tests, we use
Ω to denote the RC plug-in module which has a receptive
field size of 5 × 5. For EDSR, we implement it using the
CPU-version of the PyTorch library, with its runtime being
measured on a MacBook Pro that has a 2.6 GHz Intel Core
i7 processor. For all the other methods, their runtime was
measured on an IQOO Neo5 smartphone.

We’d like to highlight that typically, processors found
in personal computers, such as laptops, are generally more
powerful than those found in mobile devices like smart-
phones. Therefore, when analyzing the results, it’s impor-
tant to consider the capabilities of the hardware being used
for the testing.

5. Conclusion
In this paper, we propose a Reconstructed Convolution

method, which decouples the calculation of spatial and
channel-wise feature. The RC method can be formulated
as multi-1D LUTs to maintain large RF with less LUT
size. Moreover, We propose a RCLUT model based on RC
Blocks. It achieves significant performance with slight in-
creasing LUT size. On the other hand, our RC method can
be used as a Plugin module to improve the ability of LUT-
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Table 4. Ablation study of RC module.
Avg Pooling 5x5 RC-5 Conv Block4-4 Conv Block1-4 Set5 Set14 BSDS100 Urban100 Manga109 Volume

! 29.82 27.01 26.53 24.02 26.80 1.274 MB
! ! 24.19 23.09 23.71 20.78 21.88 1.274 MB

! ! 29.49 26.80 26.44 23.77 26.09 0.83 KB
! ! 30.40 27.40 26.77 24.26 27.33 1.274 MB

Table 5. Ablation study of receive field size on RC.
Method Set5 Set14 BSDS100 Urban100 Manga109 Volume

SR-LUT [16] 29.82 27.01 26.53 24.02 26.80 1.274 MB
RC-3 + SR-LUT 30.34 27.37 26.75 24.24 27.28 1.274 MB(+0.149 KB)
RC-5 + SR-LUT 30.40 27.40 26.77 24.26 27.33 1.274 MB(+0.415 KB)
RC-7 + SR-LUT 30.43 27.44 26.80 24.31 27.44 1.274 MB(+0.813 KB)
RC-9 + SR-LUT 30.45 27.46 26.81 24.33 27.48 1.274 MB(+1.345 KB)

Table 6. Ablation study of multi-branch on RC.
Method Set5 Set14 BSDS100 Urban100 Manga109 Volume

RCLUT-3 30.34 27.37 26.75 24.24 27.28 1.274 MB
RCLUT-3 5 30.57 27.57 26.89 24.46 27.68 2.548 MB
RCLUT-5 7 30.64 27.63 26.93 24.53 27.85 2.548 MB

RCLUT-3 5 7 30.68 27.64 26.94 24.55 27.90 3.822 MB
RCLUT-5 7 9 30.68 27.63 26.94 24.56 27.93 3.822 MB

RCLUT-3 5 7-X2 30.72 27.67 26.95 24.57 28.05 1.513 MB

Table 7. Runtime of different LUT-based methods.
LUT DNN

SR-LUT SR-LUTΩ MuLUT MuLUTΩ RCLUT EDSR

Runtime (ms) 152 157(+3%) 253 266(+5%) 232 8083

based SR methods. Extensive experiments show that our
RCLUT is a new the-state-of-art LUT-method for SR task,
it works much more efficiently than other prior methods.
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