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Abstract

Weakly-supervised temporal action localization aims
to localize action instances in videos with only video-
level action labels. Existing methods mainly embrace
a localization-by-classification pipeline that optimizes the
snippet-level prediction with a video classification loss.
However, this formulation suffers from the discrepancy be-
tween classification and detection, resulting in inaccurate
separation of foreground and background (F&B) snippets.
To alleviate this problem, we propose to explore the un-
derlying structure among the snippets by resorting to un-
supervised snippet clustering, rather than heavily relying
on the video classification loss. Specifically, we propose a
novel clustering-based F&B separation algorithm. It com-
prises two core components: a snippet clustering compo-
nent that groups the snippets into multiple latent clusters
and a cluster classification component that further classi-
fies the cluster as foreground or background. As there are
no ground-truth labels to train these two components, we
introduce a unified self-labeling mechanism based on op-
timal transport to produce high-quality pseudo-labels that
match several plausible prior distributions. This ensures
that the cluster assignments of the snippets can be accu-
rately associated with their F&B labels, thereby boosting
the F&B separation. We evaluate our method on three
benchmarks: THUMOS14, ActivityNet v1.2 and v1.3. Our
method achieves promising performance on all three bench-
marks while being significantly more lightweight than pre-
vious methods. Code is available at https://github.
com/Qinying-Liu/CASE

1. Introduction
Temporal action localization (TAL) [43] is a task to lo-

calize the temporal boundaries of action instances and rec-
ognize their categories in videos. In recent years, numerous
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works put effort into the fully supervised manner and gain
great achievements. Albeit successful, these methods re-
quire extensive manual frame-level annotations, which are
expensive and time-consuming. Without the requirement of
frame-level annotations, weakly-supervised TAL (WTAL)
has received increasing attention, as it allows us to detect
the action instances with only video-level action labels.

There has been a wide spectrum of WTAL methods de-
veloped in the literature [48, 58, 37, 29]. With only video-
level labels, mainstream methods employ a localization-by-
classification pipeline, which formulates WTAL as a video
action classification problem to learn a temporal class ac-
tivation sequence (T-CAS). For this pipeline, foreground
(i.e., action) and background separation remains an open
question since video-level labels do not provide any cue
for background class. There are two types of existing ap-
proaches to solve it. The first type [48, 58] is based on
the multiple instance learning (MIL), which uses the T-CAS
to select the most confident snippets for each action class.
The second type [37, 29] introduces an attention mechanism
to learn class-agnostic foreground weights that indicate the
probabilities of the snippets belonging to foreground. De-
spite recent progress, these methods typically rely on the
video classification loss to guide the learning of the T-CAS
or the attention weights. There is an inherent downside: the
loss is easily minimized by the salient snippets [33] and fails
to explore the distribution of the whole snippets, resulting in
erroneous T-CAS or attention weights. This issue is rooted
in the supervision gap between the classification and detec-
tion tasks. Recent studies [39, 31] are devoted to producing
snippet-level pseudo-labels to bridge the gap. However, the
pseudo-labels are still derived from the unreliable T-CAS or
attention weights.

Deep clustering [6], which automatically partitions the
samples into different groups, has been proven to be capa-
ble of revealing the intrinsic distribution of the samples in
many label-scarce tasks [1, 4, 10, 27]. A natural issue arises:
is it possible to adopt the clustering to capture the distribu-
tion of snippets? Since clustering can be conducted in a
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Figure 1: Conceptual illustration of our clustering-based F&B separation algorithm. In snippet clustering, we partition the
snippets (or frames) into multiple clusters with explicit characteristics. In cluster classification, we classify the clusters as
foreground or background. The above results are attained according to the predictions of our method.

self-supervised manner, it is immune to the video classifi-
cation loss. This suggests a great potential of clustering for
F&B separation in WTAL. A brute-force solution would be
to group the snippets into two clusters, one for foreground
and one for background. Whereas, we empirically find that
it underperforms in practice (cf. Sec. 5.3). We argue that the
reason is that snippets, regardless of foreground or back-
ground, can differ dramatically in appearance (cf. Fig. 1
(a)). As a result, it may be difficult for a self-supervised
model to group them accurately. Fortunately, in real-world
videos, there are common characteristics (e.g., ”interview”,
”running”) shared by a group of snippets (cf. Fig. 1 (b)).
Compared to learning two clusters for F&B in the complex
video content, it may be easier to explore the snippet clus-
ters with clear and distinctive characteristics. This necessi-
tates a clustering algorithm with multiple clusters. Further-
more, it can be observed that the characteristics of clusters
are sometimes indicative cues for F&B separation. For ex-
ample, we can confidently classify the ”running” cluster to
foreground and the ”interview” cluster to background ac-
cording to the cluster-level characteristics. Consequently, it
is promising to further leverage the cluster-level representa-
tions to assist F&B separation.

In light of the above discussion, we propose a novel
Clustering-Assisted F&B SEparation (CASE) network. We
begin by constructing a standard WTAL baseline that pro-
vides a primary estimation of F&B snippets. We then
introduce a clustering-based F&B separation algorithm
(cf. Fig. 1) to refine the F&B separation. This algorithm
is comprised of two main components: snippet clustering
for dividing the snippets into multiple clusters, and clus-
ter classification for classifying the clusters as foreground
or background. Considering that no ground-truth labels are
available to train the components, we propose a unified self-
labeling mechanism to generate high-quality pseudo-labels
for them. Specifically, we formulate the label assignment
in both components as a unified optimal transport problem,

which allows us to flexibly impose several customized con-
straints on the distribution of pseudo-labels. After training
these two components, we can transform the cluster assign-
ments of the snippets to their F&B assignments, which can
be used to refine the F&B separation of the baseline.

It is demonstrated that our method yields favorable per-
formance while being much more lightweight compared to
prior approaches. In summary, our contributions are three-
fold. 1) We propose a clustering-based F&B separation al-
gorithm for WTAL, which casts the problem of F&B sep-
aration as a combination of snippet clustering and cluster
classification. 2) We propose a unified self-labeling mecha-
nism based on optimal transport to guide snippet clustering
and cluster classification. 3) We conduct extensive exper-
iments that demonstrate the effectiveness and efficiency of
our method compared to existing approaches.

2. Related Work

Deep clustering. Current deep clustering approaches [55,
54, 9] could be roughly divided into two categories. The
first one iteratively computes the clustering assignment
from the up-to-date model and supervises the network train-
ing processes by the estimated information [51, 52, 6, 3,
5, 50]. DeepCluster [51] is a typical method that itera-
tively groups the features and uses the subsequent assign-
ments to update the deep network. The second one si-
multaneously learns feature representation and clustering
assignment [12, 22, 15], which has gained popularity in
recent years. Asano et al. [1] propose to enforce a bal-
anced label assignment constraint to avoid degenerate solu-
tion. Caron et al. [4] use the algorithm in [1] to introduce a
swapped mechanism that employs two random transforma-
tions of the same images to guide each other. In this work,
we extend [1] from image classification to WTAL, and in-
corporate it with task-specific designs, e.g., imposing multi-
ple sensible constraints on the distribution of pseudo-labels.
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It is worth noting that in the above methods, the number of
clusters is typically set to the number of ground-truth (GT)
classes so that clusters and GT classes can be mapped one-
by-one during testing [46, 3]. There are attempts that utilize
an extra over-clustering technique to learn a larger number
of clusters than GT, which is believed to be conducive to
representation learning [22, 10]. However, these methods
commonly treat the technique as an auxiliary tool indepen-
dent of their main task. In contrast, we are committed to
building an explicit correspondence between learned clus-
ters and F&B classes, thus unleashing the full potential of
clustering in the WTAL task.
Weakly-supervised temporal action localization. Exist-
ing WTAL approaches can be categorized into four broad
groups. The first group aims to improve feature discrimi-
nation ability. Various techniques, e.g., deep metric learn-
ing [33, 35] and contrastive learning [58, 26], have been
explored. The second group seeks to discover complete ac-
tion regions. [33, 44, 60] hide some snippets to press the
models in exploring more action regions, while [29, 21] use
a multi-branch framework to discover complementary snip-
pets. The third group is concerned with learning attention
weights. [57, 36] design losses to regularize the values of
the attention weights. [39, 31] generate pseudo-labels for
them. However, the pseudo-labels are derived from the pri-
mary predictions of snippets, which are still optimized us-
ing the video classification loss. The last group is the most
closely related to ours, which introduces auxiliary classes
in addition to the action classes. [42] introduces a video-
level context class. [30, 47, 29] mine the action units or sub-
actions shared across action categories. Class-specific sub-
action is explored in [18, 17]. Recently, [28] learns a set
of visual concepts for fine-grained action localization. Our
method is superior to these methods in three noticeable as-
pects. 1) These methods rely on video-level supervision to
discover the auxiliary classes. Conversely, we develop the
clusters in a self-supervised manner that is orthogonal to
video-level supervision. 2) These methods devise multiple
loss terms to regularize the auxiliary classes. In contrast,
we introduce regularization into optimal transport, which
can be resolved in a principled way. 3) Our method signifi-
cantly outperforms these methods.

3. Preliminaries and Baseline Setup
In each training iteration, we first sample a mini-batch of

B videos. For each video, we have access only to its video-
level label Y ∈ RG, where G is the number of ground-truth
action classes. By convention, we first sample a sequence
of T snippets from each video, and then extract snippet fea-
tures with a pre-trained feature extractor for both RGB and
optical-flow streams. For simplicity, only one stream is pre-
sented hereafter. As a result, we obtain a sequence of snip-
pet features F ∈ RT×D. Here, D is the channel dimension.

For the baseline, following convention [24], we use a
two-branch framework consisting of a video classification
branch and an attention branch, as shown in Fig. 2(a). In the
former branch, we first feed the input features F to an em-
bedding encoder followed by an action classifier to get the
temporal class activation sequence (T-CAS) PV ∈ RT×G.
In the latter branch, F is first passed through another em-
bedding encoder to obtain the snippet embeddings, and the
embeddings are then sent to an attention layer to extract
one-dimension Attention weights PA ∈ RT , which rep-
resent the foreground probabilities of the snippets.

We apply the popular multiple instance learning (MIL)
to train the video classification branch. Briefly (see Sup-
plementary for details), we first calibrate T-CAS with the
attention weights to restrain background snippets. Then we
select the top-k snippets for each class based on the activa-
tions to construct video-level scores P̄V ∈ RG. Finally, we
optimize a video classification loss with the known video
labels Y :

LV = LCE(P̄
V ,Y ). (1)

To train the attention branch, we adopt the pseudo-label-
based scheme proposed by [32] due to its conciseness and
effectiveness. Specifically, we define foreground pseudo-
labels QA ∈ RT as follows: snippets appearing in the top-k
activations for the ground-truth video-level classes are pos-
itive, and the other snippets are negative. To improve the
robustness of the model against label noise, we use the gen-
eralized binary cross-entropy loss [59, 32]:

LA =
1

Npos

T∑
t=1

QA
t

1− (PA
t )

γ

γ
+

1

Nneg

T∑
t=1

(1−QA
t )

1− (1− PA
t )

γ

γ
,

(2)

where γ ∈ (0, 1) controls the noise tolerance, and Npos and
Nneg represent the number of positive and negative snippets.

4. Our Method
In this section, we present our clustering-based F&B al-

gorithm, as depicted in Fig. 2(b), which is built upon the
above baseline. We begin by providing an overview of our
algorithm, which consists of two main components: snippet
clustering component (SCC) and cluster classification com-
ponent (CCC). Next, we introduce a unified self-labeling
mechanism that we employ to provide pseudo-labels for
both SCC and CCC. Lastly, we explain how SCC and CCC
are used in the training and testing procedures.

4.1. Overview

Snippet Clustering Component. SCC is proposed to
group snippets into latent clusters. To enable joint learn-
ing of the attention layer and snippet clustering, we append
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Figure 2: Framework of our CASE. (a) depicts the baseline, which includes a video classification branch and an attention
branch. (b) illustrates our proposed clustering-based F&B separation algorithm, which comprises a snippet clustering com-
ponent (SCC) and a cluster classification component (CCC). Both are trained using a unified self-labeling mechanism based
on optimal transport (OT). (c) shows the clustering-assisted testing technique that utilizes the results of SCC and CCC to
assist F&B separation during inference.

SCC over the embeddings in the attention branch, as shown
in Fig. 2(b). For notation simplicity, we henceforth term
the total number of snippets as N = BT for a batch of B
videos, and call the snippet embeddings E ∈ RN×D. We
feed E into a clustering head composed of a linear classifier
with K classes (clusters), producing Snippet-level cluster
assignment probabilities dubbed PS ∈ RN×K . Inspired by
self-supervised learning [38, 41], we set K as a predefined
parameter, which we find to be robust in practice. To train
the clustering head, we first generate (soft) pseudo-labels
QS ∈ RN×K for PS , which will be described in Sec. 4.2.
Then, we minimize the following loss:

LS =
1

N

N∑
n=1

LCE(Q
S
n ,P

S
n ). (3)

Cluster Classification Component. CCC enforces each
cluster to be classified into foreground or background by
mapping the cluster prototypes to the F&B prototypes, as
shown in Fig. 2(b). Specifically, based on the pseudo cluster
assignments of snippets QS ∈ RN×K obtained from SCC,
we can compute the k-th cluster prototype over the snippet
embeddings E ∈ RN×D:

ĒS
k =

∑N
n=1 Q

S
n,k ·En∑N

n=1 Q
S
n,K

. (4)

where ĒS
k ∈ RD. In a similar vein, using the foreground

pseudo-labels QA ∈ RN and background labels 1 − QA,
we can calculate the F&B prototypes ĒA ∈ R2×D. ĒA

1

and ĒA
2 correspond to foreground and background, respec-

tively. Then, we compute Cluster-level classification prob-
abilities dubbed PC ∈ RK×2 by measuring the similarities
between cluster prototypes and F&B prototypes:

PC
k,i = Softmax

i

(
ρ · cos(ĒS

k , Ē
A
i )

)
, (5)

where cos(·) indicates the cosine similarity function and ρ
is the temperature. PC

k,i represents the probability that k-
th cluster belongs to foreground (i = 1) or background
(i = 2). To optimize the component, we generate (soft)
labels QC for PC , which will be described in Sec. 4.2.
Accordingly, we will get a loss term:

LC =
1

K

K∑
k=1

LCE(Q
C
k ,PC

k ). (6)

Notably, although QC is computed from each mini-
batch of data, we observe that it will quickly converge to
a stable status near the one-hot form during training. This
suggests that a global and clear correspondence between
clusters and F&B is established.

4.2. Self-Labeling via Unified Optimal-Transport

This section explains the self-labeling mechanism that
generates the labels QS for PS in SCC and labels QC for
PC in CCC. First, we describe a basic labeling formula-
tion shared in both SCC and CCC. This formulation con-
verts the label assignment to an optimal transport problem
while imposing constraints on the distribution of the labels.
Then, we discuss the unique adaptations required for SCC
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and CCC individually. For SCC, we introduce a prior distri-
bution for QS to avoid the uncertain label assignment issue
observed in SCC. As for CCC, we leverage snippet-level
F&B labels to estimate the prior marginal distribution of
QC . These adaptations can be seamlessly integrated into
the optimal-transport formulation, resulting in a unified so-
lution that is easy to implement, as demonstrated in Alg. 1.

Basic formulation. Regarding the generation of pseudo-
labels Q, a straightforward solution is to search for a rea-
sonable Q that is close to the current model predictions P ,
e.g., by applying argmax to P . However, in our unsuper-
vised setting, this way may lead to trivial solutions, e.g., all
samples are assigned to only a class (cf. Sec. 5.3). Instead,
when searching for Q, we propose to impose a constraint on
the proportion of elements assigned to each class. Formally,
we formulate this as an optimization problem:

min
Q∈Ω

E(P ,Q), (7)

where E(P ,Q) = −
∑N

n

∑K
k Qn,k logPn,k measures the

distance between Q and P , N is the number of samples and
K is the number of classes. The constraint Ω is defined as:

Ω = {Q ∈ RN×K
+ |Q1K = α,Q⊤1N = β}, (8)

where α and β are the marginal distributions of Q onto its
rows and columns, respectively. We set α = 1N to en-
sure that Q is a probability matrix. β ∈ RK represents the
proportion of elements belonging to each of the K classes.
When there is no prior knowledge, equipartition [1, 4] can
serve as a general inductive bias and be utilized to set β:

β =
N

K
1K . (9)

This ensures that, on average, each class is assigned the
same number of samples, thereby averting trivial solutions.

It is noteworthy that Eq. (7) is an optimal transport prob-
lem, which is computationally expensive to solve. Follow-
ing [8], an entropy term is introduced to it:

min
Q∈Ω

E(P ,Q)− 1

ϵ
H(Q), (10)

where ϵ > 0 and H(Q) is the entropy of Q. The advan-
tage of the term is that Eq. (10) can be efficiently solved by
Sinkhorn-Knopp algorithm [8].

Prior distribution for SCC. In Eq. (10), an entropy term
is subtracted to make it tractable with affordable complex-
ity. Nevertheless, maximizing the entropy can also lead to
uncertain label assignments, where the samples are assigned
to different classes with equal probability. In practice, the

issue is pronounced in SCC but not in CCC. This may be be-
cause the former involves much more instances and classes,
rendering the algorithm harder to converge (cf. Fig. 4).

To remedy the defect in SCC, we repurpose an early
sequence-matching method [45] to introduce a prior distri-
bution for the pseudo-labels QS in SCC, denoted as Q̂S ∈
RN×K , which represents the probability of assigning N
snippets to K clusters. A sensible prior distribution should
encourage foreground snippets to have relatively high prob-
abilities of belonging to foreground clusters, and the same
is true for background. To implement this, we first sort the
snippets according to their foreground probabilities PA in
ascending order, and denote the resulting ranks of the N
snippets as rank ∈ RN . We then construct the prior dis-
tribution Q̂S , such that the snippets with high ranks (i.e,
rank) are more likely to be assigned to the clusters with
high foreground probabilities (i.e, QC

:,1) and vice versa. For-
mally, Q̂S is defined as a Gaussian distribution:

Q̂S
n,k =

1

σ
√
2π

exp
(
−

| rankn

N −QC
k,1|

2

2σ2

)
, (11)

where rankn is the order of n-th snippet, and QC
k,1 is

the foreground probability of k-th cluster. Finally, we re-
place Eq. (10) with the following objective function:

min
QS∈ΩS

E(PS ,QS) +
1

ϵ
KL(QS , Q̂S), (12)

where KL(·) is the Kullback-Leibler divergence. By mini-
mizing the KL term, we encourage the labels QS to be close
to the prior distribution Q̂S , which helps to avoid uncer-
tain label assignments caused by the original entropy term.
Importantly, Eq. (12) can still be efficiently addressed by
Sinkhorn-Knopp algorithm. For detailed derivation, we re-
fer to Supplementary.

Prior marginal distribution for CCC. Although
equipartition (i.e., Eq. (9)) is a common prior in traditional
clustering, it is not suitable for enforcing equipartition on
the marginal distribution of the cluster-level F&B labels
QC , namely βC ∈ R2. This is due to the fact that βC

represents the proportions of clusters assigned to F&B,
which are not always balanced. However, since SCC
enforces equipartition on the snippet level, each cluster
contains a similar number of snippets. Consequently, the
proportions of F&B clusters are expected to be close to
the proportions of F&B snippets. To this end, instead of
using Eq. (9), we estimate βC empirically based on the
distribution of the snippet-level foreground labels QA:

βC = [
1

N

N∑
n=1

QA
n ,

1

N

N∑
n=1

(1−QA
n )]. (13)
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Algorithm 1 Pseudo-code of labeling procedures of SCC and
CCC in Pytorch-like style.

1 # L_S: logit output of clustering head (NxK)
2 # Q_hat_S: prior distribution in SCC (NxK)
3 # L_C: logit output of cluster classification (Kx2)
4 # Beta_C: prior marginal distribution in CCC (2)
5
6 # generating labels Q_S for SCC
7 Q_S = SK(L_S, Q_hat=Q_hat_S) # (NxK)
8 # generating labels Q_C for CCC
9 Q_C = SK(L_C, Beta=Beta_C) # (Kx2)

10
11 # resolve the optimal-transport problem by iterative

Sinkhorn-Knopp (SK) algorithm
12 def SK(L, Q_hat=None, Beta=None, n_iter=3):
13 N, K = L.size()
14 # uniform distribution is the default when prior

distribution is not given
15 Q_hat = 1/K if Q_hat is None else Q_hat
16 Beta = 1/K if Beta is None else Beta
17 Q = exp(L / eps)
18 Q = (Q * Q_hat).T
19 Q /= Q.sum()
20 for _ in range(n_iter):
21 Q /= Q.sum(dim=1)
22 Q = Q * Beta
23 Q /= Q.sum(dim=0)
24 Q /= N
25 return Q.t() * N

4.3. Training and Testing

Joint training. We train all components together in an
end-to-end fashion. The overall objective is written as:

L = (LV + LA) + λSLS + λCLC , (14)

where λS and λC represent the loss weights. As the base-
line and our proposed algorithm share the same embedding
encoder in the attention branch, the joint training also facil-
itates the training of the baseline model.

Clustering-assisted testing. In the inference period, us-
ing the cluster-level foreground probabilities QC

:,1, we
can transform the snippet-level cluster assignments PS to
snippet-level foreground probabilities dubbed P T based
on law of total probability: P T = PSQC

:,1, as depicted
in Fig. 2 (c). Considering that QC is stable during train-
ing, we simply use the QC from the last training iteration
for inference. Moreover, as verified in Table 6, the trans-
formed foreground probability P T is complementary to the
foreground probability PA from the attention layer. Hence,
we fuse PA and P T by convex combination: PM =
0.5PA + 0.5P T . The combined probability PM is then
used to help localize action instances during inference.

5. Experiments
5.1. Datasets and Evaluation Metric

THUMOS14 [23] contains videos with 20 classes. We
use the 200 videos in validation set for training and the 213
videos in testing set for evaluation. ActivityNet v1.3 [2]
covers 200 action categories with 10, 024 and 4, 926 videos

Method MACs Params mAP @ IoU AVG
0.1:0.5 AVG0.1 0.3 0.5 0.7

W-TALC [40] - - 55.2 40.1 22.8 7.6 39.8 -
BaS-Net [24] 38.60 26.26 58.2 44.6 27.0 10.4 43.6 35.3
TSCN [57] - - 63.4 47.8 28.7 10.2 47.0 37.8
ACM-Net [42] 9.48 12.63 68.9 55.0 34.6 10.8 53.2 42.6
CoLA [58] 9.47 12.62 66.2 51.5 32.2 13.1 50.3 40.9
UGCT [53] - - 69. 55.5 35.9 11.4 54.0 43.6
CO2-Net [14] 20.88 34.13 70.1 54.5 38.3 13.4 54.4 44.6
FTCL [11] 9.45 14.73 69.6 55.2 35.6 12.2 53.8 43.6
RSKP [20] 6.90 4.20 71.3 55.8 38.2 12.5 55.6 45.1
ASM-Loc [13] 13.77 46.21 71.2 57.1 36.6 13.4 55.4 45.1
DELU [7] 20.88 34.13 71.5 56.5 40.5 15.5 56.5 46.4
CASE 1.60 2.13 72.3 59.2 37.7 13.7 57.1 46.2

Table 1: Comparison on THUMOS14 in terms of mAP (%),
MACs (G), and Params (M). AVG (0.1:0.5) and AVG rep-
resent the average mAP under IoU thresholds of 0.1:0.5 and
0.1:0.7. MACs are computed from a video with 750 snip-
pets.

in the training and validation sets, respectively. ActivityNet
v1.2 is a subset of ActivityNet v1.3, and covers 100 ac-
tion categories with 4, 819 and 2, 383 videos in the train-
ing and validation sets, respectively We follow the stan-
dard evaluation protocol by reporting mean Average Preci-
sion (mAP) under various temporal intersection over union
(tIoU) thresholds. We refer to Supplementary for more ex-
perimental details about architecture, setup, baseline, etc.

5.2. Comparison with SOTA Methods

In Table 1, we compare our CASE with SOTA WTAL
methods on THUMOS14. Besides mAP, we also report
the model complexity in terms of multi-accumulative op-
erations (MACs), and the number of trainable parameters
(Params). We can observe that CASE achieves compara-
ble performance to the recent SOTA method DELU [7] and
evidently outperforms other approaches. Notably, CASE
is significantly more lightweight than the competitors, with
MACs and Params less than 1/10 of those of DELU. This is
because our method does not require a heavy cross-modal
consensus module [7, 14] or multi-step proposal refine-
ment [13].

Additionally, we compare our CASE with previous
methods on ActivityNet v1.2&v1.3 in Table 2. As can be
seen, CASE achieves impressive improvements over the
previous methods on both datasets.

5.3. Ablation Study

Contribution of core components. Our method contains
two core components: snippet clustering component (SCC)
and cluster classification component (CCC), which are suc-
cessively stacked on the baseline model and jointly trained
with it. Table 3 quantifies the contributions of each compo-
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Method mAP @ IoU
0.5 0.75 0.95 AVG

BaS-Net [24] 38.5 24.2 5.6 24.3
RPN [16] 37.6 23.9 5.4 23.3
EM-MIL [31] 37.4 - - 20.3
TSCN [57] 37.6 23.7 5.7 23.6
WUM [25] 41.2 25.6 6.0 25.9
CoLA [58] 42.7 25.7 5.8 26.1
ASL [32] 40.2 - - 25.8
D2-Net [34] 42.3 25.5 5.8 26.0
ACGNet [56] 41.8 26.0 5.9 26.1
DELU [7] 44.2 26.7 5.4 26.9
CASE 43.8 27.2 6.7 27.9

(a) ActivityNet v1.2

Method mAP @ IoU
0.5 0.75 0.95 AVG

BaS-Net [24] 34.5 22.5 4.9 22.2
TSCN [57] 35.3 21.4 5.3 21.7
MSA [17] 36.5 22.8 6.0 22.9
ACM-Net [42] 40.1 24.2 6.2 24.6
UGCT [53] 39.1 22.4 5.8 23.8
AUMN [30] 38.3 23.5 5.2 23.5
FAC-Net [19] 37.6 24.2 6.0 24.0
FTCL [11] 40.0 24.3 6.4 24.8
RSKP [20] 40.6 24.6 5.9 25.0
ASM-Loc [13] 41.0 24.9 6.2 25.1
CASE 43.2 26.2 6.7 26.8

(b) ActivityNet v1.3

Table 2: Results on ActivityNet v1.2&v1.3. AVG indicates
the average mAP at IoU thresholds 0.5:0.05:0.95.

# Method mAP @ IoU (%)
0.3 0.5 0.7 AVG

1 Baseline 53.8 31.9 11.9 42.1
2 + SCC 55.3 33.7 12.4 43.2+1.1

3 + SCC + CCC 56.1 34.9 12.8 43.9+0.7

4 + SCC + CCC (T) 59.2 37.7 13.7 46.2+2.3

Table 3: Ablation study of core components. ”(T)” indicates
that clustering-assisted testing is applied.

nent. When compared to the baseline (line #1), both com-
ponents contribute to the performance. Specifically, when
the clustering-assisted testing technique is not applied, SCC
and CCC yield gains of 1.1% (line #2) and 0.7% (line #3),
respectively, indicating that the joint training with SCC and
CCC indeed improves the performance of the baseline. The
reason is that through deliberated clustering of snippets, the
embedding space is shaped as well-structured, as illustrated
in Fig. 7, thereby facilitating the learning of the baseline.
After training SCC and CCC, we leverage the clustering-
assisted testing to further make use of SCC and CCC during
testing, which brings about a substantial promotion of 2.3%
(line #4). In a nutshell, SCC and CCC are beneficial in both
the training and testing stages.
Necessity of converting label assignment to optimal
transport (OT). We propose an OT-based labeling strategy
that generates labels by solving an OT problem: the objec-
tive Eq. (7) subject to a constraint Eq. (8) on the proportion
of each class. To assess the necessity of our design, we
use the labeling strategy in SCC as an example and com-
pare it with alternative labeling strategies. The results are
summarized in Table 4. The terms ”Hard” and ”Soft” in-
dicate whether the labels are one-hot or soft, respectively.
The strategy without OT, denoted as ”w/o OT”, refers to
solving Eq. (7) without Eq. (8), which is no longer an OT
problem and can be solved immediately. In particular, in
the case of ”w/o OT+Soft”, the labels would be nearly iden-

Metric w/o OT w/ OT
Soft Hard Soft Hard

mAP 41.2 40.8 46.2 44.7
H(P̄S) 2.77 0.01 2.76 2.75

Table 4: Ablation study of OT-based labeling.

Figure 3: Ablation study of
the number of clusters K.

Figure 4: The evolution of
H(QC) and H(QS).

tical to the model predictions, resulting in almost no learn-
ing. As a consequence, it shows poor performance. On
the other hand, ”w/o OT+Hard” involves applying argmax
to the model predictions, but it also performs poorly. To
understand why, we calculate the entropy of the propor-
tions of clusters, namely H(P̄S), where P̄S = 1

N

∑N
n PS

n .
In Table 4, we observe that ”w/o OT+Hard” results in a
low H(P̄S) close to zero, indicating a trivial solution where
most snippets are assigned to only a few clusters. In con-
trast, our proposed ”w/ OT” greatly alleviates this issue and
achieves much better performance. Notably, ”w/ OT+Hard”
performs worse than ”w/ OT+Soft”, which we attribute to
the aggressive nature of obtaining hard labels. Overall, the
results confirm the efficacy of our design.
Analysis of the number of clusters K. We cluster snippets
into multiple clusters (K > 2), even though only F&B sep-
aration is required. To verify the correctness of our design,
we compare the performances under different numbers of
K in Fig. 3. As can be seen, a small K results in infe-
rior performance, with K = 2 even causing a performance
decline relative to baseline. The reason may be that the
clustering results deviate too much from the true distribu-
tion of F&B snippets. Hence, clustering into multiple clus-
ters is necessary. Besides, the performance becomes stable
(±0.2%) and robust to K as long as enough clusters are set
(K > 16), making it easy to tune an appropriate K in prac-
tice. These findings are in accordance with self-supervised
learning [41, 38, 49].
Analysis of snippet clustering component (SCC). In
SCC, we enforce pseudo-labels QS to match the prior dis-
tribution Q̂S by transitioning the objective of OT problem
from the original objective Eq. (10) to the current objec-
tive Eq. (12). To evaluate the impact of this modification,
in Table 5, we compare the results of our method (line #1)
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# Method mAP
1 our CASE 46.2
2 using Eq. (10) in SCC 45.4
3 using Eq. (9) in CCC 44.0

Table 5: Analysis of unique techniques in SCC and CCC.

Method PA P T PM

mAP 43.9 44.1 46.2

Table 6: Analysis of the clustering-assisted testing.

against those obtained using the original Eq. (10) (line # 2).
The results show that our modified objective outperforms
the original one, indicating that matching the prior distri-
bution is beneficial. To further examine this phenomenon,
in Fig. 4, we plot the evolution of the entropy of QS ,
H(QS), using current Eq. (12) or original Eq. (10). A large
H(QS) is typically undesired as it indicates that the assign-
ment is uncertain. Additionally, we report the entropy of
QC in CCC, H(QC), as an indication, though a direct com-
parison is not entirely fair. The results reveal that H(QC)
converges rapidly to a small value, indicating that optimiza-
tion can easily yield a solution close to a one-hot form in
CCC. Conversely, H(QS) converges slowly and remains
high, suggesting uncertain assignments in SCC. However,
this issue is mitigated when using our proposed Eq. (12).
Analysis of cluster classification component (CCC). In
CCC, we empirically estimate the prior marginal distribu-
tion of pseudo-labels QC based on Eq. (13), as opposed
to using equipartition Eq. (9). To evaluate the impact of
this design choice, we present the results of using equipar-
tition Eq. (9) in line #3 of Table 5. The clear superiority
of our method over the use of equipartition highlights the
importance of using a data-driven approach to estimate the
prior distribution of pseudo-labels in CCC.
Analysis of clustering-assisted testing. We propose to fuse
the foreground probabilities PA from the baseline model
and the foreground probabilities P T transformed from the
cluster assignments, resulting in the fused one PM . In Ta-
ble 6, we compare the performances of PA, P T , and PM .
It can be seen that the fused one PM outperforms both PA

and P T , which well demonstrates that PA and P T are
complementary to each other. This is further confirmed by
the qualitative results exemplified in Fig. 5. Concretely, it
delivers the following inspiring observations: 1) Compared
to PA, P T tends to activate more action-related regions
(e.g., ②, ④) and clearer action boundaries (e.g., ③, ⑤). This
is in line with our motivation for using P T , which is de-
signed to be more independent of the video classification
loss, capturing a more comprehensive distribution of snip-
pets rather than being biased by discriminative regions. 2)

Figure 5: Qualitative results of two videos on THUMOS14.
We show P T , PA and PM , and ground-truth (GT).

Figure 6: Qualitative results of snippet clustering and clus-
ter classification. We show three clusters belonging to fore-
ground at the top and there clusters belonging to back-
ground at the bottom.

P T is not always superior to PA. When optimizing P T ,
CASE regards the snippets as independent samples and fails
to make use of the video-level labels, resulting in irrelevant
action activation (e.g., ①). These observations further sup-
port the complementary nature of PA and P T .
Visualization results. To gain more insight, we illustrate
qualitative results of snippet clustering and cluster classifi-
cation in Fig. 6. It can be seen that: 1) Our method effec-
tively identifies the snippet groups with common character-
istics, such as ”swinging arms” for the 1st row, ”standing”
for the 5th row. 2) Our method is accurate in classifying
clusters into F&B classes. For instance, some foreground
frames in 1st&3rd rows and background frames in 5th row
are visually similar, yet our method can still separate them
into different clusters with correct F&B labels. Overall,
these results vividly substantiate the efficacy of our method
in effectively grouping and classifying snippets.

Furthermore, we visualize the snippet embeddings and
cluster prototypes in Fig. 7 and make the following obser-
vations: 1) Each cluster prototype is surrounded by a couple
of snippets, and the cluster prototypes are distinguishable
between foreground and background. 2) The embedding
space learned by our method exhibits a clearer boundary
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Figure 7: TSNE visualization of 10, 000 snippet embed-
dings and 16 cluster prototypes. ”-RGB” and ”-Flow” in-
dicate RGB stream and optical-flow stream, respectively.
The yellow, red, black, and blue marks represent foreground
snippets, background snippets, foreground cluster proto-
types, and background cluster prototypes, respectively.

between foreground and background classes compared to
the baseline. These results clearly demonstrate that 1) the
learned clusters are highly representative of the snippets; 2)
the embedding space in our method is well-shaped and cap-
tures a comprehensive distribution of the snippets.

6. Conclusion and Limitation

In this work, we propose a WTAL framework named
CASE, which leverages snippet clustering to improve F&B
separation. Specifically, CASE comprises a snippet cluster-
ing component that partitions snippets into multiple clus-
ters, followed by a cluster classification component that
identifies the F&B clusters. To optimize these components,
we employ a unified self-labeling strategy based on opti-
mal transport. Our extensive analysis demonstrates the ef-
fectiveness and efficiency of CASE. One limitation of our
method is the requirement for a WTAL baseline to pro-
vide semantic-level reference of F&B classes to classify the
clusters into F&B. A more self-contained clustering-based
framework is our future work.
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