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Abstract

Click-based interactive image segmentation aims at ex-

tracting objects with a limited user clicking. A hierarchical

backbone is the de-facto architecture for current methods.

Recently, the plain, non-hierarchical Vision Transformer

(ViT) has emerged as a competitive backbone for dense pre-

diction tasks. This design allows the original ViT to be a

foundation model that can be finetuned for downstream tasks

without redesigning a hierarchical backbone for pretrain-

ing. Although this design is simple and has been proven

effective, it has not yet been explored for interactive image

segmentation. To fill this gap, we propose SimpleClick,

the first interactive segmentation method that leverages a

plain backbone. Based on the plain backbone, we intro-

duce a symmetric patch embedding layer that encodes clicks

into the backbone with minor modifications to the back-

bone itself. With the plain backbone pretrained as a masked

autoencoder (MAE), SimpleClick achieves state-of-the-

art performance. Remarkably, our method achieves 4.15

NoC@90 on SBD, improving 21.8% over the previous best

result. Extensive evaluation on medical images demon-

strates the generalizability of our method. We provide a de-

tailed computational analysis, highlighting the suitability of

our method as a practical annotation tool.

1. Introduction

The goal of interactive image segmentation is to obtain

high-quality pixel-level annotations with limited user inter-

action such as clicking. Interactive image segmentation ap-

proaches have been widely applied to annotate large-scale

image datasets, which drive the success of deep models in

various applications, including video understanding [5,49],

self-driving [7], and medical imaging [32, 41]. Much re-

search has been devoted to explore interactive image seg-

mentation with different interaction types, such as bound-

ing boxes [47], polygons [1], clicks [43], scribbles [45],

and their combinations [51]. Among them, the click-based

approach is most common due to its simplicity and well-

established training and evaluation protocols.
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Figure 1. Interactive segmentation results on SBD [20]. The

metric “NoC@90" denotes the number of clicks required to obtain

90% IoU. The area of each bubble is proportional to the FLOPs

of a model variant (Tab. 5). We show that plain ViTs outperform

all hierarchical backbones for interactive image segmentation at a

moderate computational cost.

Recent advances in click-based approaches mainly lie in

two orthogonal directions: 1) the development of more ef-

fective backbone networks and 2) the exploration of more

elaborate refinement modules built upon the backbone. For

the former direction, different hierarchical backbones, in-

cluding both ConvNets [30,43] and ViTs [10,33], have been

developed for interactive segmentation. For the latter di-

rection, various refinement modules, including local refine-

ment [10, 30] and click imitation [34], have been proposed

to further boost segmentation performance. In this work,

we delve into the former direction and focus on exploring a

plain backbone for interactive segmentation.

A hierarchical backbone is the predominant architecture

for current interactive segmentation methods. This design is

deeply rooted in ConvNets, represented by ResNet [22], and

has been adopted by ViTs, represented by the Swin Trans-

former [35]. The motivation for a hierarchical backbone

stems from the locality of convolution operations, leading

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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to insufficient model receptive field size without the hier-

archy. To increase the receptive field size, ConvNets have

to progressively downsample feature maps to capture more

global contextual information. Therefore, they often require

a feature pyramid network such as FPN [28] to aggregate

multi-scale representations for high-quality segmentation.

However, this reasoning no longer applies for a plain ViT,

in which global information can be captured from the first

self-attention block. Because all feature maps in the ViT

are of the same resolution, the motivation for an FPN-like

feature pyramid also no longer remains. The above reason-

ing is supported by a recent finding that a plain ViT can

serve as a strong backbone for object detection [26]. This

finding indicates a general-purpose ViT backbone might be

suitable for other tasks, which then can decouple pretraining

from finetuning and transfer the benefits from readily avail-

able pretrained ViT models (e.g. MAE [21]) to these tasks.

However, although this design is simple and has been proven

effective, it has not yet been explored in interactive segmen-

tation. In this work, we propose SimpleClick, the first

plain-backbone method for interactive segmentation. The

core of SimpleClick is a plain ViT backbone that main-

tains single-scale representations throughout. We only use

the last feature map from the plain backbone to build a sim-

ple feature pyramid for segmentation, largely decoupling the

general-purpose backbone from the segmentation-specific

modules. To make SimpleClick more efficient, we use

a light-weight MLP decoder to transform the simple feature

pyramid into a segmentation (see Sec. 3 for details).

We extensively evaluate our method on 10 public bench-

marks, including both natural and medical images. With

the plain backbone pretrained as a MAE [21], our method

achieves 4.15 NoC@90 on SBD, which outperforms the pre-

vious best method by 21.8% without a complex FPN-like

design and local refinement. We demonstrate the generaliz-

ability of our method by out-of-domain evaluation on medi-

cal images. We further analyze the computational efficiency

of SimpleClick, highlighting its suitability as a practical

annotation tool.

Our main contributions are:

• We propose SimpleClick, the first plain-backbone

method for interactive image segmentation.

• SimpleClick achieves state-of-the-art performance on

natural images and shows strong generalizability on med-

ical images.

• SimpleClick meets the computational efficiency re-

quirement for a practical annotation tool, highlighting its

readiness for real-world applications.

2. Related Work

Interactive Image Segmentation Interactive image seg-

mentation is a longstanding problem for which increas-

ingly better solution approaches have been proposed. Early

works [6, 16, 18, 40] tackle this problem using graphs de-

fined over image pixels. However, these methods only focus

on low-level image features and therefore tend to have diffi-

culty with complex objects.

Thriving on large datasets, ConvNets [10, 30, 43, 47,

48] have evolved as the dominant architecture for high-

quality interactive segmentation. ConvNet-based methods

have explored various interaction types, such as bounding

boxes [47], polygons [1], clicks [43], and scribbles [45].

Click-based approaches are the most common due to their

simplicity and well-established training and evaluation pro-

tocols. Xu et al. [48] first proposed a click simulation strat-

egy that has been adopted by follow-up work [10, 34, 43].

DEXTR [36] extracts a target object by specifying its four

extreme points (left-most, right-most, top, and bottom pix-

els). FCA-Net [31] demonstrates the critical role of the first

click for better segmentation. Recently, ViTs have been ap-

plied to interactive segmentation. FocalClick [10] uses Seg-

Former [46] as the backbone network and achieves state-

of-the-art segmentation results with high computational ef-

ficiency. iSegFormer [33] uses a Swin Transformer [35]

as the backbone network for interactive segmentation on

medical images. Besides the contribution of backbones,

some works are exploring elaborate refinement modules

built upon the backbone. FocalClick [10] and FocusCut [30]

propose similar local refinement modules for high-quality

segmentation. PseudoClick [34] proposes a click-imitation

mechanism by estimating the next click to further reduce hu-

man annotation cost. Our method differs from all previous

click-based methods in its plain, non-hierarchical ViT back-

bone, enjoying the benefits from readily available pretrained

ViT models (e.g. MAE [21]).

Vision Transformers for Non-Interactive Segmentation

Recently, ViT-based approaches [17, 24, 44, 46, 50] have

shown competitive performance on segmentation tasks

compared to ConvNets. The original ViT [13] is a non-

hierarchical architecture that only maintains single-scale

feature maps throughout. SETR [52] and Segmenter [44]

use the original ViT as the encoder for semantic segmenta-

tion. To allow for more efficient segmentation, the Swin

Transformer [35] reintroduces a computational hierarchy

into the original ViT architecture using shifted window at-

tention, leading to a highly efficient hierarchical ViT back-

bone. SegFormer [46] designs hierarchical feature rep-

resentations based on the original ViT using overlapped

patch merging, combined with a light-weight MLP de-

coder for efficient segmentation. HRViT [17] integrates a

high-resolution multi-branch architecture with ViTs to learn

multi-scale representations. Recently, the original ViT has

been reintroduced as a competitive backbone for semantic

segmentation [8] and object detection [26], with the aid of

MAE [21] pretraining and window attention. Inspired by

this finding, we explore using a plain ViT as the backbone
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network for interactive segmentation.

3. Method

Our goal is not to propose new modules but to adapt a

plain-ViT backbone for interactive segmentation with mini-

mal modifications. Fig. 2 shows the overview of our method.

Sec. 3.1 briefly describes the plain segmentation backbone.

Sec. 3.2 shows how to adapt the backbone for interactive

segmentation. Sec. 3.3 introduces other modules of Sim-

pleClick. Sec. 3.4 describes the training and inference de-

tails of our method.

3.1. Plain Segmentation Backbone

We use a plain ViT [13] as the segmentation backbone.

Unlike previous hierarchical backbones, a plain ViT only

maintains single-scale feature maps throughout. Given an

image, the patch embedding layer of the plain ViT first di-

vides the image into non-overlapping fixed-size patches (e.g.

16×16). All patches are then flattened and linearly projected

to a sequence of fixed-length tokens before feeding into self-

attention blocks. These output tokens will be reshaped and

upsampled to match the spatial size of the input image for

segmentation. In this work, we consider three standard ViT

backbones: ViT-B, ViT-L, and ViT-H (Tab. 1 shows the

number of parameters of these backbones). For stable and

efficient training, we use readily-available MAEs [21] as the

pretrained weights for these backbones.

3.2. Clicks Encoding for Segmentation Backbone

We adapt the above plain segmentation backbone for in-

teractive segmentation by turning user interactions into a

form of guidance learned by the network. Similar to pre-

vious click-based methods [34, 43], we use clicks as a form

of user interaction and encode each click as a small disk on a

two-channel masks [34, 43] (one channel for positive clicks

while the other for negative ones; positive clicks should be

put in the foreground, while the negative ones should be

put in the background). We automatically simulate human

clicks for efficient training and evaluation. The clicks simu-

lation process is described in Sec.3.4. Note that for human

evaluation, a human-in-the-loop will provide all the clicks.

Given human clicks or simulated clicks, we now intro-

duce how to fuse them into the plain backbone. We first in-

troduce a patch-embedding layer that is symmetric to the one

in the backbone. Note that we also concatenate the previous

segmentation to the clicks map as an additional channel for

better performance. The two symmetric embedding layers

operate on the image and the clicks map, respectively. The

inputs are patchified, flattened, and projected to two vector

sequences of the same dimension, followed by element-wise

addition before feeding into the self-attention blocks.

Model↓ Module→ ViT Backbone Conv. Neck MLP Head

Ours-ViT-B (base) 83.0 (89.3%) 9.0 (9.7%) 0.9 (1.0%)
Ours-ViT-L (large) 290.8 (94.3%) 16.5 (5.3%) 1.1 (0.4%)
Ours-ViT-H (huge) 604.0 (95.7%) 25.8 (4.1%) 1.3 (0.2%)

Table 1. Number of parameters of our models. The unit is a

million. The percentage of parameters is shown in bracket. Most

parameters are used by the ViT backbone.

3.3. Other Modules

Simple Feature Pyramid For the hierarchical backbone, a

feature pyramid is commonly produced by an FPN [28] to

combine features from different stages. For the plain back-

bone, a feature pyramid can be generated in a much simpler

way: by a set of parallel convolutional or deconvolutional

layers using only the last feature map of the backbone. As

shown in Fig. 2, given the input ViT feature map, a multi-

scale feature map can be produced by four convolutions with

different strides. Though the effectiveness of this simple fea-

ture pyramid design is first demonstrated in ViTDet [26] for

object detection, we show in this work the effectiveness of

this simple feature pyramid design for interactive segmenta-

tion. We also propose several additional variants (Fig. 6) as

part of an ablation study (Sec. 4.4).

All-MLP Segmentation Head We implement a lightweight

segmentation head using only MLP layers. It takes in the

simple feature pyramid and produces a segmentation prob-

ability map1 of scale 1∕4, followed by an upsampling oper-

ation to recover the original resolution. Note that this seg-

mentation head avoids computationally demanding compo-

nents and only accounts for up to 1% of the model param-

eters (Tab. 1). The key insight is that with a powerful pre-

trained backbone, a lightweight segmentation head is suffi-

cient for interactive segmentation. The proposed all-MLP

segmentation head works in three steps. First, each feature

map from the simple feature pyramid goes through an MLP

layer to transform it to an identical channel dimension (i.e.

𝐶2 in Fig. 2). Second, all feature maps are upsampled to

the same resolution (i.e. 1∕4 in Fig. 2) for concatenation.

Third, the concatenated features are fused by another MLP

layer to produce a single-channel feature map, followed by a

sigmoid function to obtain a segmentation probability map,

which is then transformed to a binary segmentation given a

predefined threshold (i.e. 0.5).

3.4. Training and Inference Settings

Backbone Pretraining Our backbone models are pretrained

as MAEs [21] on ImageNet-1K [11]. In MAE pretraining,

the ViT models reconstruct the randomly masked pixels of

images while learning a universal representation. This sim-

ple self-supervised approach turns out to be an efficient and

1This probability map may be miscalibrated and can be improved by

calibration approaches [12].
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Figure 2. SimpleClick overview. Our method consists of three main modules: (a) a plain ViT backbone that maintains single-scale

feature maps throughout; (b) a multi-scale simple feature pyramid that is generated from the last feature maps of the backbone by four

parallel convolution or deconvolution layers; (c) a light-weight MLP decoder for segmentation. We also input the previous segmentation

to improve the performance and to allow clicking from existing masks. User clicks are encoded as a two-channel disk map, combined with

the previous segmentation as input. Boxes in blue are intermediate feature maps. The positional encoding is not shown for brevity.

scalable way to pretrain ViT models [21]. In this work, we

do not perform pretraining ourselves. Instead, we simply use

the readily available pretrained MAE weights from [21].

Clicks Simulation and End-to-end Finetuning With the

pretrained backbone, we finetune our model end-to-end on

the interactive segmentation task. The finetuning pipeline

can be briefly described as follows. First, we automatically

simulate clicks based on the current segmentation and gold

standard segmentation, without a human-in-the-loop pro-

viding the clicks. Specifically, we use a combination of

random and iterative click simulation strategies, inspired by

RITM [43]. The random click simulation strategy generates

clicks in parallel, without considering the order of the clicks.

The iterative click simulation strategy generates clicks iter-

atively, where the next click should be placed on the erro-

neous region of a prediction that was obtained using the pre-

vious clicks. This strategy is more similar to human clicking

behavior. Second, we incorporate the segmentation from the

previous interaction as an additional input for the backbone,

further improving the segmentation quality. This also allows

our method to refine from an existing segmentation, which

is a desired feature for a practical annotation tool. We use

the normalized focal loss [43] (NFL) to train all our mod-

els. Previous works [10,43] show that NFL converges faster

and achieves better performance than the widely used binary

cross entropy loss for interactive segmentation tasks. Simi-

lar training pipelines have been proposed by RITM [43] and

its follow-up works [9, 10, 34].

Human Evaluation and Automatic Evaluation There are

two inference modes: automatic evaluation and human eval-

uation. For automatic evaluation, clicks are automatically

simulated based on the current segmentation and gold stan-

dard. For human evaluation, a human-in-the-loop provides

all clicks based on their subjective evaluation of current seg-

mentation results. We use automatic evaluation for quantita-

tive analyses and human evaluation for a qualitative assess-

ment of the interactive segmentation behavior.

4. Experiments

Datasets We conducted experiments on 10 public datasets

including 7 natural image datasets and 3 medical datasets.

The details are as follows:

• GrabCut [40]: 50 images (50 instances), each with clear

foreground and background differences.

• Berkeley [37]: 96 images (100 instances); this dataset

shares a small portion of images with GrabCut.

• DAVIS [39]: 50 videos; we only use the same 345 frames

as used in [10, 30, 34, 43] for evaluation.

• Pascal VOC [14]: 1449 images (3427 instances) in the

validation set. We only test on the validation set.

• SBD [20]: 8498 training images (20172 instances) and

2857 validation images (6671 instances). Following pre-

vious works [10, 30, 43], we train our model on the train-

ing set and evaluate on the validation set.

• COCO [29]+LVIS [19] (C+L): COCO contains 118K

training images (1.2M instances); LVIS shares the same

images with COCO but has much higher segmentation

quality. We combine the two datasets for training.

• ssTEM [15]: two image stacks, each contains 20 medical

images. We use the same stack that was used in [34].
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Figure 3. Convergence analysis for models trained on either SBD [20] or COCO [29]+LVIS [19] (C+L). We report results on SBD [20]

and Pascal VOC [14]. The metric is mean IoU given 𝑘 clicks (mIoU@𝑘). Our models in general require fewer clicks for a given accuracy

level.

Method Backbone
GrabCut Berkeley SBD DAVIS Pascal VOC

NoC85 NoC90 NoC85 NoC90 NoC85 NoC90 NoC85 NoC90 NoC85 NoC90

♪ DIOS [48] CVPR16 FCN - 6.04 - 8.65 - - - 12.58 6.88 -

♪ FCA-Net [31] CVPR20 ResNet-101 - 2.08 - 3.92 - - - 7.57 2.69 -

♩ LD [27] CVPR18 VGG-19 3.20 4.79 - - 7.41 10.78 5.05 9.57 - -

♩ BRS [23] CVPR19 DenseNet 2.60 3.60 - 5.08 6.59 9.78 5.58 8.24 - -

♩ f-BRS [42] CVPR20 ResNet-101 2.30 2.72 - 4.57 4.81 7.73 5.04 7.41 - -

♩ RITM [43] Preprint21 HRNet-18 1.76 2.04 1.87 3.22 3.39 5.43 4.94 6.71 2.51 3.03

♩ CDNet [9] ICCV21 ResNet-34 1.86 2.18 1.95 3.27 5.18 7.89 5.00 6.89 3.61 4.51

♩ PseudoClick [34] ECCV22 HRNet-18 1.68 2.04 1.85 3.23 3.38 5.40 4.81 6.57 2.34 2.74

♩ FocalClick [10] CVPR22 HRNet-18s 1.86 2.06 - 3.14 4.30 6.52 4.92 6.48 - -

♩ FocalClick [10] CVPR22 SegF-B0 1.66 1.90 - 3.14 4.34 6.51 5.02 7.06 - -

♩ FocusCut [30] CVPR22 ResNet-50 1.60 1.78 1.85† 3.44 3.62 5.66 5.00 6.38 - -

♩ FocusCut [30] CVPR22 ResNet-101 1.46 1.64 1.81† 3.01 3.40 5.31 4.85 6.22 - -

♩ Ours ViT-B 1.40 1.54 1.44 2.46 3.28 5.24 4.10 5.48 2.38 2.81

♩ Ours ViT-L 1.38 1.46 1.40 2.33 2.69 4.46 4.12 5.39 1.95 2.30

♩ Ours ViT-H 1.32 1.44 1.36 2.09 2.51 4.15 4.20 5.34 1.88 2.20

♫ RITM [43] Preprint21 HRNet-32 1.46 1.56 1.43 2.10 3.59 5.71 4.11 5.34 2.19 2.57

♫ CDNet [9] ICCV21 ResNet-34 1.40 1.52 1.47 2.06 4.30 7.04 4.27 5.56 2.74 3.30

♫ PseudoClick [34] ECCV22 HRNet-32 1.36 1.50 1.40 2.08 3.46 5.54 3.79 5.11 1.94 2.25

♫ FocalClick [10] CVPR22 SegF-B0 1.40 1.66 1.59 2.27 4.56 6.86 4.04 5.49 2.97 3.52

♫ FocalClick [10] CVPR22 SegF-B3 1.44 1.50 1.55 1.92 3.53 5.59 3.61 4.90 2.46 2.88

♫ Ours ViT-B 1.38 1.48 1.36 1.97 3.43 5.62 3.66 5.06 2.06 2.38

♫ Ours ViT-L 1.32 1.40 1.34 1.89 2.95 4.89 3.26 4.81 1.72 1.96

♫ Ours ViT-H 1.38 1.50 1.36 1.75 2.85 4.70 3.41 4.78 1.76 1.98

Table 2. Comparison with previous results. We report results on five benchmarks: GrabCut [40], Berkeley [37], SBD [20], DAVIS [39],

and Pascal VOC [14]. The best results are set in bold. ♪ denotes a model trained on Pascal; ♩ denotes a model trained on SBD; ♫ denotes a

model trained on COCO [29]+LVIS [19] (C+L); † denotes a number reproduced by the released or retrained models. Our models achieve

state-of-the-art performance on all benchmarks.

• BraTS [4]: 369 magnetic resonance image (MRI) vol-

umes; we test on the same 369 slices used in [34].

• OAIZIB [2]: 507 MRI volumes; we test on the same 150

slices (300 instances) as used in [33].

Evaluation Metrics Following previous works [30,42,43],

we automatically simulate user clicks by comparing the cur-

rent segmentation with the gold standard. In this simula-

tion, the next click will be put at the center of the region

with the largest error. We use the Number of Clicks (NoC)

as the evaluation metric to calculate the number of clicks re-

quired to achieve a target Intersection over Union (IoU). We

set two target IoUs: 85% and 90%, represented by NoC%85

and NoC%90 respectively. The maximum number of clicks

for each instance is set to 20. We also use the average IoU

given 𝑘 clicks (mIoU@𝑘) as an evaluation metric to measure

the segmentation quality given a fixed number of clicks.

Implementation Details We implement our models using

Python and PyTorch [38]. We implement three models
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Figure 4. Histogram analysis of IoU given a predefined number of clicks 𝑘 (IoU@k). We report analysis on SBD [20] and Pascal VOC [14]

with models trained on SBD. Compared with the two baselines, our models achieve higher-quality segmentation with fewer failure cases.

Figure 5. Convergence analysis for two medical image datasets: BraTS [4] and OAIZIB [2]. Models are trained on either SBD [20] or

COCO [29]+LVIS [19] (denoted as C+L). The metric is mean IoU given 𝑘 clicks. Overall, our models require fewer clicks for a given

accuracy level. The performance gain is more prominent for bigger models (e.g. ViT-H) or larger training sets (e.g. C+L).

based on three vanilla ViT models (i.e. ViT-B, ViT-L, and

ViT-H). These backbone models are initialized with the

MAE pretrained weights, and then are finetuned end-to-end

with other modules. We train our models on either SBD or

COCO+LVIS with 55 epochs; the initial learning rate is set

to 5×10−5 and decreases to 5×10−6 after epoch 50. We set

the batch size to 140 for ViT-Base, 72 for ViT-Large, and 32

for ViT-Huge to fit the models into GPU memory. All our

models are trained on four NVIDIA RTX A6000 GPUs. We

use the following data augmentation techniques: random re-

sizing (scale range from 0.75 to 1.25), random flipping and

rotation, random brightness contrast, and random cropping.

Though the ViT backbone was pretrained on images of size

224×224, we finetune on 448 × 448 with non-shifting win-

dow attention for better performance. We optimize using

Adam with 𝛽1 = 0.9, 𝛽2 = 0.999.

4.1. Comparison with Previous Results

We show in Tab. 2 the comparisons with previous state-

of-the-art results. Our models achieves the best performance

on all the five benchmarks. Remarkably, when trained on

SBD training set, our ViT-H model achieves 4.15 NoC@90

on the SBD validation set, outperforming the previous best

score by 21.8%. Since the SBD validation set contains the

largest number of instances (6671 instances) among the five

benchmarks, this improvement is convincing. When trained
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Model
ssTEM BraTS OAIZIB

mIoU@10 mIoU@10 / 20 mIoU@10 / 20

♩ RITM-H18 [43] 93.15 87.05 / 90.47 71.04 / 78.52

♩ CDN-RN34 [9] 66.72 58.34 / 82.07 38.07 / 61.17

♫ RITM-H32 [43] 94.11 88.34 / 89.25 75.27 / 75.18

♫ CDN-RN34 [9] 88.46 80.24 / 86.63 63.19 / 74.21

♫ FC-SF-B0 [10] 92.62 86.02 / 90.74 74.08 / 79.14

♫ FC-SF-B3 [10] 93.61 88.62 / 90.58 75.77 / 80.08

♫ Ours-ViT-B 93.72 86.98 / 90.67 76.05 / 79.61

♫ Ours-ViT-L 94.34 88.43 / 90.84 77.34 / 79.97

♫ Ours-ViT-H 94.08 88.98 / 91.00 77.50 / 80.10

Table 3. Out-of-domain evaluation on three medical image

datasets: ssTEM [15], BraTS [4], and OAIZIB [2]. Our models

generalize very well on the three datasets, without finetuning.

on COCO+LVIS, our models also achieve state-of-the-art

performance on all benchmarks. Fig. 7 shows several seg-

mentation cases on DAVIS, including the worst case. Note

that the DAVIS dataset requires high-quality segmentations

because all its instances have a high-quality gold standard.

Our models still achieve the state-of-the-art on DAVIS with-

out using specific modules, such as a local refinement mod-

ule [10], which is beneficial for high-quality segmentation.

Fig. 3 shows that our method converges better than other

methods with sufficient clicks, leading to fewer failure cases

as shown in Fig. 4. We only report results on SBD and Pas-

cal VOC, the top two largest datasets.

4.2. Out-of-Domain Evaluation on Medical Images

We further evaluate the generalizability of our models

on three medical image datasets: ssTEM [15], BraTS [3],

and OAIZIB [2]. Tab. 3 reports the evaluation results on

these three datasets. Fig. 5 shows the convergence analysis

on BraTS and OAIZIB. Overall, our models generalize well

to medical images. We also find that the models trained on

larger datasets (i.e. C+L) generalize better than the models

trained on smaller datasets (i.e. SBD).

4.3. Towards Practical Annotation Tool

Tiny Backbone To allow for practical applications, espe-

cially on low-end devices with limited computational re-

sources, we implement an extremely tiny backbone (i.e. ViT-

xTiny) for SimpleClick. Compared with ViT-Base, ViT-

xTiny decreases the embedding dimension from 768 to 160

and the number of attention blocks from 12 to 8. We end up

with a SimpleClick-xTiny model, which is comparable with

the tiny FocalClick models in terms of parameters. Com-

parison results in Tab. 4 show that our model outperforms

FocalClick models, even though it is trained from scratch

due to the lack of readily available pretrained weights.

Computational Analysis Tab. 5 shows a comparison of

computational requirements with respect to model param-

eters, FLOPs, GPU memory consumption, and speed; the

speed is measured by seconds per click (SPC). Fig. 1 shows

Model Backbone Pretrained Params/M NoC85 NoC90

FocalClick HRNet-18s-S1 � 4.22 4.74 7.29
FocalClick SegFormer-B0-S1 � 3.72 4.98 7.60
SimpleClick ViT-xTiny � 3.72 4.71 7.09

Table 4. Comparison results on SBD for tiny models. All mod-

els are trained on C+L with 230 epochs. Our SimpleClick-xTiny

model outperforms FocalClick models without pretraining.

Backbone Params/M FLOPs/G Mem/G ↓SPC/ms

HR-18s 400 [43] 4.22 17.94 0.50 54

HR-18 400 [43] 10.03 30.99 0.52 56

HR-32 400 [43] 30.95 83.12 1.12 86

Swin-B 400 [33] 87.44 138.21 1.41 36

Swin-L 400 [33] 195.90 302.78 2.14 44

SegF-B0 256 [10] 3.72 3.42 0.10 37

SegF-B3 256 [10] 45.66 24.75 0.32 53

ResN-34 384 [9] 23.47 113.60 0.25 34

ResN-50 384 [30] 40.36 78.82 0.85 331

ResN-101 384 [30] 59.35 100.76 0.89 355

Ours-ViT-xT 224 3.72 2.63 0.17 17

Ours-ViT-xT 448 3.72 10.52 0.23 29

Ours-ViT-B 224 96.46 42.44 0.51 34

Ours-ViT-B 448 96.46 169.78 0.87 54

Ours-ViT-L 448 322.18 532.87 1.72 86

Ours-ViT-H 448 659.39 1401.93 3.22 132

Table 5. Computation comparison for model parameters, FLOPs,

GPU memory consumption (measured by the maximum GPU

memory managed by PyTorch’s caching allocator), and speed

(measured by seconds per click). Each method is denoted by its

backbone. The small number in front of the model denotes the in-

put size (448×448 for our models by default). Even for our ViT-H

model, the speed (132ms) and memory consumption (3.22G) are

sufficient to meet the requirements of a practical annotation tool.

the interactive segmentation performance of methods in

terms of FLOPs. In Fig. 1 and Tab. 5, each method is de-

noted by its backbone. For fair comparison, we evaluate all

the methods on the same benchmark (i.e. GrabCut) and us-

ing the same computer (GPU: NVIDIA RTX A6000, CPU:

Intel Silver×2). We only calculate the FLOPs in a single

forward pass. For methods like FocusCut which require

multiple forward passes for each click, the FLOPs may be

much higher than reported. By default, our method takes

images of size 448×448 as the fixed input. Even for our

ViT-H model, the speed (132ms) and memory consumption

(3.22G) is sufficient to meet the requirements of a practical

annotation tool.

4.4. Ablation Study

In this section, we ablate the backbone finetuning and

feature pyramid design. Tab. 6 shows the ablation results.

By default, we finetune the backbone along with other mod-

ules. As an ablation, we freeze the backbone during finetun-

ing, leading to significantly worse performance. This abla-

tion is explainable considering the ViT backbone takes most

of the model parameters (Tab. 1). For the second ablation,
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Figure 6. Simple feature pyramid and its variants: b) the single-scale variant ablates the multi-scale property; c) the parallel variant

evenly extracts features from the backbone; d) the partial variant freezes the second half parameters of the backbone. Tab. 6 shows the

comparison results.

Figure 7. Segmentation results on DAVIS [39]: (a) the worst case; (b) a challenging case; (c) five normal cases. The backbone model is

ViT-L trained on COCO [29]+LVIS [19]. The segmentation probability maps are shown in blue; the segmentation maps are overlaid in red

on the original images. The clicks are shown as green (positive click) or red (negative click) dots on the image. GT denotes ground truth.

FP design frozen ViT
ViT-B ViT-L

SBD Pascal SBD Pascal

(a) simple FP � 11.48 6.93 9.75 5.59

(a) simple FP � 5.24 2.53 4.46 2.15

(b) single-scale � 6.56 2.80 5.53 2.48

(c) parallel � 7.21 3.09 6.26 2.79

(d) partial � 8.29 4.34 7.51 4.25

Table 6. Ablation study on backbone finetuning and feature pyra-

mid (FP) design (Fig. 6). The metric is NoC@90. We have three

findings in this ablation: 1) freezing the ViT backbone during

finetuning significantly deteriorates the performance; 2) the multi-

scale property matters for the simple feature pyramid; 3) the last

feature map from the backbone is sufficient to build an effective

feature pyramid.

we compare the default simple feature pyramid design with

three variants depicted in Fig. 6 (i.e. (b), (c), and (d)). First,

we observe that the multi-scale representation matters for

the feature pyramid. By ablating the multi-scale property in

the simple feature pyramid, the performance drops consider-

ably. We also notice that the last feature map from the back-

bone is strong enough to build the feature pyramid. The par-

allel feature pyramid generated by multi-stage feature maps

from the backbone does not surpass the simple feature pyra-

mid that only uses the last feature map of the backbone.

5. Limitations and Remarks

Our best-performing model (ViT-H) is much larger than

existing models, leading to concerns about an unfair com-

parison. Our method is not prompt-efficient as every click

update requires recomputing image features. The recent ad-

vancements in interactive segmentation [25, 53] show an

elegant solution to this issue. Besides, these methods use

sparse vectors to represent clicks, which might be more ef-

ficient than dense masks. Other than these, our models may

fail in some challenging scenarios such as objects with very

thin and elongated shapes or cluttered occlusions((a) and (b)

in Fig. 7). We leave the improvements for future work.

We are entering an era of large-scale pretraining on multi-

modal foundation models, which is dramatically transform-

ing the landscape of vision and language tasks. In this con-

text, we hope SimpleClick will serve as a strong baseline

for a new wave of high-performing interactive segmentation

methods based on ViTs and large-scale pretraining.
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6. Conclusions

We proposed SimpleClick, a plain-backbone model

for interactive image segmentation. Our method leveraged

a general-purpose ViT backbone that can benefit from ad-

vancements in pretrained ViT models. With the readily-

available MAE weights, SimpleClick achieved state-of-

the-art performance on natural images and demonstrated

strong generalizability to medical images. Our method is

simple yet effective, highlighting its suitability as a strong

baseline model and a practical annotation tool.
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