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Abstract

Aiming at crafting a single universal adversarial pertur-
bation (UAP) to fool CNN models for various data sam-
ples, universal attack enables a more efficient and accu-
rate evaluation for the robustness of CNN models. Early
universal attacks craft UAPs depending on data priors.
For more practical applications, the data-free universal at-
tacks that make UAPs from random noises have aroused
much attention recently. However, existing data-free UAP
methods perturb all the CNN feature layers equally via
the maximization of the CNN activation, leading to poor
transferability. In this paper, we propose a novel data-
free universal attack without depending on any real data
samples through truncated ratio maximization, which we
term as TRM-UAP. Specifically, different from the maxi-
mization of the positive activation in convolution layers,
we propose to optimize the UAP generation from the ra-
tio of positive and negative activations. To further en-
hance the transferability of universal attack, TRM-UAP not
only performs the ratio maximization merely on low-level
generic features via the truncation strategy, but also in-
corporates a curriculum optimization algorithm that can
effectively learn the diversity of artificial images. Exten-
sive experiments on the ImageNet dataset verify that TRM-
UAP achieves a state-of-the-art average fooling rate and
excellent transferability on different CNN models as com-
pared to other data-free UAP methods. Code is available at
https://github.com/RandolphCarter0/TRMUAP.

1. Introduction
Early research [26] shows that tiny and imperceptible

perturbations can seriously disturb the prediction results of
deep neural networks (DNNs), especially for image recog-
nition tasks [3]. Adversarial Examples (AEs), crafted by
adding tiny perturbations deliberately to benign samples,
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are not only imperceptible in computer vision tasks but also
prone to transfer among the DNN models. Therefore, AEs
have been regarded as a serious threat to DNN models since
the development of deep learning [1].

To explore the impact of AEs, many methods are pro-
posed to craft the adversarial perturbation that is highly
transferable to various DNN models (i.e., with a high fool-
ing rate on other DNN models). However, the AEs gener-
ated by these works are explicitly designed for some spe-
cific samples and often fail to perturb other samples that
are even from the same dataset. Different from the afore-
mentioned image-specific attack, the universal attack that
generates image-agnostic universal adversarial perturbation
(UAP) was proposed in [16]. The UAP in a universal attack
setting is trained from prior knowledge, such as substitute
data, surrogate model, etc. By adding the UAP to benign
samples, universal attacks can generate numerous AEs all
together in a very short period. Furthermore, the universal
attack can fool most DNN models that are trained from sim-
ilar datasets, and can greatly reduce the computational cost
of crafting AEs, making adversaries more applicable to real
scenarios than the image-specific attacks [4, 6, 34].

Whereas, no matter the image-specific attacks or the uni-
versal attacks, well-annotated training data (e.g., [21, 9, 7])
or substitute data (e.g., [16, 12, 22, 19]) is required to gen-
erate AEs. In practice, obtaining a well-labeled large-scale
dataset is challenging and costly, especially for some ap-
plications with critical security demand, where less prior
knowledge is available. Recently, researchers have inves-
tigated data-free universal attack methods [18, 17, 14, 20,
33], where AEs are generated directly from random noises
rather than data priors. Compared with previous methods
that disturb the gradient or maximize the classification loss
in data-dependent scenarios, current data-free UAP meth-
ods explore the feature-based perturbation, which tries to
maximize the activation (e.g., ReLU) of convolutional neu-
ral network (CNN) features. It is shown that feature-based
UAP methods achieved highly efficient and applicable uni-
versal attack without using any data priors [4, 6, 34]. How-
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ever, current data-free UAP methods only consider the pos-
itive activation [18, 17] and perturb all layers of CNN fea-
tures equally [20, 14]. As a result, UAPs crafted by surro-
gate models are hard to transfer to target models [6, 34].

Towards enhancing the transferability of data-free UAPs,
we propose a novel data-free universal attack method called
TRM-UAP, which formulates the UAP generation as a trun-
cated ratio maximization problem. In particular, TRM-UAP
attempts to over-fire positive neurons so that extracted fea-
tures from multiple CNN layers can be fully disrupted. Be-
sides the maximization of positive neurons, the proper ac-
tivation on negative neurons may also be helpful. Hence,
TRM-UAP performs a ratio maximization of positive and
negative activations, which facilitates some negative neu-
rons transiting to be positive. Moreover, some feature-
based adversarial attacks [29, 35] reveal that multiple layers
of CNN features are not equally important for disturbing
the image classification [11, 28]. To further improve the
transferability of universal attack, TRM-UAP performs ra-
tio maximization only on parts of CNN activation layers.
Specifically, a truncation strategy is proposed to truncate
the activation of high-level convolutions and retain the ac-
tivation of shallow convolutions to train perturbations. The
intuition is that low-level CNN features are shown to pro-
vide more generic (data-independent) feature representa-
tions than high-level semantic features [30]. Thus the dis-
turbed low-level features are expected to be able to trans-
fer attacks across different CNN models, leading to highly
transferable UAPs. Furthermore, a curriculum learning [2]
based optimization algorithm is introduced to utilize artifi-
cial images and explore the diversity of input.

In general, the main contributions of our work can be
summarized as follows:

• We propose a novel data-free universal attack method
to craft image-agnostic adversarial perturbations with-
out utilizing any real data samples during training.

• To the best of our knowledge, we are the first to for-
mulate the data-free universal attack as a truncated ra-
tio maximization problem. The proposed TRM-UAP
enhances the transferability of UAPs from three per-
spectives: (i) the maximization on CNN features for
crafting UAPs is enhanced by both maximization of
positive activation and minimization of negative acti-
vation. (ii) the ratio maximization on truncated fea-
ture layers improves the generalizability of universal
attacks to CNN models. (iii) artificial images are in-
corporated into curriculum optimization algorithm to
strengthen the UAP dominance on feature activations.

• Extensive experiments on the ImageNet dataset show
that TRM-UAP obtains the highest average fooling
rate compared with other data-free UAP methods, in-
dicating that truncated ratio maximization can greatly
improve the transferability of universal attack.

2. Related Work
Image-specific attacks: The attacks that try to craft per-
turbations for corresponding images by utilizing training or
substitute data are termed as image-specific attacks. Typical
image-specific attacks, such as Fast Gradient Sign Method
(FGSM) [9], I-FGSM and MI-FGSM [7], Project Gradi-
ent Descent (PGD) [15], and Output Diversified Sampling
(ODS) [27], etc., usually make use of the gradient informa-
tion from well-trained target CNN model (i.e., white-box
attack) or surrogate model (i.e., black-box attack) to dis-
turb images. However, since gradient-based attacks often
require a number of iterations, the computational cost of
making AEs becomes extremely expensive as the number of
examples increases. Recently, feature-based attacks that try
to craft AEs from the perspective of CNN features have re-
ceived broad concern [29, 8, 35]. For example, Neuron At-
tribution based Attack (NAA) [35] conducted feature-level
attacks by deploying a neuron attribution method to esti-
mate the importance of neurons at multiple CNN layers.
Data-dependent universal attacks: The universal attack
aims at training a single perturbation that is independent of
any specific sample, i.e., UAP. By adding a single UAP to
various benign samples, numerous AEs can be generated
very efficiently. Until recently, most of the universal attacks
are still data-dependent, meaning that the perturbations are
learned from data priors, such as training data, substitute
data, etc. For example, the primary universal attack [16]
tried to seek a universal perturbation for a set of training
samples. On the other hand, there are some works [22, 19]
applying generative adversarial models to craft perturba-
tions. Recently, Zhang et al. [32] proposed to generate
UAPs by training perturbations on the proxy datasets.
Data-free universal attacks: The data-free universal at-
tack makes UAP via random noise rather than prior knowl-
edge from data directly. It is considered the most appli-
cable attack for real applications in the adversarial attack
field. However, since the information of both data and tar-
get models is unknown, the data-free universal attack is ex-
tremely challenging and only a few recent works focus on it.
Mopuri et al. [18] first propose a data-free universal attack,
i.e., the Fast Feature Fool (FFF) method, by maximizing the
feature activations across all the CNN layers. In addition,
they further propose a Generalizable Data-free UAP (GD-
UAP) to improve the FFF attack via optimizing the UAP
training process with a saturation check strategy [17]. Be-
sides, AAA [20] learns a generative model to make UAPs
based on the pre-defined class impression. However, as the
number of image categories increases, the cost of acquiring
class impressions will also broaden. Prior-Driven Uncer-
tainty Approximation (PD-UA) [14] proposes to craft UAPs
by maximizing the uncertainty approximation of the model.
Cosine-UAP [33] introduces the cosine similarity to train
UAPs in a self-supervised way. Because of the shortage of
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prior knowledge, current data-free UAP methods generally
present poor transferability across various CNN models.

3. Methodology
In this section, we first introduce the motivation of maxi-

mizing the ratio of activations. After that, we present the de-
tails of the proposed truncated ratio maximization method
to craft the UAP in a strictly data-free fashion.

3.1. Preliminary

To fool CNN models f , UAP [16] tries to find the univer-
sal perturbation v which maximizes the classification loss L
(e.g., cross entropy) over the data distribution D:

max
v∼S

E
(x,y)∼D

[L(f(v + x),y))] s.t. ∥v∥p ≤ ϵ (1)

where S is the perturbation space, (x,y) are the data and
the class label (or one-hot ground truth) sampled from D,
f(·) is the output of CNN models, and ϵ is the constant to
constrain the perturbation v in the ℓp-norm bound (e.g., p =
0, 1, 2,∞). To be consistent with previous works [18, 17,
32], we adopt the ℓ∞-norm to realize the imperceptibility
of perturbation for all analyzes throughout this paper.

However, the training data of the target model is usually
unavailable and hard to access, making the data-dependence
approaches not suitable for practical adversarial attacks. As
a consequence, Mopuri et al. [18] propose the Fast Feature
Fool (FFF) method to maximize the CNN activations in a
strictly data-free fashion:

max
v

||A(i)(v)||2, for i = 1, 2, · · ·, L
s.t. ||v||∞ ≤ ϵ

(2)

where A(i)(v) = Activation(C(i)(v)) (e.g., ReLU activa-
tion), C(i)(v) is the output of the i-th convolution layer, and
L is the total number of convolution layers. It can be seen
that this typical data-free universal attack method aims at
accumulating the errors gradually through multiple convo-
lution layers to enlarge the classification loss, finally leading
to the misclassification of perturbed samples v + x.

3.2. Maximizing the Ratio of Activations

Different from previous data-free universal methods [18,
17] that only maximize the activation of convolution layer
(see Fig. 1 (a)), we propose to craft the universal adversarial
perturbation v via maximizing the ratio of activations:

max
v

||C(i)
+ (v)||2

||C(i)
− (v)||2

, for i = 1, 2, · · ·, L

s.t. ||v||∞ ≤ ϵ

(3)

where positive activation and negative activation in i-th con-
volution layer are defined as C(i)

+ (v)=max(C(i)(v), 0) and

Negative Value Positive Value

Increment Decrement

Tiny Positive Value

Transition

Tiny Negative Value

Activation Boundary (Zero)

(a) Positive Maximization (b) Ratio Maximization

Figure 1. The illustration of previous positive maximiza-
tion [18, 17] and our proposed ratio maximization.

C(i)
− (v) = min(C(i)(v), 0) respectively, and their magni-

tudes are measured by ℓ2-norm.
Towards further enlarging the fooling probability, this ra-

tio formulation (3) tries to increase the magnitude and the
number of positive activation via maximizing positive acti-
vation and minimizing negative activation simultaneously.
Specifically speaking, ratio maximization is a dynamic pro-
cess. Firstly, minimizing the negative activation could lead
to the change of sign in some negative features whose val-
ues are close to zero, i.e., jumping from a tiny negative value
to a tiny positive value, as shown in Fig. 1 (b). Afterward,
at the next iteration, maximizing the positive activation will
continue to increase the magnitude of above-mentioned fea-
tures from a tiny positive value to a large positive value.

During training, with the decrease in the number of nega-
tive activation and the increase in the number of positive ac-
tivation, our proposed formulation (3) can achieve a higher
ratio of positive activation as compared to previous data-
free universal attacks, e.g., the formulation (2). Meanwhile,
it also indicates that our ratio maximization could craft the
UAP with more significant attack intensity so as to increase
the fooling probability further.

3.3. Truncated Ratio Maximization

Features extracted from shallow to deep convolution lay-
ers behave differently in crafting the adversarial perturba-
tion. LAFEAT [31] analyzes the influence of each interme-
diate convolution layer on the misclassification, and attacks
features only in a specific layer. On the other hand, GD-
UAP [17] thoroughly studied the relative change in feature
activations of adversarial examples as compared to original
images at multiple CNN layers. However, GD-UAP attacks
the feature activations extracted from all convolution lay-
ers together, without taking layer-wise feature patterns into
consideration. According to [30], low-level features in shal-
low layers have generic patterns, while high-level features
in deep layers have specific patterns. It can be seen that
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Figure 2. Truncated positive and negative activation losses,
where cumulative shaded areas are used to craft the UAP.

not all convolution layers contribute positively to increas-
ing the positive activation and the objective loss. Therefore,
based on ratio maximization defined in formulation (3), we
propose a truncated ratio maximization method to further
enhance the intensity and the transferability of UAPs.

For notational simplicity, we begin by defining the
ratio maximization problem in i-th convolution layer as
L(i)(v) = L(i)

+ (v)/L(i)
− (v), where L(i)

+ (v) = ||C(i)
+ (v)||2

and L(i)
− (v) = ||C(i)

− (v)||2. To maximize the ratio of ac-
tivations in convolution layers altogether, the overall loss
function of ratio maximization is reformulated as

L(v) =
L∑

i=1

logL(i)(v) (4)

where log rescales the activation to prevent gradient explo-
sions. Different from other methods that craft UAPs based
on all convolution layers or a specific convolution layer, we
propose to truncate the computation of positive and neg-
ative activations in deep convolution layers, since specific
feature patterns are not beneficial for improving the qual-
ity of UAPs. Assuming that the truncation rate (TR) is
defined as TR = ⌊(L − l)/L⌋%, we make truncation on
(l + 1)-th convolution layer by seting L(i)

+ (v) = τ (i > l)

and L(i)
− (v)= τ (i> l), where τ is a small positive number

such as 1e−9. As a result, L(v) can be equivalently rewrit-
ten as L(v) =

∑L
i=1 logL(i)(v) =

∑l
i=1 logL(i)(v).

However, L(i)
+ (v) and L(i)

− (v) not only have different
scales but also behave differently in various layers for max-
imizing the ratio loss, which could lead to a degradation of
the attack performance. To resolve these problems, we first
reformulate the ratio loss in i-th convolution layer as

L(i)
α (v) =

L(i)
+ (v)

(L(i)
− (v))α

, (5)

where α is a scaling hyperparameter to adjust the relative
importance between positive and negative activation losses.
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Figure 3. The mean positive activation loss in various con-
volution layers with different truncation settings.

Secondly, positive and negative truncation rates are defined
as PTR = ⌊(L − l′)/L⌋% and NTR = ⌊(L − l′′)/L⌋%
respectively. That is to say, we make truncation on different
layers for positive and negative activation losses by setting
L(i)
+ (v) = τ (i > l′) and L(i)

− (v) = τ (i > l′′), see Fig. 2.
Finally, the overall loss function L(v) can be reduced to

L(v) =
∑L

i=1 logL
(i)
α (v)

=
∑l′

i=1 logL
(i)
+ (v)− α ·

∑l′′

i=1 logL
(i)
− (v) + c

∝
∑l′

i=1 logL
(i)
+ (v)− α ·

∑l′′

i=1 logL
(i)
− (v),

(6)
where c = ((1− α) · L− l′ + α · l′′)·log τ , i.e., a constant.

Consequently, for data-free universal adversarial attack,
we propose a truncated ratio maximization method (TRM-
UAP) to craft the perturbation v satisfying

max
v

l′∑
i=1

log ||C(i)
+ (v)||2 − α ·

l′′∑
i=1

log ||C(i)
− (v)||2

s.t. ||v||∞ ≤ ϵ

(7)

where v is constrained by ℓ∞-norm and bound ϵ. To ver-
ify the previous claim, we compute the mean positive acti-
vation loss in various convolution layers via feeding UAPs
into CNN models (e.g., VGG19). As shown in Fig. 3, TRM-
UAP (PTR ̸=NTR, i.e., l′ ̸= l′′<L) generates a larger cu-
mulative positive activation loss than RM-UAP (l′= l′′=L)
and TRM-UAP (PTR = NTR, i.e., l′ = l′′ < L), which
could lead to a further increase in fooling rates.

3.4. Curriculum Optimization Algorithm

For purpose of improving the diversity of inputs, we uti-
lize Gaussian noise and jigsaw image [33] to generate arti-
ficial images, which are fed into surrogate models together
with the perturbation. To resemble training samples in real-
world datasets, the mean filter is used to smooth the edge
between different regions in jigsaw images. However, it
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will be difficult for the optimization algorithm to converge
if artificial images with complex patterns are provided at the
beginning of the training procedure. Inspired by curriculum
learning [2], we start the training with simple artificial im-
ages and then gradually feed more complex artificial images
into surrogate models. Specifically, the generation of artifi-
cial images is controlled by the distribution parameter and
the training iteration, defined as:

D1 ≺ D2 ≺ · · · ≺ Dn,

Dt = {x|x ∼ P (θ0, t)},
(8)

where Dt is a set of artificial images x sampled at t-th itera-
tion (t = 1, 2, · · ·, n), P is the distribution of artificial sam-
ples with the default parameter θ0, and Da ≺ Db denotes
that the pattern of artificial images in Db is more complex
than Da. In detail, as the number of training iterations t
increases, the distribution parameter θ0 (e.g., the standard
deviation of Gaussian distribution and the frequency of jig-
saw images) is gradually increasing. For t-th iteration, our
curriculum optimization algorithm is maximizing

Lt=
1

|Dt|
∑
x∈Dt

( l′∑
i=1

logL(i)
+ (v+x)−α·

l′′∑
i=1

logL(i)
− (v+x)

)
(9)

where |Dt| is the number of artificial images in the set Dt.
The entire procedure of our proposed TRM-UAP method

is summarized in Algorithm 1. During the training process,
the perturbation vector v is randomly initialized by the uni-
form distribution U , and a surrogate dataset is used to vali-
date the convergence of optimization for every H iterations.
l′ and l′′ represent the retained layers of positive and nega-
tive activations corresponding to truncation rates PTR and
NTR respectively. The scaling hyperparameter α adjusts
the ratio between truncated positive and negative activation
losses. The algorithm is converged only if either the itera-
tion number reaches the maximum T or the fooling rate test
reaches the threshold Fmax. Similar to GD-UAP [17], we
run a saturation rate test for each iteration to dynamically
compress the perturbation vector only if the saturation rate
r̂ is smaller than the predefined threshold r.

3.5. Connection to Other Data-Free UAP Methods

When positive and negative truncation rates are set as
PTR = 0% and NTR = 100% (i.e., l′ = L, l′′ = 0), this
means all the negative activations are truncated and all the
positive activations are retained. Thus, the proposed TRM-
UAP defined in Eq. (7) is reduced to GD-UAP [17]. It can
be seen that GD-UAP is only a special case of TRM-UAP
under the data-free universal attack setting. As compared to
GD-UAP, our TRM-UAP improves both intensity and trans-
ferability of crafted UAPs via truncated ratio maximization.
The detail of their differences will be further discussed in
the experiments.

Algorithm 1 Curriculum optimization algorithm for solv-
ing truncated ratio maximization problem to craft universal
adversarial perturbations
Input: surrogate CNN model f , limitation value ϵ, learning
rate η, positive and negative truncation rates PTR,NTR,
scaling hyperparameter α, maximum iteration number T ,
convergence threshold Fmax, validation test hyperparame-
ter H , saturation threshold r
Output: universal adversarial perturbation v

1: Initialize v0 ∼ U(−ϵ, ϵ), t = 0, F = 0
2: while t < T and F < Fmax do
3: t = t+ 1
4: Generate the artificial image set Dt via Eq. (8)
5: Compute the gradient ∇Lt of the loss Lt in Eq. (9)
6: Update vt = vt−1 + η · ∇Lt

7: Clip vt = min(ϵ,max(vt,−ϵ))
8: Compute the saturation rate r̂ and adjust vt if r̂ < r
9: Conduct the fooling rate test FR if t%H == 0 and

F = F + 1 if FR not the best fooling rate
10: end while
11: return vt

4. Experiments

Setup: By following the experiment setup in existing
data-free universal methods [18, 17, 20, 14], we evaluated
the proposed TRM-UAP method on the validation set of
ImageNet [23] with the classical pre-trained CNN mod-
els including AlexNet [13], VGG16 [24], VGG19 [24],
ResNet152 [10] and GoogleNet [25].
Evaluation Criteria: We used the fooling rate (FR) pro-
posed by data-free universal methods [18, 17] as the evalu-
ation metric. Particularly, a higher fooling rate represented
higher attack success rate and better transferability. In ad-
dition, we used the logit loss of C&W attack [5] to further
evaluate the transferability of data-free UAPs.
Comparative Methods: We made a comparison with data-
free universal approaches, including FFF [18], AAA [20],
GD-UAP [17], PD-UA [14] and Cosine-UAP [33]. Note
that GD-UAP [17] trained models under different setups,
for a fair comparison, we reproduced the results of GD-
UAP [17] by making the setup consistent with TRM-UAP.
Implementation Details: All of our experiments were im-
plemented on PyTorch with a single NVIDIA GeForce RTX
3090Ti GPU. Following the common setting [18, 17], we
set ϵ = 10/255 to restrict changes of the perturbation. The
maximum iteration T was set as 10000, and the saturation
threshold r was set to 0.001%. The value range of hyper-
parameters PTR,NTR ∈ [0, 1] denotes the truncation rate
of positive and negative activations respectively. We set the
scaling hyperparameter α and truncation rates with appro-
priate values for different CNN models.
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Attack AlexNet VGG16 VGG19 ResNet152 GoogleNet Average

FFF 80.92 47.10 43.62 - 56.44 -
AAA 89.04 71.59 72.84 60.72 75.28 73.89

GD-UAP 85.24 90.01 87.34 45.96 45.87 64.65
PD-UA - 70.69 64.98 46.39 67.12 -

Cosine-UAP 91.07 89.48 86.81 65.35 87.57 84.08
TRM-UAP(Ours) 93.53±0.07 94.30±0.15 91.35±0.30 67.46±0.35 85.32±0.04 86.39

Table 1. The fooling rate (FR) of our proposed TRM-UAP and other data-free universal methods. We show the mean and
standard deviation of FR with five runs.

AlexNet VGG16 VGG19 ResNet152 GoogleNet
AlexNet 93.53±0.07 60.10±0.24 57.08±0.15 27.31±0.30 32.70±0.22
VGG16 47.53±0.51 94.30±0.12 89.68±0.14 61.43±0.40 53.95±0.59
VGG19 46.01±0.44 89.82±0.15 91.35±0.30 47.19±0.66 46.48±0.78

ResNet152 53.56±0.75 77.20±0.35 73.30±0.41 67.46±0.35 57.54±0.50
GoogleNet 60.10±1.16 79.66±0.95 79.98±1.06 58.85±1.94 85.32±0.04

Table 2. The transferability of the perturbation crafted by our TRM-UAP method (rows: target models; columns: surrogate
models). The fooling rate (FR) on the diagonal represents white-box attacks (i.e., UAP is crafted by the target model itself),
and other off-diagnoal values are black-box attacks (i.e., UAP is crafted by non-target models.). All results of mean and
standard deviation are computed on average with five turns.

4.1. Main Results

Our proposed TRM-UAP is applied to craft UAPs on
five CNN models and create AEs to attack these CNN
models separately on the ImageNet validation set. We set
α∈{1.0, 1.0, 0.5, 1.5, 1.3}, PTR∈{0.0, 0.2, 0.2, 0.7, 0.4},
NTR ∈ {0.8, 0.3, 0.2, 0.8, 0.3}, corresponding to AlexNet,
VGG16, VGG19, ResNet152, GoogleNet. The attack per-
formance compared with other data-free universal methods
is shown in Table 1. Note that the results of GD-UAP were
reproduced by our best effort on PyTorch for a fair compari-
son. As compared to other methods, our TRM-UAP method
improves the fooling rate in most CNN models. Although
Cosine-UAP achieves a higher FR in GoogleNet, TRM-
UAP improves the FR around 1∼5% on other four models
and further improves the average FR of all five models more
than 2%. Besides, it is shown in Fig. 4 that the visualization
of crafted UAPs has clearly particular image patterns with
abundant features. We also visualized AEs of TRM-UAP
attack in Fig. 6 and found that high probabilities of AEs
were given to the labels of incorrect class.

We further used the UAP made by surrogate models to
attack other target models to verify the transferability. Ta-
ble 2 represented the attack performance in different attack
settings. The models in rows denote target models, and
the models in columns denote surrogate models for crafting
the UAP. The results on the diagonal denote the white-box
attack, while the rest are transferable attacks in the black-
box setting. Most TRM-UAP attacks perform excellently in

transferability, which indicates that the universal perturba-
tions crafted by TRM-UAP are generalized well to transfer
attacks on target models.

4.2. Evaluating the Transferability

To further compare the effectiveness of universal attacks,
we used the logit loss of C&W attack [5] to evaluate the
transferability of GD-UAP, Cosine-UAP, and TRM-UAP.
The logit loss is defined as loss= (maxj ̸=t F (v + x)j)−
F (v+x)t, where F (·)j is the j-th output in the logits layer
of network and t is the index of ground truth. A larger logit
loss value represents better transferability of attacks to CNN
models. The logit loss of original images is calculated as
a baseline. Note that the results of GD-UAP and Cosine-
UAP are reproduced with our best effort on PyTorch. As
shown in Fig. 5, TRM-UAP achieves a higher logit loss than
GD-UAP and Cosine-UAP in most cases. Additionally, the
discrepancy among GD-UAP, Cosine-UAP, and TRM-UAP
becomes significant in deep CNN models (e.g., ResNet152
and GoogleNet). Therefore, TRM-UAP achieves relatively
higher logit losses in both white-box and black-box attack
settings, which indicates a better transferability across vari-
ous CNN models.

4.3. Parameter Study

First, the influence of ratio maximization on attack per-
formance is studied. Here we mainly focused on validat-
ing the effectiveness of truncated negative activation in deep
CNN models (e.g., ResNet152 and GoogleNet). The exper-
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(a) AlexNet (b) VGG16 (c) VGG19 (d) ResNet152 (e) GoogleNet

Figure 4. The visualization of UAPs crafted by our TRM-UAP method. For the best visualization in color, we enhance the
value of the pixel to [0, 255].
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Figure 5. The logit loss of original samples and adversarial samples crafted by GD-UAP, Cosine-UAP, our TRM-UAP
methods. In each sub-figure, the subtitle indicates the surrogate model for crafting UAPs, and target models are shown on
the horizontal axis. Original samples are classified correctly by the target model and exploited to craft AEs for comparisons.
For each attack setting, we compute the average of the logit loss over all the samples.
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Figure 6. Examples of our TRM-UAP attack tested on
VGG16 and the perturbation crafted by VGG19 (top: orig-
inal examples; bottom: adversarial examples). The anno-
tation represents the classification label and the probability
predicted by CNNs.

imental setting is the same as Section 4.1. Based on this,
we also crafted UAPs by truncated positive activation only,
i.e., PTR remains unchanged and NTR=100%. As shown
in Fig. 7, the ablation experiment indicates that truncated
negative activation combined with truncated positive activa-
tion improves the FR by a large margin (around 8∼18%) as
compared to standalone truncated positive activation, thus
enhancing both intensity and transferability of UAPs sig-
nificantly.

To explore the influence of truncation strategy, we com-
puted the fooling rate of attacks in CNN models by varying
truncation rates. Specifically, the proportion of retained ac-
tivation increased by 10% for each step. That means UAP
learned the feature information from shallow to deep con-
volution layers gradually. Due to space limitations, UAPs
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Figure 7. The ablation study of truncated negative activa-
tions on CNN models. Positive: the attack only uses the
truncated positive activation. Positive&Negative: the attack
integrates truncated positive and negative activations.

were only tested in white-box settings. The results of all
CNN models were presented in Fig. 8, where the parame-
ter space was explored w.r.t. NTR and PTR. As can be
seen, the optimal result was obtained on the attack setting
of the truncated activation rather than the whole activation.
Especially in deep CNN models, only part of positive and
negative activations were retained to craft UAPs. From the
analysis of truncation in Fig. 8, we observe that the shallow
convolution layer extracts generic features which are better
at transferring the attack across different models.

4.4. Exploring the Property of UAP

In the following, the property of universal perturbations
is thoroughly investigated. We studied the distinction be-
tween original example and adversarial examples made by
image-specific attack (MI-FGSM) and data-free universal
attacks (GD-UAP and TRM-UAP). As shown in Fig. 9, AEs
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Figure 8. The parameter study of truncation rates on CNN models in white-box attack setting. The x, y, and z axis are NTR,
PTR, and FR, respectively. Note that there are only five convolution layers in AlexNet, truncation results (e.g., 10%, 30%,
50%, etc.) are omitted since these values are consistent with the ones at their right coordinate.

Original image Image-specific attack DF universal attack Ours

Figure 9. The distinction of feature maps among origi-
nal image, image-specific attack, and universal attacks (top:
feature maps extracted from a shallow convolution layer;
bottom: original example and AEs made by VGG19).

are indistinguishable compared with original example, and
the imperceptible noise added to the input effectively per-
turbed feature maps in a shallow convolution layer. Further-
more, data-free universal attacks disturbed the feature map
seriously in contrast to the image-specific attack. Neverthe-
less, the feature map of TRM-UAP had better regularity and
repeatability than GD-UAP. We can conclude that features
extracted by shallow convolution layers profoundly impact
the final classification of CNN models and are beneficial for
universal attack to craft the transferable perturbation.

To further verify the above viewpoints, we trained UAPs
in completely opposite truncation strategies (i.e., retaining
former 80% layers versus retaining latter 20% layers), and
counted the distribution of class labels of AEs. The result
in Fig. 10 (a) was consistent with the hypothesis [33] that
the top-1 logits prediction of UAP dominates the predic-
tion of AEs. Both labels were theater curtain. Contrarily,
it was shown in Fig. 10 (b) that the phenomenon of top-
1 label domination disappeared, where the UAP label was
obelisk and the AE label was brass. Thus, the shallow con-
volution layer is more beneficial to transfer universal attack
with generic features through a variety of models.

5. Conclusion

In this paper, we have proposed a novel data-free univer-
sal attack, called TRM-UAP, to reformulate the UAP gener-
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(a) UAP from low-level (former 80%) convolution layers
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(b) UAP from high-level (latter 20%) convolution layers

Figure 10. The analysis of the label distribution of UAPs
and AEs (both made by VGG16). In each subfigure, the left
is the top-10 logits value of UAP (v), and the right is the
distribution of top-10 predicated labels of AEs (v + x).

ation task as a truncated ratio optimization problem. Com-
pared with previous methods, our TRM-UAP method inte-
grates positive activation maximization with negative acti-
vation minimization. Towards further improving the trans-
ferability of UAPs, we propose a truncation strategy that
computes positive and negative activation losses from low-
level convolutions, as well as a curriculum optimization al-
gorithm to fully mine the diversity of artificial images. Ex-
perimental results on the ImageNet dataset validate the bet-
ter transferability of our TRM-UAP attack than other data-
free UAP attacks on different CNN models. Additionally,
UAPs learned from generic features in shallow convolution
layers can dominate the model prediction and transfer the
universal attack.
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