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Abstract

Combined with the generative prior of pre-trained mod-
els and the flexibility of text, text-driven generative domain
adaptation can generate images from a wide range of tar-
get domains. However, current methods still suffer from
overfitting and the mode collapse problem. In this paper,
we analyze the mode collapse from the geometric point of
view and reveal its relationship to the Hessian matrix of
generator. To alleviate it, we propose the spectral consis-
tency regularization to preserve the diversity of source do-
main without restricting the semantic adaptation to target
domain. We also design granularity adaptive regulariza-
tion to flexibly control the balance between diversity and
stylization for target model. We conduct experiments for
broad target domains compared with state-of-the-art meth-
ods and extensive ablation studies. The experiments demon-
strate the effectiveness of our method to preserve the di-
versity of source domain and generate high fidelity tar-
get images. Source code has been released in https:
//github.com/Victarry/Adaptation-SCR.

1. Introduction

Generative image modeling has developed significantly

in recent years and is able to generate diverse high-

resolution images even indistinguishable from real images.

However, training such models requires intense computa-

tion resources and large datasets, which restricts the appli-

cation scope of generative models. For some scenarios, col-

lecting large datasets is impossible like paintings by specific

artists. Benefiting from Vision-Language models learning

from large image-text pairs, text can be leveraged as a de-
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scription of abstract visual semantics to guide generative

domain adaptation instead of a collection of image samples

in target domain. As an expressive representation, text has

shown great success in semantic image generation and ma-

nipulation recently [23, 20]. Based on the generative prior

of pre-trained models and flexible text description of target

domain, text-driven generative domain adaptation can gen-

erate more various images and have promising applications.

To reduce the requirement of training samples, tradi-

tional methods propose to train generative models in the

target domain with only limited samples by adapting pre-

trained models in the large-scale source domain which con-

tains high-level semantic knowledge as a generative prior.

These few-shot adaptation methods either finetune only a

part of parameters within networks to preserve most source

domain knowledge [15] or impose strong regularization on

the generated images [30, 36]. However, these methods still

require additional training samples of target domain and ad-

versarial training process. As the number of samples drops,

the image fidelity and diversity also hurt severely. Different

from these methods, text-driven generative domain adap-

tation requires no image samples but texts to describe the

target domain. Pioneer work [5] proposed to encourage the

visual change between samples from target and source gen-

erators to align with semantic direction described by text in

the CLIP [19] embedding space, which achieves generative

adaptation for miscellaneous domains in short training time.

The main challenge of text-driven GAN adaptation is the

mode collapse problem due to the entanglement of intra-

domain semantics and inter-domain style in text represen-

tation. Besides the specified target style described by text,

there also exists an unknown pattern for the semantics of

images. This leads to a decrease of variations in generated

images when the style effect is optimized to approach target

domain. As shown in Figure 2, while the number of itera-
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Figure 1. Text-driven generative domain adaptation with various text descriptions. The generated samples should both reflect characteristics

of target domain from text and preserve the original identity.

tions increases, the generated samples tend to have similar

patterns of mouth and eyes, which reduces most of the vari-

ations in the origin model. The main reason for the mode

collapse problem is that the optimization process only cares

about the distance of generated samples to target domains,

and the intra-domain feature variations are easily ignored.

To address the above challenge, researchers [36] pro-

posed to preserve the diversity of source domain through

a within-domain consistency loss which keeps consistency

between sample changes in source domain and target do-

main. However, this regularization is too strong to re-

strict the style effect of target generator close to source do-

main. The previous theorem about GAN latents analysis

has shown that the Hessian matrix of generator reflects the

variations of generator and can be used to explore meaning-

ful directions from top eigenvectors. Inspired by this, we

try to leverage the spectrum of Hessian matrix as a quantita-

tive evaluation of model diversity in the adaptation problem.

This disentangles the relative diversity between generated

samples from absolute generative distribution and makes a

general way to regularize diversity of generative model.

In this work, we propose spectral consistency regular-

ization to solve the problem of mode collapse in text-driven

generative domain adaptation from the geometric point of

view. First, we analyze the Hessian matrix of generator’s

manifold in the metric space by eigendecomposition. The

eigenvalues of Hessian matrix are decreasing in the adap-

tation process, which is consistent with the mode collapse

problem of visual observations. Second, we introduce the

spectral consistency regularization on the Hessian matrix

to prevent the latent space of generator from degrading.

This regularization helps preserve intra-domain variations

of source domain without restricting style effects of target

generators. We further develop a stochastic method to reg-

ularize the spectrum of Hessian matrix without calculating

the full matrix, which reduces the expensive computational

cost. Finally, we design the granularity adaptive regulariza-

tion considering the layer-decomposition characteristic of

W+ space in StyleGAN.

The contributions of this paper are summarized below:

1. We analyze the commonly occurred mode collapse

problem in GAN adaptation from the geometric point

of view and provide a quantitative evaluation of model

diversity to reveal the reason of mode collapse.

2. We propose a spectral consistency regularization for

text-driven GAN adaptation, which preserves diversity

of original domain and generates high fidelity images

of target domain. A granularity adaptive regularization

is further designed to flexibly control balance between

diversity and stylization for target model.

3. We conduct experiments and ablation studies for a

wide range of target domains. The experiments show

the effectiveness of our proposed spectral consistency

regularization and its applications to downstream tasks

like image editing and image-to-image translation.

2. Related Work
Text-driven Image Synthesis and Manipulation. Tra-

ditional methods approached text-driven image generation

by training a conditional GAN[22]. Several following

works have been proposed to improve generation qual-

ity either by multi-scale networks [33] or attention mech-

anism [31]. Recently, transformer-based auto-regressive

generative models were introduced to view text-driven im-

age synthesis as conditional sequence generation of visual

tokens conditioning on text embeddings [3, 21, 32]. Dif-

fusion models were also leveraged as the decoder for im-

age generation, which achieves tremendous improvement

for generating high quality images [23, 20].

Another kind of method is to leverage Contrastive

Language-Image Pre-training (CLIP) [19] models as

knowledge guidance for text based image generation. This

is achieved by optimizing the latent code of pre-trained gen-

erator to close the distance between generated images and

input text in the shared embedding space. The optimized

latent codes of generator are either in the StyleGAN latent
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Figure 2. The mode collapse problem in the photo-to-sketch GAN adaptation by StyleGAN-NADA [5]. The trace norm of Hessian matrix

is gradually decreasing, which is consistent with the visual examples showing similar patterns with mouth and eyes.

space [18] or in VQGAN codebook space [1]. Some meth-

ods also defined the parametrized space by vector graphics

such as Bezier curves [4].

Few-shot GAN Adaptation. It aims to transfer pre-

trained generator to another domain when there are not

enough samples to train from scratch. Its main challenge is

the mode collapse problem because the generator is prone to

overfit training samples in target domain and lose the diver-

sity of the origin domain. There have been many methods

to tackle this problem. They either froze most of the param-

eters of the pre-trained network[15] or embedded a small

number of trainable parameters into the source model[16].

Recently, [17] proposed cross-domain distance consistency

loss to preserve the relative similarities and differences be-

tween instances in the source domain. [30] introduced spa-

tial structural consistency loss to align the spatial informa-

tion between the synthesis image pairs of the source and

target domains. These methods still require manually col-

lected samples, and as the number of samples decreases, the

mode collapse problem becomes more apparent.

Besides, StyleGAN-NADA [5] further proposed to take

advantage of the CLIP [19] model as knowledge guidance

for GAN adaptation, and only natural language prompts are

required without even a single image. Similarly, [36] used

the image encoder of CLIP for one-shot adaptation. How-

ever, these methods still suffer from the mode collapse prob-

lem. In this paper, we propose the spectral consistency reg-

ularization to tackle the problem of mode collapse without

hurting target generation performance.

Latent Space Analysis of GANs. Many works have ex-

plored the latent space of pretrained generator for image

manipulation. Some methods used supervised datasets to

learn directions in the latent space for attribute editing [24]

or semantic image editing [13]. Other works instead ap-

plied unsupervised methods to reveal the latent space. [26]

decomposed the learned weights of the pre-trained network

to identify semantically meaningful directions. [7] applied

principal component analysis in the latent space. Recently,

[29] proposed to analyze the latent space of generative mod-

els from geometric point of view. They found that the eigen-

vectors corresponding to the largest eigenvalues of the Hes-

sian matrix for generator dominate interpretable variations.

In this paper, we analyze the GAN adaptation problem in

a similar way and propose to regularize target generator by

the spectrum of Hessian matrix.

3. Method

3.1. Text-Driven Generative Domain Adaptation

Text-driven GAN adaptation aims to transfer a pretrained

generator to target domain specified by the text description.

To guide the GAN adaptation by text, pre-trained CLIP

model is leveraged to measure the similarity between im-

age and text. CLIP is a Vision-Language model trained on

400 million (image, text) pairs collected from the internet

with contrastive loss [19]. One commonly used objective

function for text-driven image manipulation is the global

loss that optimizes the similarity between generated images

and target text:

Lglobal = DCLIP (G(z), ttarget) (1)

where DCLIP is the cosine distance in the CLIP space,

ttarget is the target text. However, this only applies

to in-domain image manipulation combined with identity

consistency regularization[18]. This regularization is too

strong for cross-domain GAN adaptation with large do-

main gaps like human to werewolf. Direct optimization of

the above global loss leads to adversarial solutions since

adding pixel-level perturbations can fool the CLIP classi-

fier in the absence of a generative prior favoring real-image

manifold [5]. To overcome this limit, the directional loss

is used to optimize the direction between source and target

7021



E(Gt(z))

Jt(z)
T v1

Jt(z)
T v2

E(Gs(z))

Js(z)
T v2

Js(z)
T v1

ET (tsource)

ET (ttarget)

T (tsource))

ET (ttarget)

Figure 3. Illustration of our proposed method for text-driven generative domain adaptation. The training objective of our model consists

of directional loss and spectral consistency loss. We feed the same latent code to source generator and target generator and generate a

pair of source and target images. The directional loss encourages the direction between embeddings of the pair to align with the semantic

direction of text description. The spectral consistency loss regularizes the trace norm of Hessian matrix of target generator to prevent the

mode collapse problem.

domain:

Ldirection = 1− ΔI ·ΔT

|ΔI||ΔT | (2)

ΔT = ET (ttarget )− ET (tsource ) (3)

ΔI = EI (Gtrain (z))− EI (Gfrozen (z)) (4)

where ET and EI are the text and image encoder of CLIP,

tsource and ttarget are the source and target class texts. The

directional loss can prevent adversarial solutions. Since tar-

get generated images should have given direction to corre-

sponding source images, generating a single adversarial in-

stance is impossible. At training time, the same latent code

is fed into source and target generator, then the target gen-

erator is optimized using the directional loss. However, the

directional loss proposed by StyleGAN-NADA still suffers

from the mode collapse problem, as shown in the images of

Figure 2. So we propose the spectral consistency regular-

ization derived from geometry analysis of GANs to resolve

this problem.

3.2. Geometry Analysis of GAN Adaptation

We denote the generative network as a mapping from la-

tent code z to a manifold in image space as G(z). Con-

sidering a squared distance function d2 for two images, we

express the local variations of G(z) from moving towards

direction Δz by second-order Taylor expansion. This is for-

mulated as:

lim
Δz→0

d2(G(z), G(z +Δz)) =

d2(G(z), G(z)) +
∂d2(G(z), G(z +Δz))

∂Δz
·Δz+

ΔzT · ∂
2d2(G(z), G(z +Δz))

∂Δz2
·Δz (5)

The first two terms are zero since d2(G(z), G(z +Δz))
is local minima when Δz = 0. Denote the second deriva-

tives as Hessian matrix H(z), and we have d2(G(z), G(z+
Δz)) = ΔzTH(z)Δz. For a normalized vector Δz, we

can conclude that σmin ≤ d2(G(z), G(z + Δz)) ≤ σmax,

where σmin and σmax are the smallest and largest eigen-

values of H . Thus, we can use the trace norm of Hz to

reflect the statistics of diversity in generative models, which

is the sum of all eigenvalues of H . Especially, for a squared

L2 distance function in metric space φ, d2(z1, z2)φ =
1
2‖φ(G(z1))−φ(G(z2))‖2, the Hessian matrix Hφ(z0) is a

simple transformation from the Jacobian Jφ(z0):

Hφ (z0) =
∂2

∂z2

1

2
‖φ (z0)− φ(z)‖22 (6)

= Jφ (z0)
T
Jφ (z0) (7)

where the top eigenvectors of Hφ correspond to right singu-

lar vectors of the Jacobian Jφ. Besides, the Hessian-vector

product is related to Jacobian-vector pruduct as follows:

vTHφ (z0)v = ‖Jφ(z0) v‖2, Jφ (z) =
∂φ(G(z))

∂z
(8)
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To analyze the mode collapse problem, we calculate the

statistics of Hessian trace from different samples of z during

adaptation process of the previous state-of-the-art method.

The results of GAN adaptation from photo to sketch with

StyleGAN-NADA [5] is shown in Figure 2. We find that

as the iteration count increases, the mode collapse problem

becomes more severe and the Hessian trace is also decreas-

ing, which proves that the Hessian trace can reflect the di-

versity of generator. In the early stage of adaptation, the

decrease of trace norm is mainly caused by style adaptation

since there are no color variations for sketch domain. But

for the late stage from 200th step to 400th step, the style ef-

fect changes little and the face attributes tend to have similar

pattern. Since the target text only represents a fixed direc-

tion without variation, different samples are encouraged to

approach the same fixed pattern. We also give a proof of the

relationship between Hessian Trace and model diversity in

the following section.

3.3. Relation between Hessian Trace and Diversity

Considering the mapping from standard normal distribu-

tion z ∼ N (0, I) to general multivariate normal distribu-

tion y ∼ N (μ,Σ) with the generator as a linear function

G(z) = Az + b, which has μ = b,Σ = AAT . The linear

assumption of generator holds when we consider a small

neighborhood around z, i.e. limΔz → 0.

The variance of y can be computed as:

V ar(y) = E[‖y − E[y]‖22]

= E[

n∑
i=1

(yi − E[yi])
2]

=

n∑
i=1

E[(yi − E[yi])
2]

=

n∑
i=1

V ar(yi)

=

n∑
i=1

Σii

= Trace(Σ) = Trace(AAT ) (9)

On the other side, the d2(G(z), G(z + Δz)) can be ex-

panded as follows:

d2(G(z), G(z +Δz)) = ‖G(z)−G(z +Δz)‖22
= ‖Az + b− (A(z +Δz) + b)‖22
= ‖AΔz‖
= ΔzTATAΔz (10)

such the Hessian Matrix H of Δz with respect to

d2(G(z), G(z + Δz)) equals to ATA, e.g. H = ATA.

Combining above two equations with Trace(AAT ) =

Trace(ATA), we have V ar(y) = Trace(H), which

means that the Hessian Trace for every sample in target dis-

tribution reflects the variance and diversity of this distribu-

tion. If the Hessian Trace is small, the target distribution

only spans a small region in space. This is consistent to the

mode collapse problem in generative models.

3.4. Spectral Consistency Regularization

To prevent the target generator from mode collapse, we

propose spectral consistency regularization to prevent the

diversity of generator from degrading, which is calculated

as:

Lreg = ‖Trace(Hs(z))− Trace(Ht(z))‖ (11)

where Hs(z) and Ht(z) are the Hessian matrix of the source

generator and target generator evaluated with the same la-

tent code z. However, directly computing the Hessian ma-

trix requires backpropagation n times where n is the dimen-

sion of feature vector in metric space. Instead, we use the

Hutchinson’s method for trace estimator [9] to compute a

stochastic estimator of Hessian Trace, which is formulated

as:

Trace(H(z)) = E[vTH(z)v] = E[‖Jφ(z)v‖2] (12)

Where v ∼ Rademacher( 12 ), and the second transforma-

tion is derived from Equation 8. So the calculation of Hes-

sian matrix is transformed into the calculation of Jacobian-

Vector product.

Different from the within-domain consistency loss[36]

which restricts target generated samples based on relative

difference of source samples, the spectral consistency reg-

ularization only cares about the diversity of target model.

This doesn’t impose restriction on the direction of target

adaptation, so our method can generate samples more con-

sistent with target text without losing model diversity.

The training objective of text-driven GAN adaptation is a

weighted combination of directional loss and spectral con-

sistency regularization loss L = Ldir + λLreg . Since dif-

ferent target domains have their own characteristic, it is re-

quired to tune the hyperparameter λ for better performance.

To prevent the exhausting hyperparameter searching, we

propose an adaptive loss reweighting method to balance the

influence of these two loss items. Specifically, the adaptive

weight λ is calculated as λspectral
‖∇GL

Ldir‖
‖∇GL

Lreg‖ , where GL

denotes the last layer of generator and λspectral is a manu-

ally specified hyperparameter, typically 1.0 is an appropri-

ate choice.

3.5. Granularity Adaptive Regularization

For text-driven GAN adaptation problem, the adapta-

tion granularity of different target domains varies from tex-

ture to structure. For example, the photo-to-sketch adapta-

tion mainly focuses on the appearance and texture change,
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Figure 4. Visual results of our method and state-of-the-art StyleGAN-NADA [5] for different GAN adaptations. The top row shows the

source text and target text description. The left column presents samples generated by source generator. Our method not only generates

samples described by target text with high fidelity, but also produces diverse and identity consistent images corresponding to source domain.

while the werewolf domain has more variations on seman-

tic structure. Regularization of diversity in the whole gran-

ularity will restrict the adaptation performance. To alleviate

this problem, we propose granularity adaptive regulariza-

tion based on the disentangled characteristic of StyleGAN

latent code.

The latent codes injected into different layers in Style-

GAN influence different granularities. The style code in

low resolution represents high-level aspects such as pose

and shape, that in middle resolution controls facial features

and hairstyle, and that in high resolution influences color

scheme and local textures. Specifically, we use the W+
space as input space for Jacobian matrix calculation, where

each input latent code consists of 18 512-dimensional vec-

tors so both z and v in Equation 4 are in R18×512. By mask-

ing v with a mask vector m ∈ {0, 1}18 for different layers ,

we can specify the granularity of variations involved in the

regularization. The calculation of Hessian trace under mask

is formulated as:

Trace(H(z)) = E[(v �m)TH(z)(v �m)] (13)

= E[‖Jφ(z)(v �m)‖2]. (14)

Following previous convention, we divide the style code for

18 layers into 3 groups, which are for coarse, middle and

fine scale. The results of different mask strategies are shown

in Figure 6.

To explore the best mask strategy for different target

domains, we propose to use an adaptive soft mask vector

{m̃|m̃ ∈ R18, ‖m̃‖ = 1} for all layers. During training, the

mask vector is optimized with respect to the overall training

objective. To reduce the directional loss, the mask vector

will assign less value to the latent code corresponding to

the granularity that changes most, while other values will

increase to preserve the diversity of source generator.

4. Experiment

In this section, we will show the qualitative and quan-

titative results of our method. We illustrate the generated

results for a wide range of target domains from style and

texture changes to shape and semantic modifications. We

also compare the proposed spectral consistency regulariza-

tion with other regularization methods for diversity preser-

vation. Next, we perform an ablation study on our method

to evaluate the effectiveness of each component. Finally, we

demonstrate the applications of text-guidance GAN adapta-

tion, including image-to-image translation and image edit-

ing. To verify the generalization of proposed spectral con-

sistency regularization, we also apply it to one-shot GAN

adaptation, which is shown in supplementary appendix.

We use the StyleGANv2 [11] generator pretrained on

FFHQ as the source generator. During domain adaptation,

we optimize all the parameters of generator except for the

mapping network and toRGB layers. We use the Adam [12]

optimizer with learning rate 0.001. The λspectral is set to

1.0. For most target domains, only 300 iterations are re-

quired to achieve convergence. Following CLIP, we use 79
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Figure 5. Comparison results of our spectral consistency regularization with other regularization methods. Detailed explanations of these

methods are in Appendix.

manually designed prompts like ”a photo of a...” with pro-

vided target domain description and feed them to text en-

coder of CLIP to get the embeddings of target domain.

4.1. Comparison Results

Qualitative Comparison In Figure 4, we show the com-

parison results of our method with state-of-the-art model

StyleGAN-NADA [5] for a wide range of target domains,

which varies from texture changes like sketch and Mona

Lisa paintings to geometric change like werewolf and Pixar

style. The results demonstrate that our method not only gen-

erates highly stylistic images consistent with target text de-

scription for different target domains, but also produces im-

ages with diversity inherited from the pretrained source gen-

erator. Compared with StyleGAN-NADA which has obvi-

ous mode collapse problem like the mouth pattern in sketch

and hair in werewolf, our model generates target images

with better identity consistency. This proves that the spec-

tral consistency regularization can preserve the diversity of

source domain. In the supplementary appendix, we present

additional visual results for the dogs and cars domain.

We also perform text-driven GAN adaptation ex-

periments with other regularization methods, including

the Selective Cross-modal Consistency (SCC) loss[35],

Within-Domain Consistency (WDC) loss[36], the Mode

Seeking (MS) loss[14], Perceptual Path Length (PPL)

regularization[11] and Cross Domain Correspondence

(CDC) regularization[17]. Detailed explanations of these

regularization methods are in supplementary appendix. As

shown in Figure 5, SCC, WDC and MS regularization im-

pose too strong regularization to target generator and restrict

the domain specific attributes for target domain. Suffering

from mode collapse problem, the generation results of PPL

and CDC exhibits the same pattern across different samples.

In comparison, our method has a better balance between the

diversity and stylization of target generator.

Quantitative Comparison Besides our proposed trace

norm of Hessian Matrix in Equation 3, we also leverage the

Perceptual Path Length(PPL) [10] for quantitative diversity

comparison. It measures the perceptually-based pairwise

image distance [34] for a linear interpolation path in the la-

tent path. The average PPL in the latent space Z is:

PPLZ = E

[
1

ε2
d (G (slerp (z1, z2; t)) , G (slerp (z1, z2; t+ ε)))

]

where d(., .) evaluates the perceptual distance between two

images, and slerp denotes spherical interpolation since the

input latent is normalized. The perceptual path length es-

timates the diversity of the generator via finite differences,

and our method estimates the diversity analytically.
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Table 1. Comparison results for diversity by PPL and Hessian trace between different regularization methods. The PPL and Hessian trace

for the pretrained source generator is 419.22 and 0.309.

Results Photo → Sketch Photo → Mona Lisa Human → Werewolf Photo → Pixar

PPL Trace PPL Trace PPL Trace PPL Trace

SCC 547.34 0.526 485.70 0.521 428.45 0.343 440.17 0.535

WDC 378.25 0.090 363.17 0.191 311.34 0.116 345.31 0.167

MS 466.99 0.167 331.06 0.233 352.61 0.191 377.88 0.358

PPL 241.50 0.028 209.09 0.061 297.74 0.062 300.19 0.063

CDC 348.01 0.062 259.92 0.079 351.73 0.089 299.49 0.111

NADA 323.25 0.061 281.59 0.098 302.91 0.101 343.54 0.112

Ours 463.57 0.116 321.43 0.140 383.19 0.137 353.80 0.181

Table 2. User preference study. The numbers represent the per-

centage of users who prefer the images synthesized by our method.

Model Comparison Quality Style Attributes

Ours vs. NADA [5] 86.4% 59.4% 91.2%
Ours vs. SCC [35] 64.2% 86.2% 65.0%
Ours vs. MS [14] 59.4% 83.6% 54.2%

Ours vs. WDC [36] 62.2% 89.8% 49.8%
Ours vs. PPL [11] 92.4% 71.4% 95.0%
Ours vs. CDC [17] 79.6% 60.6% 87.8%

The quantitative results are shown in Table 1. The men-

tioned strong regularization methods including SCC, WDC

and MS have large values of PPL and Hessian trace at the

cost of restricting adaptation effects. Our method performs

competitive with these methods in diversity metrics, but

does much better in transfering target styles. Compared

with CDC and PPL, our method better preserve the diver-

sity of source domain reflected in PPL and Hessian Trace.

For all different target domains, our method outperforms

previous state-of-the-art model StyleGAN-NADA for both

PPL and Hessian trace. This benefits from that our method

can alleviate the mode collapse problem with spectral con-

sistency regularization and generate more diverse images

without restricting the style adaptation results.

User Study We conducted a user study to compare

with other regularization methods. Specifically, participants

were requested to select the superior synthesized samples in

relation to three measurements: (1) image quality, (2) style

consistency with the target description (3) attribute consis-

tency with the source image. Five hundred samples were

randomly generated for each comparative analysis. The ag-

gregated results are presented in Table 2. The users strongly

favor our method across all three aspects. In contrast to

other methods, our method demonstrates a better tradeoff

between style effects and attribute preservation. The spec-

tral consistency regularization can better preserve the diver-

sity of source domain while not restricting the style effects

for target domain.

4.2. Ablation Study

Granularity Adaptive Regularization. In Figure 6, we

demonstrate generated results with different regularization

strategies applied in W+ space in Section 3.4. Regular-

ization to the coarse scale will preserve the structure of

source image but the diversity of fine features like hair will

lose. The global regularization performs similarly to coarse

regularization since the coarse features dominate the diver-

sity of generator. Only applying regularization to the fine

scale will generate high-frequency textures and the structure

characteristic like necks will collapse. In comparison, our

proposed granularity adaptive regularization both preserves

the diversity of source domain in all scales and matches the

styles of target domain.

Strength of regularization. In Figure 7, we show the

generated samples with a linear interpolated loss weight

λspectral. We can observe that with increasing λspectral,

the generated samples maintain more diversity of source

domain, and they also illustrate the most significant char-

acteristic of target domain.

Choices of metric space. We conduct experiments

about the metric space of spectral consistency regulariza-

tion with different feature encoder φ(x) that evaluates the

distance between image samples. Besides CLIP [19] im-

age encoder in our method, we also leverage VGG [27]

which was commonly used in style transfer [6], MoCo [8]

of contrastive representation learning, ArcFace [2] for face

recognition and the plain pixel space. As shown in Figure 8,

compared to other feature encoders, the spectral consistency

regularization with CLIP encoder shows best performance

for preserving the identity of source image.

4.3. Applications

Image-to-Image Translation We combine the adapted

generator in target domain with a GAN inversion encoder to

implement image-to-image translation. Given a real-world

image, we invert it to the latent code in W space via an

e4e encoder [28], which is then fed to target generator to
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Figure 6. Results of different regularization strategies for GAN adaptation from photo to Edvard Munch paintings.

Figure 7. Generation results of linearly interpolated λspectral in

regularization.

Figure 8. The generated results with spectral consistency regular-

ization under the metric spaces defined by different encoders.

produce target image. As shown in Figure 9, our method

can achieve high-quality image translation and preserve the

identity of source image for different domains.

Image Editing In Figure 10, we demonstrate the image

editing results performed on the target domain. We lever-

age the meaningful directions found by InterfaceGAN [25]

to edit target images. We can observe that the editing di-

rections from source domain still apply to target domains,

which proves that the target domain preserves the semantic

distribution of source domain.

Figure 9. Image translation of real-world images to different target

domains. Each column shows a target domain, and the top row

is the text description for target domain. The transferred images

represent both target style and the identity of source image.

Figure 10. Editing images in target domain for real-world images.

The top row shows the edited attributes.

5. Conclusion

In this paper, we propose the spectral consistency regu-

larization for text-driven generative domain adaptation. The

key insight of our method is to build a quantitative diversity

estimator to preserve the intra-domain diversity of source

generator without restricting the adaptation of target style.

We also introduce an adaptive regularization strategy for

granularity-flexible adaptation. The experiments demon-

strate our method greatly improves the generation results

for a wide range of target domains.
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