
Towards Unsupervised Domain Generalization for Face Anti-Spoofing

Yuchen Liu1†, Yabo Chen2†, Mengran Gou3, Chun-Ting Huang3, Yaoming Wang1,
Wenrui Dai2*, and Hongkai Xiong1

1Department of Electronic Engineering, Shanghai Jiao Tong University, China
2Department of Computer Science and Engineering, Shanghai Jiao Tong University, China

{liuyuchen6666, chenyabo, wang yaoming, daiwenrui, xionghongkai}@sjtu.edu.cn
3Qualcomm AI Research {mgou, chunting}@qti.qualcomm.com

Abstract

Generalizable face anti-spoofing (FAS) based on domain
generalization (DG) has gained growing attention due to its
robustness in real-world applications. However, these DG
methods rely heavily on labeled source data, which are usu-
ally costly and hard to access. Comparably, unlabeled face
data are far more accessible in various scenarios. In this
paper, we propose the first Unsupervised Domain Gener-
alization framework for Face Anti-Spoofing, namely UDG-
FAS, which could exploit large amounts of easily accessible
unlabeled data to learn generalizable features for enhanc-
ing the low-data regime of FAS. Yet without supervision sig-
nals, learning intrinsic live/spoof features from complicated
facial information is challenging, which is even tougher in
cross-domain scenarios due to domain shift. Existing un-
supervised learning methods tend to learn identity-biased
and domain-biased features as shortcuts, and fail to specify
spoof cues. To this end, we propose a novel Split-Rotation-
Merge module to build identity-agnostic local representa-
tions for mining intrinsic spoof cues and search the nearest
neighbors in the same domain as positives for mitigating the
identity bias. Moreover, we propose to search cross-domain
neighbors with domain-specific normalization and merged
local features to learn a domain-invariant feature space. To
our best knowledge, this is the first attempt to learn gener-
alized FAS features in a fully unsupervised way. Extensive
experiments show that UDG-FAS significantly outperforms
state-of-the-art methods on six diverse practical protocols.

1. Introduction
Face recognition (FR) systems [13, 39] have been widely

deployed in real-world applications for person authentica-
tion, such as access control and electronic payments. How-
ever, FR systems are vulnerable to presentation attacks, e.g.,
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AI Research is an initiative of Qualcomm Technologies, Inc.

Figure 1. Different from traditional DG methods that rely on la-
beled data for supervised training, our unsupervised domain gen-
eralization can learn live/spoof features with more accessible unla-
beled data in various environments. Then, we can directly deploy
the unsupervised model via kNN or further finetune it with few la-
beled data. Our method significantly improves performance with
various few labeled live (L) and spoof (S) data for I&C&M to O.

print attack, video replay and 3D mask. To address this is-
sue, face anti-spoofing (FAS) methods have been proposed,
including hand-crafted descriptors [12, 22, 33] and deep
learning based methods [3, 25, 28, 49]. Despite promising
results in intra-dataset scenarios, these methods are dramat-
ically degraded in cross-dataset tests due to the domain gap
across datasets. To facilitate generalization on unseen target
domains, domain generalization methods [9, 26, 37, 43, 55]
have been introduced in FAS to alleviate domain shifts.

Despite the improved generalizability, existing DG
methods rely heavily on supervised training using labeled
source data. However, labeled data are laborious and costly
to obtain, leading to the notorious problem of limited data in
FAS. On the contrary, large amounts of unlabeled face data
can be easily collected in various environments (e.g., from
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Figure 2. T-SNE visualization of unsupervised features learned by
SimSiam [8] on Replay, CASIA, OULU. Different colors for (a)
different classes(live/spoof), (b) domains and (c) identities, respec-
tively. We randomly select 4 identities in OULU for visualization.

access control systems). Thus, we study a more practical
unsupervised domain generalization (UDG) [52] problem
that aims to exploit more accessible unlabeled data to learn
discriminative representations that generalize well across
domains, thus reducing the reliance on labeled data and
improving the low data regime of FAS. Fig. 1 illustrates a
practical application of UDG for FAS. A model is first pre-
trained on (large-scale) unlabeled data collected from vari-
ous domains, and then released for deployment. In the de-
ployment phase, we can directly employ the frozen unsuper-
vised model via kNN or further finetune it with few labeled
data. Fig. 1 shows that our method achieves superior per-
formance, especially for more challenging real-world appli-
cations with no labeled data or few labeled data.

Besides, the prepositive unsupervised learning can be a
way of pretraining. Existing DG methods neglect model ini-
tialization. It is a common practice to pretrain on ImageNet
due to limited training data. However, ImageNet pretraining
is not reasonable in FAS, since facial images differ signifi-
cantly from natural images in the sense of data distribution,
e.g., texture and context. While unsupervised pretraining
on heterogeneous unlabeled FAS data from various domains
is a reasonable initialization for DG. But directly applying
off-of-shelf unsupervised learning methods may not achieve
desirable performance on the FAS task, as shown in Fig. 1.

Recent advances in unsupervised learning focus on con-
trastive learning, which enforces invariances to various aug-
mentations. To avoid trivial solutions, contrastive methods,
MoCo [18] and SimCLR [6], introduce negative samples for
pushing away. However, they are inherently not applicable
for FAS. Due to the limited number of classes (only two
of live/spoof), there are many false negative samples from
the same class, which leads to a lot of noise and impairs
the training process. BYOL [15] and SimSiam [8] employ
the asymmetric network to eliminate the need for negative
samples and succeed on natural images. However, they fail
in FAS data, since facial representations contain additional
complicated irrelevant factors, i.e., identity-related features.
This problem exacerbates in cross-domain scenarios, where
the model may learn domain-related features as shortcuts.
As depicted in Fig. 2, existing methods learn identity-biased
and domain-biased features rather than inherent live/spoof

features. Without the actual FAS labels, it is hardly possi-
ble to regulate the model to learn live/spoof-related features
under the inherent disturbances of identity and domain bias.

To solve these issues, we propose the first Unsupervised
Domain Generalization framework for FAS, namely UDG-
FAS. To alleviate the identity bias, we propose a novel Split-
Rotation-Merge module to generate identity-agnostic local
representations for mining intrinsic local spoof pattern. An
input image is first split into patches and then randomly ro-
tated. Subsequently, we merge several local embeddings
encoded by different facial patches by averaging to mitigate
identity-biased information while retaining the task-related
one, since different facial regions usually share the same
spoof cues. Besides, we propose to search the nearest neigh-
bors in the same domain as positive samples for contrastive
learning. By pulling close the images of various persons po-
tentially from the same class, we can further mitigate iden-
tity bias across identities and learn intrinsic spoof features.

Regarding domain-related bias, we propose to search the
cross-domain nearest neighbors as positive samples. By en-
forcing similarity on cross domain samples that may belong
to the same class, we can learn domain-invariant features
that generalize well on the target domain. Due to the dis-
tribution shifts, directly searching NN across domains may
lead to many false matches. Thus, we normalize the features
of each domain to the same reference Gaussian distribution
and combine the merged local features for a more accurate
search. The contributions of this paper are summarized as:
• We propose the first unsupervised domain generalization

framework for face anti-spoofing, which could use more
accessible unlabeled data to learn generalizable features
for improving the low-data status of the FAS community.

• We design a novel Split-Rotation-Merge module to gen-
erate identity-agnostic local representations for mining
intrinsic spoof features, and propose to search the near-
est neighbors in the same domain as positive samples for
contrastive learning to mitigate identity-related bias.

• We propose to search the cross-domain neighbors as pos-
itive samples to learn a generalized domain-invariant fea-
ture space. Domain-specific normalization with merged
local features are leveraged to find more accurate neigh-
bors for boosting performance.
To our best knowledge, we are the first attempt to mit-

igate identity and domain bias, and learn generalized task-
aware features in a fully unsupervised manner for FAS. We
build six diverse UDG FAS benchmarks for evaluation. Ex-
tensive experiments show our method achieves state-of-the-
art performance on various challenging cross-domain intra-
type and cross-domain cross-type protocols.

2. Related Work
Face Anti-Spoofing. Existing FAS methods focus on

supervised learning, which assumes an adequate amount of
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labeled data for training. Traditional FAS methods extract
the frame-level features using handcrafted descriptors such
as LBP [12], HOG [22] and SIFT [33]. Deep learning meth-
ods [46, 47, 50] boost the discrimination ability by employ-
ing CNNs to extract features. Auxiliary pixel-wise supervi-
sion, e.g., depth maps [27], reflection maps [48] and binary
masks [28] are utilized to further explore intrinsic features.

To generalize well on unseen scenarios, domain adapta-
tion (DA) and domain generation (DG) methods have been
developed. [21] proposes a single-side adversarial learning
way. [43] proposes to operate on content and style features
separately. Besides, meta-learning [9, 34, 37] are proposed
to regular the optimization process. Despite promising re-
sults, existing DG methods are restricted to costly labeled
source data, hindering practical applications. Recently, sev-
eral works [23, 30] explore unsupervised learning in FAS.
However, they are based on pretext tasks, which suffer lim-
ited performance and cannot alleviate the practical domain
shift. Besides, unsupervised DG benchmarks in various sce-
narios (e.g., cross attack types) have not been built yet.

Unsupervised Learning. Recent progresses focus on
contrastive learning, which learns by enforcing similarity
over augmentations while avoiding model collapse. Model
collapse can be avoided by introducing negative samples for
noise-contrastive [5, 18]. Shortly after that, BYOL [15] and
SimSiam [8] employ an asymmetric network and eliminate
the need of negatives. Besides, several methods [11, 14, 40]
propose to enforce similarity among local representations
for dense self-supervised learning. However, these methods
rely on the i.i.d assumption, which however is not satisfied
in UDG FAS, since there are identity-related and domain-
related factors as biases. It is non-trivial to avoid shortcuts
caused by these irrelevant factors without actual FAS labels.

Unsupervised Domain Generalization. Recently,
Zhang et al. [52] present unsupervised domain generaliza-
tion (UDG) on image classification and propose to select
negative samples based on domain similarity. However, due
to the limited number of classes, negative samples introduce
a lot of noise to FAS. DN2A [29] proposes a new connectiv-
ity metric to analyze the inherent problem of UDG and in-
troduces nearest neighbors into learning a generalized fea-
ture space. BrAD [16] proposes to intentionally generate
edge-like images as positive samples for learning shape-
aware features, which fails to learn FAS-related low-level
texture features. Thus, a UDG framework designed specifi-
cally for FAS is urged for promising results.

3. Methodology

3.1. Revisiting Vanilla Contrastive Learning

Recently, SimSiam [8] employs the asymmetric network
and eliminates the need for negative samples. Inspired by
this, we adopt a Siamese-like architecture with cosine sim-

ilarity loss for pulling positive samples together. However,
directly applying this architecture fails in UDG for FAS.
Proposition 1. Representation Z learned by minimizing the
vanilla cosine similarity loss maximizes the mutual infor-
mation I(Z;X+), where X+ is augmented positive sample.

Proof. Please refer to the supplementary material.

Augmented samples X+ contain much identity/domain-
related information, leading to learning biased features Z
as shortcuts by maximizing I(Z;X+). To verify this, we
train SimSiam on FAS datasets. Fig. 2 shows SimSiam fails
to learn live/spoof-related features but learns domain-biased
and identity-biased features. Specifically, samples from dif-
ferent domains are clustered and separable, while samples
from different classes are indistinguishable. Further con-
sidering a single domain, samples of different identities are
well separated. For UDG in FAS, it is challenging to learn
live/spoof-related features under the disturbance of biases.

3.2. Identity-Agnostic Local Representations
Existing contrastive learning methods maximize similar-

ity between global [6, 8, 18] or local representations [20, 40,
41], which however are identity-biased due to the contained
facial structural information. Besides, spoofing cues are
usually from fine-grained local information. Thus, we pro-
pose a novel Split-Rotation-Merge (SRM) strategy to gen-
erate identity-agnostic local representations. Specifically,
given a cropped face x from the raw capture, two augmented
views are x1 = t1(x) and x2 = t2(x), where t1, t2 ∼ T and
T is the sequence of non-distorted augmentation operations.

Split-Rotation. Given augmented view x1, we first split
it into a m×m grid of patches

{
xp
1 | p ∈

{
1, . . . ,m2

}}
as

shown in Fig. 3, where p denotes the index of split patches.
Then, we use random rotation R to augment the patches as
xp
1 = r(xp

1) (r ∼ R) with the rotation invariance, which can
partly destroy identity-related but not live/spoof-related in-
formation. After that, the split m2 local patches are fed into
the encoder f separately to obtain the encoded local embed-
dings as

{
ep1 | p ∈

{
1, . . . ,m2

}}
, where ep1 = f(xp

1).
Merge. Directly using local embeddings of each patch

still suffers from identity-related bias. Considering for most
presentation attack types (e.g., print photo, video replay and
3D mask), each local patch contains similar spoof-related
discriminative information. While identity-related informa-
tion differs a lot in each patch, e.g., the patch covered by
eyes is quite different from that covered by mouths. Thus,
we merge multiple local embeddings ep1 to form the merged
embeddings v1 for mitigating identity-biased information.
Specifically, we select a subset s of n indices from the patch
index set p =

{
1, . . . ,m2

}
, and collect the corresponding

embeddings as es1 = {ep1 | p ∈ s}. Then, the merged em-
bedding v1 is generated by averaging as v1 = 1

n

∑
p∈s e

p
1.

Taking all possible n-combinations leads to the merged em-
bedding set v1 =

{
vi1 | i ∈

{
1, . . . , Cn

m2

}}
, where Cn

m =
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Figure 3. Overall architecture of UDG-FAS. The augmented view x1 is split into patches and randomly rotated. Each patch is fed into the
encoder f separately to obtain ei1, and then summed by averaging to generate merged identity-agnostic local features vi1. Merged features
are fed into projector g, predictor q for contrastive learning. Another view x2 is input to the encoder f and projector g. And we search the
nearest neighbors in in-domain support set as positive samples for contrastive learning to mitigate identity bias. Besides, nearest neighbors
in cross-domain support set are employed as positives to alleviate domain bias. To deal with distribution gap, domain-specific normalization
with merged local feature is used for more robust search. Note that x1, x2 will be swapped and forwarded again for symmetry training.

m!
n!(m−n)! . In this way, we generate multiple merged embed-
dings as identity-agnostic local representations, which miti-
gate identity bias while retaining spoof-related information.

Similarity Loss. Then, the merged embedding
{
vi1
}

is
input to a projector and a predictor to generate the vector{
pi1
}

. Similar to SimSiam [8], the other input view x2 is fed
into the encoder and projector to generate the global vector
z2. By alternatively feeding x2 and x1, we can obtain

{
pi2
}

and z1. Then, they are used to compute the similarity loss

Li
SRM=

1

2
D(pi1,stopgrad(z2))+

1

2
D(pi2,stopgrad(z1))

(1)
where D(p1, z2) = − p1

||p1||2 · z2
||z2||2 . Since there are Cn

m2

merged embeddings, we average similarity losses from Cn
m2

positive pairs between merged vectors pi and the global em-
bedding z as the final loss LSRM =

∑Cn
m2

i=1 Li
SRM/Cn

m2 .
In-domain Nearest Neighbors. Whilst applying our

Split-Rotation-Merge module can suppress identity-biased
information within one identity, it remains unresolved how
to pull close the images of different persons, which are sup-
posed to act as positives (i.e. the same live/spoof label). To
further mitigate identity-related features across identities,
we resort to a simple yet effective strategy that searches the
nearest neighbors (NN) in the embedding space of the same
domain as positive samples for contrastive learning. Specif-
ically, for a cropped face x and its embedding z, we have a
in-domain support set of embeddings from the same domain
Qin

z = {zqin1 , ..., zqink , ..., zqin|Qin
z |}\{z}, where d = dqink .

Besides, we have the augmented view x1 and corresponding
support set Qin

z1 . Then, we search z’s NN in Qin
z1 as

idqinnn = argmin
k∈{1,...,|Qin

z |}
∥z − zqink ∥2, zqinnn = Qin

z1 [id
qin
nn ] (2)

Note that we do not use augmentations in x, making z,
Qin

z less noisy to find pure NN. Let N(z,Q) denote NN of z

in Q, we have in-domain NN (IDNN) as N(z,Qin
z1) = zqinnn ,

which is employed as positive samples for computing loss

Li
IDNN =

1

2
D(pi1,stopgrad(N(z,Qin

z2)))

+
1

2
D(pi2,stopgrad(N(z,Qin

z1))) (3)

In this way, we enforce similarity over different identity
samples potentially belonging to the same class (live/spoof),
which can learn an identity-irrelevant representation space.
Proposition 2. Representation Z learned by minimizing
Eq. (1) and (3) minimizes the mutual information I(Z;B),
where B is the variable indicating the identity.

Proof. Please refer to the supplementary material.

Besides, using in-domain NN as positives can help to
overcome intra-domain variations, e.g., material and cam-
era quality, and better learn the intra-class compact features.

3.3. Domain-Agnostic Positive Samples
The success of existing contrastive learning methods re-

lies on the i.i.d. assumption, which however is not satisfied
in UDG due to the distribution shift across domains [52]. To
avoid learning domain-biased features as shortcuts, we pro-
pose to search the nearest neighbors (NN) across domains as
positive samples. However, due to huge distribution shifts,
directly searching cross-domain NN may lead to many false
matches, i.e., the query and its NN have different labels,
which introduces noise and compromises the final result.

Considering visual domain is closely related to image
style information [56], which is reflected in the feature
statistics, we collect the domain-specific mean and devia-
tion as

(
µd, σ

2
d

)
. Then, we normalize features of each do-

main to the reference Gaussian distribution with zero mean
and unit variance as ẑ = (z−µd)/

√
σ2
d + ϵ, where z is the
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encoded features from domain d, and ϵ is a small constant
to avoid numerical instability. By mapping features of var-
ious domains to the same distribution, we can search more
accurate cross-domain NN. In addition to using the global
feature z, we also leverage the proposed merged local fea-
tures v for a more robust search, which can mitigate identity
bias, e.g., ethnic and gender. With total Cn

m2 merged local
features, we obtain an averaged local feature as v =

∑
i v

i,
which is then normalized to the Gaussian distribution as v̂.

Specifically, for a given sample xj , its normalized global
feature ẑj and local feature v̂j , we have the correspond-
ing cross-domain support set of embeddings from different
domains as Qcr

ẑ = {ẑqcr1 , ..., ẑqcrk , ..., ẑqcr|Qcr
ẑ |} and Qcr

v̂ =

{v̂qcr1 , ..., v̂qcrk , ..., v̂qcr|Qcr
v̂ |}, where dj ̸= dqcrk . Euclidean

distances between the query and support set based on the
global and local feature are computed as distẑ and distv̂ ,
which are then combined as the final distance dist =
distẑ + distv̂ . Finally, we sort the distance matrix and ob-
tain the index of NN as idqcrnn . Besides, we have augmented
view x1 with corresponding support set Qcr

z1 , and have NN
as zqcrnn = Qcr

z1 [id
qcr
nn ]. With cross-domain NN (CDNN) as

positives N([z, v], Qcr
z1) = zqcrnn , we compute the loss as:

Li
CDNN =

1

2
D(pi1,stopgrad(N([z, v], Qcr

z2)))

+
1

2
D(pi2,stopgrad(N([z, v], Qcr

z1))) (4)

Proposition 3. Representation Z learned by minimizing
Eq. (4) minimizes the mutual information I(Z;D), where
D is the variable indicating the domain.

Proof. Please refer to the supplementary material.

In summary, with our proposed identity-agnostic local
representations, in-domain and cross-domain nearest neigh-
bors as positive samples, we have the total loss L as

L = LSRM + λ1 · LIDNN + λ2 · LCDNN (5)

At the start of training, the searched neighbors are unreli-
able. As the training proceeds, the neighbors are more and
more reliable. Thus, λ1 and λ2 are set as time-dependent,
e.g., λ1(t)=0 in first T1 epochs and λ1(t)=1 when t1 > T1.

4. Experiments
4.1. Experimental Settings

Datasets. We experiment on: Idiap Replay-Attack [10]
(denoted as I), OULU-NPU [2] (denoted as O), CASIA-
MFSD [54] (denoted as C), MSU-MFSD [45] (denoted as
M), CelebA-Spoof [53] (denoted as CA), 3DMAD [31] (de-
noted as D), HKBU-MARs [24] (denoted as H)1. Follow-
ing [21, 36], Half Total Error Rate (HTER) and Area Under
the Curve (AUC) are used as the evaluation metrics.

1Datasets were solely downloaded and evaluated by Shanghai Jiao
Tong University researchers.

Unsupervised Domain Generalization FAS Protocols.
We describe our proposed UDG FAS protocols as follows:

UDG-Protocol-1: We unsupervisedly pretrain the model
using unlabeled data on three domains of I, O, C and M,
and then finetune with labeled data, the proportion of which
is 5%, 10%, 20%, 50% and 100%. Note that we split the
data by identity ID. Finally, the model is evaluated on the
remaining unseen target domain. In this protocol, there is
almost no shortage of domain information compared to the
standard DG protocol, but the amount of labeled data is rel-
atively small. Besides, we also evaluate with full live data
and few labeled spoof data of 5%, 10%, 20% and 50%.

UDG-Protocol-2: The model is pretrained using unla-
beled data from three domains of I, O, C and M. Without
finetuning, we perform kNN on the model to more directly
evaluate the unsupervised pre-trained features on target do-
main. This protocol evaluates the performance under more
challenging scenarios without any labeled data for training.

UDG-Protocol-3: In addition to small datasets (I, O, C,
M), we include the current largest CelebA-Spoof (CA) as an
additional unlabeled source dataset for pretraining. To save
computational overhead, we randomly sample a subset of
100k/200k images. Besides, we extract the real faces of CA
as additional source data, which are all web-crawled. After
pretraining, we finetune the model with full labeled data of
small datasets. This protocol evaluates the effectiveness of
our method for using large-scale web-crawled face data.

UDG-Protocol-4: Two datasets among I, O, C and M are
set as one group, i.e., [O, M] and [C, I] are set as two groups.
The model is pretrained on one group using unlabeled data,
finetuned using the labeled data, and then tested on the other
unseen group. This protocol evaluates the efficiency and
generalizability of models with limited source domains.

UDG-Protocol-5: In this UDG-based attack type gener-
alization protocol, following the ‘leave one attack type out’
data usage in [1], we pretrain on two domains of I, C and M
with partial attack type data using unlabeled data, finetune
with the labeled data, and then test on the unseen domain
with unseen attack types. This protocol measures the gen-
eralization of both unseen domain and 2D attack types.

UDG-Protocol-6: We evaluate the generalization on un-
seen 3D mask attack in this UDG-based protocol. In spe-
cific, we pretrain the model using unlabeled data on O, C, I
and M, finetune using the labeled data, and then test on 3D
mask dataset D and H. In addition, the model is also pre-
trained on O, C, M and tested on the large-scale CA dataset,
which contains an unseen 3D mask attack types.

Implementation Details. For unsupervised training, we
adopt ResNet-18 as the backbone. Following [8], we use a
projector with three MLP layers and a predictor with two
MLP layers. We adopt the SDG optimizer with lr=0.03 and
a cosine decay schedule for 100 epochs of training. For our
SRM module, we set m=2 and n=2. The hyperparameter
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Methods O&C&I to M O&M&I to C O&C&M to I I&C&M to O
HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

Random Init [19] 12.62 92.15 35.33 68.25 25.64 77.09 32.20 73.07
ImageNet Init [19] 11.43 93.99 16.44 91.25 23.57 77.25 22.31 85.65
Moco V2 [7] 12.86 93.63 17.89 88.41 16.50 87.80 27.48 79.07
SimCLR V2 [6] 12.86 93.08 17.33 90.89 15.71 87.07 26.67 79.55
BYOL [15] 14.76 86.29 22.67 84.74 14.28 90.81 22.48 85.26
SimSiam [8] 11.43 93.83 16.78 89.69 14.28 92.69 19.30 88.67
UDG-FAS (Ours) 7.14 97.31 11.44 95.59 6.28 98.61 12.18 94.36
RFM [37] 17.30 90.48 13.89 93.98 20.27 88.16 16.45 91.16
D2AM [9] 15.43 91.22 12.70 95.66 20.98 85.58 15.27 90.87
SSDG-R [21] 7.38 97.17 10.44 95.94 11.71 96.59 15.61 91.54
SSAN [44] 6.67 98.75 10.00 96.67 8.88 96.79 13.72 93.63
PatchNet [38] 7.10 98.46 11.33 94.58 13.4 95.67 11.82 95.07
UDG-FAS+SSDG (Ours) 5.95 98.47 9.82 96.76 5.86 98.62 10.97 95.36

Table 1. Results on UDG-Protocol-1 with full labeled data for finetuning. The methods in the top half are firstly unsupervised pretrained
and then finetuned with a baseline ResNet-18 model, while those in the lower part are DG methods with ImageNet pretraining.

Methods
Label Fraction 50% Live + 50% Spoof Label Fraction 20% Live + 20% Spoof

O&C&I to M O&M&I to C O&C&M to I I&C&M to O O&C&I to M O&M&I to C O&C&M to I I&C&M to O
HTER AUC HTER AUC HTER AUC HTER AUC HTER AUC HTER AUC HTER AUC HTER AUC

ImageNet Init [19] 18.57 87.58 25.89 82.90 27.86 71.33 23.59 83.55 22.86 85.93 27.44 81.27 29.14 73.36 27.76 78.90
MoCo V2 [7] 14.52 92.41 19.33 86.75 21.43 79.37 29.32 77.52 21.43 88.77 25.33 82.43 24.43 81.24 33.73 70.22
SimCLR V2 [6] 14.05 93.18 18.67 85.87 20.71 84.28 28.89 76.98 20.24 89.78 24.67 82.73 23.64 78.94 32.62 71.71
BYOL [15] 15.95 88.97 23.33 84.42 17.86 84.84 21.79 86.45 17.38 85.80 23.33 83.92 21.50 85.08 25.83 83.05
SimSiam [8] 13.10 94.37 18.00 90.68 17.14 91.92 20.07 87.70 15.71 91.13 19.89 88.79 21.43 80.62 24.58 83.86
UDG-FAS (Ours) 10.00 96.27 13.33 93.42 9.93 96.19 12.27 94.74 11.43 95.04 13.88 93.31 12.64 96.08 12.83 94.03

Methods
Label Fraction 10% Live + 10% Spoof Label Fraction 5% Live + 5% Spoof

O&C&I to M O&M&I to C O&C&M to I I&C&M to O O&C&I to M O&M&I to C O&C&M to I I&C&M to O
HTER AUC HTER AUC HTER AUC HTER AUC HTER AUC HTER AUC HTER AUC HTER AUC

ImageNet Init [19] 22.86 83.09 32.00 71.11 27.89 80.03 30.66 75.03 22.86 81.23 29.89 79.89 34.29 68.64 30.85 75.51
MoCo V2 [7] 21.43 88.05 28.56 80.38 26.21 77.22 36.79 67.26 21.43 87.47 30.11 76.72 26.43 77.98 37.22 67.85
SimCLR V2 [6] 20.71 87.82 27.22 80.21 25.14 81.19 35.99 68.46 20.23 87.10 27.89 80.17 25.28 83.21 35.83 67.88
BYOL [15] 20.00 84.69 26.67 80.24 20.71 81.59 27.93 80.89 21.43 83.93 32.67 74.14 20.71 82.85 30.54 77.93
SimSiam [8] 17.14 92.33 20.78 89.12 20.71 78.18 28.47 78.56 19.76 89.16 27.33 80.63 22.86 80.39 29.17 78.59
UDG-FAS (Ours) 11.67 94.80 13.88 93.48 13.57 94.99 15.29 92.13 12.86 93.32 18.67 89.83 15.64 90.67 15.14 92.49

Table 2. Results on UDG-Protocol-1 with partial labeled data ranging from 5% to 50%. We split the training set by the identity ID.

Methods O&C&I to M O&M&I to C O&C&M to I I&C&M to O
HTER AUC HTER AUC HTER AUC HTER AUC

MocoV2 32.86 69.12 45.33 58.67 36.86 65.10 40.96 62.18
SimCLRV2 31.19 82.04 46.67 57.62 37.85 66.64 37.55 66.74
BYOL 31.19 74.41 33.98 67.34 38.43 65.45 34.52 68.59
SimSiam 23.33 79.75 38.67 73.68 36.50 65.22 37.18 67.95
Ours 19.76 84.34 23.78 86.69 12.50 94.75 17.98 88.52

Table 3. Results on UDG-Protocol-2 with kNN (k=10) evaluation.

Methods O&C&I to MO&M&I to CO&C&M to I I&C&M to O
HTER AUC HTER AUC HTER AUC HTER AUC

SimSiam [8] 11.43 93.83 16.78 89.69 14.28 92.69 19.30 88.67
+100,000 10.95 94.78 15.33 90.91 13.57 93.12 17.89 89.19
+200,000 10.56 95.07 14.56 92.28 12.93 94.35 16.70 90.47
+Web-crawled 11.19 94.46 15.89 90.16 13.36 93.72 18.24 89.05
UDG-FAS 7.14 97.31 11.44 95.59 6.28 98.61 12.18 94.36
+100,000 6.32 97.45 9.33 96.58 5.17 98.84 10.27 96.15
+200,000 5.71 98.31 7.69 97.92 4.48 99.03 9.06 96.51
+Web-crawled 6.58 97.08 9.82 96.04 4.75 98.91 10.81 95.38

Table 4. UDG-Protocol-3 with CA as an additional source domain.

is set as T1=30 and T2=60. For finetuning, we initialize a
ResNet-18 encoder with unsupervised trained weight, and
randomly initialize a linear classifier. The model is trained
by the SGD optimizer with lr=0.001.

Methods O&M to C&I C&I to O&M
HTER(%) AUC(%) HTER(%) AUC(%)

SSDG-R [21] 20.92 88.07 22.57 85.61
DF-DM [23] 29.61 73.78 32.94 73.58
DF-DM† [23] 18.96 89.48 18.60 89.76
ImageNet Init [19] 25.65 79.14 28.14 79.05
Moco V2 [7] 22.42 83.10 33.17 72.05
SimCLR V2 [6] 23.12 80.89 32.30 72.67
BYOL [15] 22.03 88.02 27.21 80.69
SimSiam [8] 22.42 88.36 24.30 82.80
UDG-FAS (Ours) 14.54 93.81 18.13 88.81

Table 5. Results on UDG-Protocol-4 with limited source domains.
† indicates use ImageNet initialization for unsupervised training.

4.2. Experimental Results
UDG-Protocol-1. Table 1 shows our method greatly im-

proves performance on unseen target domain, i.e., outper-
forms ImageNet pretraining by 9.43% average AUC gain,
indicating a better initialization for FAS models. Besides,
compared to recent unsupervised methods, UDG-FAS im-
proves performance a lot by mitigating the identity and do-
main bias, e.g., 6.19% HTER lower than SimSiam on aver-
age. Surprisingly, without any changes on learning objec-
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Methods CASIA-MFSD Replay-Attack MSU OverallVideo Cut photo Warped Video Digital Photo Printed Printed HR Video Mobile Video
SVM1+IMQ [1] 88.41 75.14 75.23 88.21 71.20 56.41 56.62 71.12 49.75 70.23±12.69
CDCN [50] 72.20 79.31 84.22 97.73 94.89 96.70 74.25 98.88 100.00 87.69±10.56
CDCN++ [50] 73.12 76.64 78.36 96.66 92.92 97.67 74.25 98.13 100.00 87.53±10.90
SSAN [44] 73.20 75.27 82.69 97.48 89.26 96.04 79.69 99.75 98.75 88.01±9.93
TTN-S [42] 90.26 79.60 95.17 68.81 93.82 95.88 88.87 95.19 99.82 89.71±9.17
ImageNet Init [19] 73.07 71.89 72.17 88.52 77.68 81.92 67.51 98.94 98.61 81.14±11.08
SimSiam [8] 79.44 74.25 75.61 93.81 82.57 97.09 75.20 99.51 99.69 86.35±10.38
UDG-FAS (Ours) 88.73 82.80 84.35 96.65 96.20 99.26 84.37 99.71 99.84 92.43±6.86
Table 6. Results on UDG-Protocol-5 for cross domain cross 2D attack type experiments. The bottom half are pretraining methods.

Methods O&C&I&M to D O&C&I&M to H
HTER(%) AUC(%) HTER(%) AUC(%)

RFMetaFAS [37] 5.88 98.35 41.67 81.64
SSDG-R [21] 6.77 98.42 32.50 73.68
SSAN [44] 0.74 99.74 26.98 80.27
ImageNet init [19] 8.24 97.52 35.52 69.57
Moco V2 [7] 9.41 96.38 36.61 70.98
SimCLR V2 [6] 8.24 97.05 35.71 66.90
BYOL [15] 7.06 98.11 32.14 73.68
SimSiam [8] 6.76 98.49 32.94 70.83
UDG-FAS (Ours) 0.29 99.95 27.36 80.31

Table 7. Results for UDG-Protocol-6 on unseen 3D mask attack.

tives and network architectures, a baseline model, ResNet-
18, can directly outperform most DG methods and achieve
comparable performance to SOTA methods by using UDG-
FAS as initialization. Combined with SSDG-R, UDG-FAS
achieves a new SOTA DG performance, improving SSDG-
R from 11.29% HTER to 8.15%. Table 2 shows that our
method consistently outperforms other counterparts for all
fractions of labeled data. With only 5% faces (i.e., two iden-
tities for each domain), UDG-FAS achieves 15.14% HTER
for I&C&M to O, which is better than SSDG using all la-
beled data, showing the effectiveness of reducing label cost.

UDG-Protocol-2. As shown in Table 3, UDG-FAS out-
performs other counterparts by a large margin for kNN eval-
uation. Compared with SimSiam, we achieve 16.63% AUC
gain on average, showing the effectiveness of our unsuper-
vised learned features for FAS. Besides, without any labeled
data for training, our UDG-FAS even outperforms SimSiam
finetuned with all data by 2.06% AUC for O&C&M→I.

UDG-Protocol-3. Table 4 shows using 100k unlabeled
CA data improves performance with 1.49% average HTER
drop. Besides, UDG-FAS consistently benefits from the in-
creased amount of data to 200k. Meanwhile, including web-
crawled real faces also improves performance with 1.27%
HTER drop. Compared with SimSiam, UDG-FAS benefits
more from increased data with larger accuracy gain. The re-
sults exhibit the power of UDG-FAS to use large-scale web-
crawled face data for enhancing the pre-trained features.

UDG-Protocol-4. Table 5 shows that with limited source
domains, our unsupervised pretraining outperforms SSDG-
R by 5.41% average HTER reduction, exhibiting the data
efficiency and generalizability of UDG-FAS. Besides, com-

Methods M&C&O to CA
HTER(%) AUC(%)

Saha et al. [35] 27.1 79.2
Panwar et al. [32] 26.1 80.0
SSDG-R [21] 25.05 82.11
CIFAS [26] 24.6 83.2
Moco V2 [7] 28.71 78.56
SimCLR V2 [6] 27.89 79.34
BYOL [15] 28.07 78.67
SimSiam [8] 26.16 81.52
UDG-FAS (Ours) 21.35 87.26

Table 8. Results for UDG-Protocol-6 on unseen 3D attack of CA.

pared with SimSiam, UDG-FAS improves the performance
by 5.73% AUC gain. Moreover, UDG-FAS outperforms
DF-DM by 4.42% HTER reduction for O&M to C&I, show-
ing the effectiveness of mitigating identity and domain bias.

UDG-Protocol-5. Under cross domain cross attack test,
Table 6 shows that UDG-FAS outperforms ImageNet Init
by 11.29% AUC gain. Compared with SimSiam, UDG-FAS
achieves 6.08% AUC gain. Moreover, UDG-FAS even out-
performs SOTA DG method, i.e., 2.72% higher AUC than
TTN-S. Though unsupervised training without unseen at-
tack types, UDG-FAS forces the model to learn an identity-
irrelevant and domain-irrelevant representation space, facil-
itating generalization under domain and attack type shifts.

UDG-Protocol-6. As shown in Table 7, UDG-FAS out-
performs ImageNet Init by 8.06% HTER reduction for un-
seen 3D mask attack. Compared with SimSiam, we achieve
6.03% HTER reduction on average. Moreover, UDG-FAS
even outperforms SOTA DG methods, e.g., 0.25% higher
AUC than SSAN and 4.08% higher AUC than SSDG-R.
Table 8 shows that UDG-FAS outperforms SOTA DG meth-
ods for large-scale CA, e.g., 4.06% AUC gain compared to
CIFAS, showing the validity of unsupervised pretraining.

4.3. Ablation Study

Ablation study is conducted on UDG-Protocol-1 with
full labeled data for finetuning to evaluate each component.

Effectiveness of Each Component. To verify the valid-
ity of mitigating identity-related bias, we experiment w/o
Split-Rotation-Merge and in-domain NN, respectively. Ta-
ble 9 shows that the performance is degraded, demonstrat-
ing the effectiveness of our SRM module and in-domain NN
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Methods O&C&I to M O&M&I to C O&C&M to I I&C&M to O
HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

Ours w/o Split-Rotation-Merge 10.24 96.74 14.89 93.06 11.43 94.65 17.93 89.67
Ours w/o in-domain NN 9.76 97.02 13.44 93.84 8.71 97.28 14.31 92.22
Ours w/o cross-domain NN 10.00 96.35 15.33 93.29 10.71 95.73 16.08 91.31
UDG-FAS (Ours) 7.14 97.31 11.44 95.59 6.28 98.61 12.18 94.36

Table 9. Evaluations of different components of the proposed method on four cross-dataset testing protocols.

O&C&I to M O&M&I to C O&C&M to I I&C&M to O
HTER AUC HTER AUC HTER AUC HTER AUC

k = 1 7.14 97.31 11.44 95.59 6.28 98.61 12.18 94.36
k = 2 7.14 96.45 10.77 94.98 7.07 98.36 12.91 93.92
k = 4 7.38 96.04 12.00 93.74 7.85 97.51 14.24 92.87

Table 10. Ablation on k in our in-domain and cross-domain NN.

Methods 50%labels20%labels10%labels5%labels kNN
Ours w/o NNs +SSDG 17.10 19.91 23.78 24.93 31.15
Our UDG-FAS 12.27 12.83 15.29 15.14 17.98

Table 11. HTER on I&C&M to O without in/cross-domain NNs.

for alleviating identity bias. Besides, to prove the impor-
tance of mitigating domain-related information, we experi-
ment w/o cross-domain NN. The results in Table 9 indicate
that learning a domain-irrelevant feature space is beneficial
to improve the generalizability for cross-domain FAS tasks.
Moreover, our unsupervised model can be deployed with no
labels or finetuned with few labels, in which practical cases
finetuning with regularization is inapplicable or inferior due
to the lack of sufficient labels. As labels become fewer, Ta-
ble 11 shows UDG-FAS obtains higher performance gain
over Ours w/o NNs finetuning with SSDG.

Effectiveness of Split-Rotation-Merge Module. We
dive into SRM module to inspect the influence of each part.
As shown in Table 12, the performance degrades if any part
of the module is removed due to the less suppressed iden-
tity bias. We also compare with patch shuffle (PS) augmen-
tation [51], which is a way to mitigate identity-related in-
formation at the input level. UDG-FAS outperforms PS by
3.49% HTER reduction, showing that SRM module is more
effective in mitigating identity bias. Besides, we examine
the choice of the number of split and merged patches (i.e.,
m and n), where the split number controls the patch size.
Fig. 4 shows that when m = 2, selecting n = 2 patches
for merging is best, since there is information gap with
half of patches, which filters the identity-biased informa-
tion. While small patch size (m=3) may fragment spoofing
cues and degrade the performance.

Effectiveness of Cross-domain Nearest Neighbor. Ta-
ble 13 shows that ours w/o DSN and w/o local degrade the
performance, showing the effectiveness of domain-specific
normalization (DSN) and combining local distances for the
more accurate cross domain search. Ours w GT denotes us-
ing ground-truth labels to construct cross-domain samples
as positives, which is the upper bound performance.

Effects of k in Nearest Neighbors. In experiments, we

Figure 4. Comparison between the
number of split samples and merged
samples on I&C&M to O.

Methods HTER(%)
Ours w/o split 16.25
Ours w/o rotation 14.09
Ours w/o merge 13.82
Ours w PS 15.67
Ours 12.18

Table 12. Ablation study on
our Split-Rotation-Merge on
I&C&M to O.

Figure 5. Cross-domain NN match
accuracy on O&C&M to I.

Methods HTER(%)
Ours w/o DSN 13.94
Ours w/o local 12.97
Ours w GT 10.83
Ours 12.18

Table 13. Ablation study on
our cross-domain NN search
strategy on I&C&M to O.

Figure 6. T-sne visualization of unsupervised features learned by
SimSiam and our approach. Samples of each category (live/spoof)
tend to be grouped together in our learned feature space (though
not perfect as our model is unsupervised trained without labels).

select the top-1 ranked neighbor as the positive samples. Ta-
ble 10 shows that, UDG-FAS is somewhat robust to chang-
ing the value of k, but increasing beyond k = 1 results in
slight degradation due to the brought noise.

4.4. Visualization and Analysis
Visualization of Feature Space. Fig. 6 shows SimSiam

fails to learn live/spoof-related features and samples of dif-
ferent classes are closely entangled. By contrast, samples
of each class are separable in our learned feature space.

Class Activation Map (CAM). Fig. 7 shows UDG-FAS
focuses on the facial region for live samples and attaches
importance to photo cut position and holding hand for pre-
dicting spoof samples. While SimSiam focuses on the land-
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Figure 7. Grad-CAM visualizations for O&M&I to C. (a) Input
images. Visualizations for (b) SimSiam and (c) our UDG-FAS.

Methods O&C&I to M O&M&I to C O&C&M to I I&C&M to O
HTER AUC HTER AUC HTER AUC HTER AUC

DINO 10.24 95.36 15.33 92.14 12.64 93.46 17.22 90.64
MAE 9.05 96.21 13.67 92.48 11.50 94.27 15.28 91.35
Ours 7.14 97.31 11.44 95.59 6.28 98.61 12.18 94.36
DINO+SSDG 9.76 96.38 14.00 92.94 11.36 94.27 16.39 90.95
MAE+SSDG 8.33 96.63 12.56 93.69 10.64 95.18 14.16 92.03
Ours+SSDG 5.95 98.47 9.82 96.76 5.86 98.62 10.97 95.36

Table 14. Comparison of transformer-based SSL methods.

mark areas in faces that contain identity-biased features.
Nearest Neighbor Match Accuracy. Fig. 5 shows the

accuracy of searched cross-domain NN for three strategies
(ours, ours w/o DSN and w/o local). Ours w/o DSN and w/o
local have the lower NN search accuracy, demonstrating the
effectiveness of our method for searching accurate NN.

Searched Nearest Neighbor. Fig. 8 shows the nearest
neighbors retrieved with our unsupervised features. Cross-
domain NNs searched by UDG-FAS are from the same
live/spoof class, where the spoof ones are even from the
same attack type, e.g., video or print attacks. Besides, the
searched in-domain NNs are also accurate and have differ-
ent personal traits (identity/gender), demonstrating that the
learned feature contains less identity-biased information.

Comparison with Transformer-based SSL Methods.
We compare our method (based on ResNet-18) with SOTA
transformer-based methods DINO [4] and MAE [17] (us-
ing ViT-Small as backbone). Table 14 shows our method is
superior with fewer parameters and FLOPs, and achieves
more significant gains when combined with SSDG. This
means using SSL methods without taking the properties of
FAS tends to learn identity/domain-biased features and de-
grades the performance.

Identity Retrieval Performance. To further evaluate
whether our method can effectively mitigate identity-biased
information in an unsupervised fashion, we use the unsu-
pervised pre-trained network to extract the facial features
for identity retrieval. Table 15 shows that the identity re-
trieval performance degrades with our unsupervised train-
ing, in line with our objective of removing identity-related
information to avoid shortcuts in FAS.

5. Conclusion
In this paper, we propose the first unsupervised domain

generalization framework for face anti-spoofing, which can

Methods O&C&I to MO&M&I to CO&C&M to II&C&M to O
P@1↓ P@5↓ P@1↓ P@5↓ P@1↓ P@5↓ P@1↓ P@5↓

MocoV2 33.39 15.78 34.41 16.05 36.61 18.42 29.19 13.38
SimCLRV2 34.56 16.07 37.28 16.73 36.89 18.49 30.13 13.41
SimSiam 28.04 15.03 29.57 15.36 33.34 18.09 26.63 13.27
Ours 17.82 9.96 19.69 10.29 21.11 11.48 10.37 4.70

Table 15. Identity retrieval performance of different unsupervised
learning methods.

Figure 8. The searched cross-domain and in-domain NN by UDG-
FAS, where spoof ones are from the same fine grained attack types.

exploit large amounts of more accessible unlabeled data to
learn generalizable features for enhancing the low-data sta-
tus of FAS. Regarding the inherent identity and domain bi-
ases, we propose a novel SRM module to explore identity-
agnostic local representations. Besides, in-domain near-
est neighbors are employed as positives to further mitigate
identity bias. Moreover, cross-domain nearest neighbors are
searched with the domain-specific normalization to learn
domain-invariant features. Extensive experiments validate
the effectiveness of our method statistically and visually.
Even with 5% labeled data, UDG-FAS can still achieve
promising results without much performance degradation.
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