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Abstract

Although existing stereo matching models have achieved
continuous improvement, they often face issues related to
trustworthiness due to the absence of uncertainty estima-
tion. Additionally, effectively leveraging multi-scale and
multi-view knowledge of stereo pairs remains unexplored.
In this paper, we introduce the Evidential Local-global
Fusion (ELF) framework for stereo matching, which en-
dows both uncertainty estimation and confidence-aware fu-
sion with trustworthy heads. Instead of predicting the
disparity map alone, our model estimates an evidential-
based disparity considering both aleatoric and epistemic
uncertainties. With the normal inverse-Gamma distribu-
tion as a bridge, the proposed framework realizes intra
evidential fusion of multi-level predictions and inter evi-
dential fusion between cost-volume-based and transformer-
based stereo matching. Extensive experimental results show
that the proposed framework exploits multi-view informa-
tion effectively and achieves state-of-the-art overall per-
formance both on accuracy and cross-domain generaliza-
tion. The codes are available at https://github.
com/jimmy19991222/ELFNet.

1. Introduction
Stereo matching, which aims at estimating the dense dis-

parity map given a pair of rectified images, is one of the
most fundamental problems in various applications, such as
3D reconstruction, autonomous driving, and robotics navi-
gation [15]. Benefiting from the rapid development of con-
volutional neural networks, many stereo matching models
have achieved promising performance by constructing cost
volume and using 3D convolutions [14, 38–40]. Recently,
with the support of transformer, approaches have been pro-
posed to utilize global information using self- and cross-
attention mechanisms, bringing an alternative way for the
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(a) Left image (b) ELFNet (Ours)

(c) PCWNet (Cost-volume based) (d) STTR (Transformer based)

Figure 1. Error map visualization and comparison of the pro-
posed ELFNet, PCWNet (a cost-volume-based model) and STTR
(a transformer-based model) on a case of the Scene Flow [25].
The regions colored in blue indicate low error, while the regions
in white and red indicate relatively higher error. By fusing cost-
volume-based and transformer-based models reliably, our ELFNet
significantly reduces the error.

stereo matching [13, 19].
Despite the improved performance, quantifying uncer-

tainty of the stereo matching results has been overlooked.
The frequently occurring overconfident predictions in the
existing stereo matching limit the deployment of the algo-
rithms, especially in safety-critical applications. The deep
learning models are prone to be unreliable due to the lack of
interpretability, especially when facing out-of-domain, low-
quality or perturbed samples. Things are even worse in the
field of stereo matching where the model is first pretrained
in a large scaled synthetic dataset [25] and fine-tuned in a
much smaller dataset from real-world scenes. This makes
uncertainty estimation an essential part of preventing poten-
tially disastrous decisions based on stereo matching results.

In the meantime, multi-view complementary informa-
tion widely exists in stereo matching, but it remains a chal-
lenge to harness them to improve accuracy effectively and
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efficiently. For instance, multi-scale pyramidal cost vol-
umes are used to offer the coarse-to-fine knowledge ob-
tained from the feature extractor [3, 4, 14, 31, 32, 38, 42],
but the current fusion method fails to consider the uncer-
tainties in different scales, which results in an untrustwor-
thy and incomplete integration. In addition, cost-volume-
based [32, 39] and transformer-based approaches [19] pro-
vide entirely different strategies for dealing with stereo
pairs: the former aggregates local features with convolu-
tions, and the latter captures global information with trans-
former for dense matching. We find that these two types
of methods complementary to each other. For instance,
as shown in the red blocks of Figure 1(c) and 1(d), cost-
volume-based model is not robust in regions with large illu-
mination changes while transformer-based model does not
make full use of complex local textures. In such a scenario,
uncertainty estimation is a potential module for endowing a
trustworthy fusion strategy among multi-view information
to alleviate the error risks without bringing much additional
computational load.

With these motivations in mind, we propose an
Evidential Local-global Fusion (ELF) framework for stereo
matching to kill two birds with one stone (see Figure 2).
The framework enables both uncertainty estimation and re-
liable fusion by taking advantage of deep evidential learn-
ing [1, 30, 44]. Specifically, we employ trustworthy heads
in each branch of the model to compute the aleatoric and
epistemic uncertainties [8, 16] along with the disparity. To
integrate the multi-scale cost volume information and the
complementary information between convolution based and
transformer based approaches simultaneously, we propose
an intra evidential fusion module and an inter evidential fu-
sion module with a mixture of normal-inverse Gamma dis-
tributions (MoNIG) [7, 23]. As shown in Figure 1(b), the
proposed ELFNet attains a low disparity error in most re-
gions by leveraging respective strengths of the cost-volume-
based model [32] and the transformer-based model [19] ac-
cording to the evidence dynamically.

Our contributions can be summarized as follows:

1. We introduce deep evidential learning to both cost-
volume-based and transformer-based stereo matching
to estimate both aleatoric and epistemic uncertainties;

2. We propose a novel evidential local-global fusion
(ELF) framework, which enables both uncertainty esti-
mation and two-stage information fusion based on ev-
idence;

3. We conduct comprehensive experiments, which
demonstrate that the designed ELFNet consistently
boost the performance in terms of accuracy and cross-
domain generalization.

2. Related Works

2.1. Deep Stereo Matching

Cost-volume-based Deep Stereo Matching Methods.
Cost-volume-based deep stereo matching methods are
widely used and have achieved promising results. Disp-
NetC [25] is the first end-to-end trainable stereo match-
ing framework using the dot product of left and right
feature maps to form a 3D cost volume. Despite of a
computational-friendly way, the correlation operation can-
not capture enough knowledge to obtain a satisfactory re-
sult. Following GC-Net [17], many works [3, 5, 43] employ
3D hourglass convolutions to aggregate 4D cost volume
with the size of [height×width×disparity range×feature]
constructed by concatenating the features of stereo pairs,
which demands large memory and computational com-
plexity. Group-wise correlation is then proposed in Gwc-
Net [14] to construct a compact cost volume and facilitates
a better trade-off. ACVNet [39] proposes to build attention-
aware cost volume to suppress redundant information and
further alleviate the burden of cost aggregation.

To reduce the high computational cost and leverage
more semantic and robust information, multi-scale cost vol-
ume is introduced to stereo matching. HSMNet [41] con-
structs a pyramid of volumes to process high-res stereo im-
ages. AANet [40] is a lightweight framework with a fea-
ture pyramid and multi-scale correlation volume interac-
tion. CFNet [31] constructs cascade pyramid cost volume
to narrow down the disparity search range and refine the
disparity map in a coarse-to-fine manner. Most recently,
PCWNet [32] proposes a volume fusion module to directly
combine multi-scale 4D volumes and calculate a multi-level
loss to accelerate the convergence of the model.

Transformer-based Deep Stereo Matching Methods.
With the support of attention mechanisms, transformer-
based deep stereo matching methods have become another
line of stereo matching research. STTR [19] matches pixels
from a sequence-to-sequence matching perspective to im-
pose a uniqueness constraint and avoid the construction of
fixed disparity cost volume. CSTR [13] employs a plug-
in module, Context Enhanced Path, to help better integrate
global information and deal with hazardous regions, such as
texturelessness, specularity, or transparency.

Generally, transformer-based methods excel at modeling
long-range global knowledge, but do not perform well in
regions with local texture details. This encourages us to im-
prove the overall performance by fusing transformer-based
and cost-volume-based methods to capture complementary
information. In this paper, we use PCWNet [32] and
STTR [19] as examples for fusion, but other cost-volume-
based and transformer-based approaches can be used as
well.
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Figure 2. Illustration of the proposed evidential local-global fusion (ELF) for stereo matching. The model architecture comprises three
parts: the cost-volume-based module with intra evidential fusion(yellow block), the transformer-based module(blue block), and the inter
evidential fusion module(green block). The framework leverages evidential estimation to accomplish two-stage fusion and generate both
aleatoric and epistemic uncertainty maps along with disparity.

2.2. Uncertainty Estimation

As deep learning techniques are increasingly applied
in safety-sensitive real-world scenarios, the measurement
of confidence thus becomes vital for distinguishing the
doubtful predictions and aiding in decision making [11].
Bayesian neural networks [16] enable deep models with un-
certainty by substituting the deterministic weight parame-
ters with distributions. However, the computational expense
of optimization is unaffordable with such a huge amount
of parameters. Monte Carlo dropout (MC Dropout) [10] is
the most well-known method to tackle the problem, which
formulates dropout as Bernoulli distributed random vari-
ables to approximate the training process as variational in-
ference. Deep ensemble methods [6, 18, 37] predict the
overall result based on multiple models with different ar-
chitectures and have gained popularity in modeling uncer-
tainty in the past several years. Several methods are in-
troduced to help ensemble methods become more practi-
cal, such as pruning [2] and distillation [20]. Determinis-
tic neural network [21, 28, 34] is a more efficient estima-
tion approach, which directly computes the uncertainty of
prediction distributions based on one single forward pass.
For instance, evidential deep learning [30] and prior net-
works [24] place Dirichlet priors over discrete classifica-
tion predictions. Deep evidential regression [1] proposes to
extend [30] to regression tasks to estimate the parameters
of the normal inverse gamma distribution over an underly-
ing Normal distribution, which ensures explicit representa-
tion of epistemic and aleatoric uncertainties. Considering
a multi modalities setting, Ma et al. [23] uses a mixture of
the normal inverse gamma distribution (MoNIG) to allow a
trustworthy regression which characterizes both modality-
specific and integrated uncertainties.

Several works seek to incorporate uncertainty estimation

into stereo tasks. UCSNet [4] proposes calculating adap-
tive thin volume with an uncertainty-aware cascaded de-
sign in a multi-view stereo setting. Inspired by UCSNet,
CFNet [31] employs uncertainty estimation to adjust the
disparity search range adaptively. In contrast to the previous
methods using variance-based uncertainty, Wang et al. [35]
first applies deep evidential learning to predict uncertain-
ties of disparity map in stereo matching. In this paper, we
further extend deep evidential learning to fully utilize the
multi-level knowledge in stereo matching task with both in-
tra and inter evidential fusion strategies.

3. Method
This section explains the proposed Evidential Local-

global Fusion (ELF) framework based on uncertainty es-
timation for stereo matching. As illustrated in Fig-
ure 2, our network architecture is divided into three
parts: the cost-volume-based module with intra eviden-
tial fusion, the transformer-based module, and the in-
ter evidential fusion module. Given a stereo pair, pyra-
mid combination network with intra evidential fusion
and trustworthy stereo transformer respectively predict the
distribution parameters {δlocal, γlocal, αlocal, βlocal} and
{δglobal, γglobal, αglobal, βglobal}. Then, disparity, aleatoric
uncertainty and epistemic uncertainty are deduced from the
syncretic {δ, γ, α, β}, which are obtained by inter eviden-
tial fusion module based on the multi-view mixture of the
normal-inverse gamma distribution.

3.1. Evidential Deep Learning for Stereo Matching

3.1.1 Background and Uncertainty Loss

Stereo matching strives to estimate the disparity between
the given stereo pair for each pixel. From the viewpoint
of evidential learning, every disparity d is drawn from a
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normal distribution, but with unknown mean and variance
(µ, σ2). To model the distribution, µ and σ2 are assumed
to be drawn from normal and inverse-gamma distributions
respectively:

d ∼ N (µ, σ2), µ ∼ N (δ, σ2γ−1), σ2 ∼ Γ−1(α, β), (1)

where Γ(·) denotes the gamma function, δ ∈ R, γ > 0,
α > 1, β > 0.

With the assumption that the mean and the variance
are independent, the posterior distribution q(µ, σ2) =
p(µ, σ2|d1, ..., dN ) can be formulated as a normal-inverse
gamma distribution NIG(δ, γ, α, β). Amini et al. [1] then
define the total evidence Φ = 2γ + α to measure the con-
fidence of the predictions. The disparity d, aleatoric uncer-
tainty al and epistemic uncertainty ep can be derived as

d = E(µ) = σ, al = E(σ2) =
β

α− 1
,

ep = Var(µ) =
β

γ(α− 1)
,

(2)

During training, the loss function LN can be defined as the
negative logarithm of model evidence,

LN (w) =
1

2
log(

π

γ
)− α log(Ω)+

(α+
1

2
) log((y − δ)2γ +Ω) + log

(
Γ(α)

Γ(α+ 1
2 )

)
,

(3)

where Ω = 2β(1 + γ), w denotes the set of the estimated
distribution parameters.

To reduce the evidence where prediction is incorrect, a
regularization term is introduced,

LR(w) = |dgt − E(µi)| · Φ = |dgt − δ| · (2γ + α), (4)

where dgt is the ground truth disparity map.
To extend deep evidential learning to the dense stereo

matching task, the total uncertainty loss LU can be defined
as the expectation over all the pixels,

LU (w) =
1

N

N−1∑
0

(
LN
i (w) + τLR

i (w)
)
, (5)

where τ > 0 controls the degree of regularization, N de-
notes the total number of pixels.

3.1.2 Uncertainty Estimation in Stereo Matching

Uncertainty estimation in cost-volume-based stereo
matching. Cost-volume-based stereo matching networks
have five typical main modules in detail: shared-weights
feature extraction, cost volume construction, 3D cost ag-
gregation, disparity regression, and disparity refinement.

Figure 3. Overview of the trustworthy regression in cost-volume-
based stereo matching(top) and uncertainty head in transformer-
based stereo matching(bottom). Uncertainty head only predicts γ,
α, and β, whereas δ is generated by optimal transport module.

To estimate the parameters of NIG distribution rather than
merely predicting the disparity map, we substitute the dis-
parity regression module into a trustworthy regression with
multi-channel output and keep the remaining modules un-
changed. Shown in Figure 3 (top), considering the com-
putational complexity of 3D convolution operation, the
proposed trustworthy regression module employs a single
branch of two 3D convolutions with Mish activation [27]
and the up-sample method to output a 4-channel volume
Voutput ∈ RDmax×H×W×4, where H and W are the height
and width of the input stereo pairs, and Dmax is the max
value of disparity candidates. The distribution parameters
can be computed as follows:

Vδ, Vγ , Vα, Vβ = Split(Vout, dim = −1), (6)
p = Softmax(Vδ), (7)

δ =

D∑
k=0

k · pk, logiti =
D∑

k=0

Vi · pk, (8)

where k denotes disparity level, p denotes probability, and
i ∈ {γ, α, β}. Then a Softplus activation is applied on
logitsi to generate γ, α, β.

Uncertainty estimation in transformer-based stereo
matching. Transformer-based stereo matching networks
take advantage of cross- and self-attention mechanisms to
predict the expectation of disparity δ and occlusion proba-
bility pocc without fixed-disparity cost volume and 3D con-
volutions. The Stereo Transformer outputs the attention
weights wattn, then the optimal transport module regresses
the disparity and calculates occlusion probability based on
the cost matrix, which is set as −wattn. On top of this, we
add an uncertainty head consisting of two 2D convolution
blocks and Softplus activation(shown in Figure 3 (bottom))
to generate the parameters γ, α, β from the concatenation of
left and right context-aware features converted by the Stereo
Transformer. To obtain better-calibrated results, we utilize
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the context adjustment layer in accordance with STTR [19]
to refine the parameter δ and the occlusion probability pocc.

3.2. Fusion Strategy based on Evidence

We adopt the fusion strategy with the mixture of normal-
inverse gamma distribution (MoNIG) [23] for its excellent
mathematical properties to perform both intra evidential fu-
sion and inter evidential fusion. Specifically, given M sets
of parameters of NIG distributions, the MoNIG distribution
can be computed with the following operations:

MoNIG(δ, γ, α, β) =NIG(δ1, γ1, α1, β1)⊕
NIG(δ2, γ2, α2, β2)⊕ · · · ⊕ NIG(δM , γM , αM , βM ),

(9)

where ⊕ represents the summation operation of two NIG
distributions, which is defined as

NIG(δ, γ, α, β) ≜ NIG(δ1, γ1, α1, β1)⊕ NIG(δ2, γ2, α2, β2),

where

δ = (γ1 + γ2)
−1(γ1δ1 + γ2δ2),

γ = γ1 + γ2, α = α1 + α2 +
1

2
,

β = β1 + β2 +
1

2
γ1(δ1 − δ)2 +

1

2
γ2(δ2 − δ)2.

(10)

The parameter δ of the combined distribution is the summa-
tion of δ1 and δ2 weighted by γ, which measures the confi-
dence level of the expectation. The final β is defined as not
only the sum of β1 and β2, but also the variance between the
combined distribution and each individual distribution, as it
provides insight into aleatoric and epistemic uncertainties
simultaneously.

3.2.1 Intra Evidential Fusion of Cost-volume-based
Stereo Matching

Multi-scale cost volume has been frequently used in stereo
matching tasks to exploit the features from different layers
of the extractor. We construct three levels of the group-wise
correlation volumes with 1

16 , 1
8 , 1

4 scaled features and em-
ploy the cost volume fusion module [32] to early combine
the knowledge from multi-scale receptive field. These fea-
ture maps contain coarse-to-fine semantic information such
as textures, boundaries, and regions. Then we apply three
branches of 3D cost aggregation and trustworthy regres-
sion module to generate parameters of NIG distributions
(δi, γi, αi, βi), where i ∈ {1, 2, 3}. Intra evidential fusion
module integrates three NIG distributions into one distribu-
tion as the final pyramid combined result

MoNIG(δlocal, γlocal, αlocal, βlocal) =

NIG(δ1, γ1, α1, β1)⊕ · · · ⊕ NIG(δ3,γ3, α3, β3).
(11)

The uncertainty-aware fusion strategy equips our frame-
work with the ability to integrate reliable outputs from
multi-scale features.

3.2.2 Inter Evidential Fusion between Cost-volume-
based and Transformer-based Stereo Matching

The intrinsic inductive bias of locality of convolutions
makes cost-volume-based stereo matching models easy to
model local features, whereas the transformer-based mod-
els capitalize on the long-range dependencies of attention
mechanism to capture global information. The different
foci of the two methods lead to the difference in strengths
and weaknesses for predicting disparities and are likely to
complement one another in some instances. The inter evi-
dential fusion with MoNIG distribution provides an elegant
and computationally efficient mechanism to merge two pre-
dictions into one. We apply the fusion strategy based on
uncertainty to obtain the final distribution

MoNIG(δ,γ, α, β) = MoNIG(δlocal, γlocal, αlocal, βlocal)

⊕NIG(δglobal, γglobal, αglobal, βglobal).

(12)

3.3. Loss

We compute the uncertainty losses on local outputs,
global outputs and final combined outputs, denoted as
LU (wlocal), LU (wglobal) and LU (w), respectively. In the
transformer-based stereo matching module, we obtain the
attention weights and occlusion probability pocc as well.
Besides the uncertainty loss, we adopt the same loss func-
tions as STTR [19], relative response loss LRR(wattn)
to maximize the attention on the true target location and
binary-entropy loss LBE(pocc) to supervise occlusion map.
The overall loss function is described as

L = LU (wlocal) + λ1LU (wglobal)

+λ2LU (w) + λ3LRR(wattn) + λ4LBE(pocc),
(13)

where λi, i = 1, 2, 3, 4 control the loss weights.

4. Experiments

In this section, we evaluate the proposed ELFNet on var-
ious datasets including Scene Flow [25], KITTI 2012 &
KITTI 2015 [12, 26] and Middlebury 2014 [29]. Addition-
ally, we conduct uncertainty analyses to explore the rela-
tionship between model performance and uncertainties.

4.1. Datasets and Evaluation Metrics

Scene Flow FlyingThings3D subset [25] is a large-
scale synthetic dataset of random objects. The subset pro-
vides about 25,000 stereo frames with the resolution of
960×540 and corresponding sub-pixel ground truth dispar-
ity maps and occlusion regions.

KITTI 2012 & KITTI 2015 [12, 26] are collected from
the real-life driving scenario. KITTI 2012 provides 194
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Table 1. Ablation study on Scene Flow [25].
Components Scene Flow

STTR [19] Uncertainty
Inter Evidential

Fusion
Intra Evidential

Fusion EPE(px)↓ D1-1px(%)↓

✓ 0.42 1.37
✓ ✓ 0.41 1.31
✓ ✓ ✓ 0.38 1.32
✓ ✓ ✓ ✓ 0.33 1.28

training and 195 testing images pairs, and KITTI 2015 pro-
vides 200 training and 200 testing image pairs. The res-
olution of KITTI 2012 and KITTI 2015 stereo pairs are
1226×370 and 1242×375. Both datasets provide sparse
disparity maps.

Middlebury 2014 [29] is an indoor dataset with 15 train-
ing image pairs and 15 testing image pairs. It contains high
resolution stereo pairs in three different resolutions, and we
select the quarter-resolution ones.

Evaluation metrics. We use end point error (EPE), per-
centage of disparity outliers by 1px or 3px (D1-1px / D1-
3px) and percentage of errors larger than 3px (3px Err) as
evaluation metrics for disparity prediction.

4.2. Implementation Details

Our ELF framework is inherently compatible with all
transformer-based and multi-scale cost-volume-based mod-
els. For our experiments, we set STTR [19] as the
transformer-based part and PCWNet [32] as the cost-
volume-based part for its good balance between accuracy
and generalization. We train the model in an end-to-end
manner using AdamW optimizer with a weight decay of 1e-
4. We pre-train on Scene Flow FlyingThings3D subset [25]
for 16 epochs with the initial learning rate of 2e-4 for the
transformer-based part and 2e-3 for the cost-volume-based
part. After epochs 4, 8, 10, and 12, we decrease the learn-
ing rate by a factor of 2. We use 6 self- and cross-attention
layers with 4 heads for the transformer-based part and set
the maximum disparity D = 192 for the cost-volume-
based part. The regularization weight in the uncertainty loss
τ = 0.5. The weights of four outputs are set as λ1 = 1.0,
λ2 = 2.0, λ3 = 1.0, λ4 = 1.0 empirically. We apply
data augmentations to stimulate real-world scenarios dur-
ing training, including Gaussian noise, brightness/contrast
shift, and random size cropping. All the experiments are
conducted on a NVIDIA RTX 3090 GPU.

4.3. Comparison with State-of-the-art

To evaluate the effectiveness of the proposed approach,
we compare it to several state-of-the-art methods, includ-
ing PSMNet [3], GwcNet [14], CFNet [31], PCWNet [32],
GANet [43], STTR [19] and CSTR [13]. Table 2 presents a
comparison of our method with the previous state-of-the-art
methods on Scene Flow [25]. Our proposed method outper-

Table 2. Comparison with state-of-the-art on Scene Flow [25].
Disparity <192 All Pixels

EPE(px)↓ D1-1px(%)↓ EPE(px)↓ D1-1px(%)↓
PSMNet [3] 0.95 2.71 1.25 3.25
GwcNet [14] 0.76 3.75 3.44 4.65
CFNet [31] 0.70 3.69 1.18 4.26
PCWNet [32] 0.85 1.94 0.97 2.48
GANet [43] 0.48 4.02 0.97 4.89
STTR [19] 0.42 1.37 0.45 1.38
CSTR [13] 0.41 1.41 0.45 1.39
ELFNet(Ours) 0.33 1.28 0.40 1.39

forms all other methods in both EPE and D1-1px metrics
with different settings. Notably, our approach demonstrates
an improvement of 19.5% (0.33 v.s. 0.41) in EPE and 9.2%
(1.28 v.s. 1.41) in D1-1px compared to the best performing
method, CSTR [13], in the Disparity < 192 setting.

In the All Pixels setting, our approach demonstrates a
reduced EPE over the current state-of-the-art method by
11.2% from 0.45 to 0.40. Overall, our ELFNet outper-
forms the cost-volume-based and transformer-based models
in disparity estimation accuracy by leveraging their advan-
tages in a trustworthy manner. Meanwhile, it also maintains
occlusion estimation from transformer. It achieves compa-
rable occlusion estimation with occlusion intersection over
union score 0.98 compared with 0.97 by STTR [19].

4.4. Ablation Studies

To verify the effects of modules in our framework, we
provide quantitative results in Table 1. The proposed ELF
framework has three main designs, including uncertainty
estimation, inter evidential fusion, and intra evidential fu-
sion. Uncertainty estimation enables the model to pre-
dict the epistemic and aleatoric uncertainties respectively;
the inter evidential fusion combines the information of the
transformer-based and the cost-volume based models; and
the intra evidential fusion leverages different levels of local
knowledge inside the cost-volume-based model.

The ablation study indicates that all three designs are
indispensable, and the evidential fusion parts play a cru-
cial role in boosting performance. To be specific, on Scene
Flow [25], we observe that STTR [19] with uncertainty es-
timation module shows a comparable EPE score (0.42 v.s.
0.41) compared with the baseline. When employing the in-
ter evidential fusion module, the model achieves a 0.03 im-
provement in terms of the EPE. With the additional intra
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Table 3. Cross-domain evaluation without fine-tuning on Middleburry 2014 [29], KITTI 2012 [12] and KITTI 2015 [26].
Middlebury 2014 KITTI 2012 KITTI 2015

EPE(px)↓ 3px Err(%)↓ EPE(px)↓ D1-3px(%)↓ EPE(px)↓ D1-3px(%)↓
PSMNet [3] 3.05 13.0 3.46 25.9 6.59 16.3
GwcNet [14] 1.89 8.95 1.68 11.7 2.21 12.2
CFNet [31] 1.69 7.73 0.96 4.74 2.27 5.76
PCWNet [32] 2.17 9.09 1.32 5.37 1.88 6.03
STTR [19] 2.33 6.19 1.82 6.96 1.50 6.40
ELFNet (Ours) 1.79 5.72 1.18 4.74 1.57 5.82

(a) Aleatoric uncertainty curve (b) Epistemic uncertainty curve (c) Scene Flow [25] (d) KITTI 2015 [26]

Figure 4. Uncertainty analysis. (a) and (b) are the training curve of two uncertainties on the Scene Flow [25]; (c) and (d) are the heat maps
of the Pearson correlation analysis between the EPE and the uncertainties.

evidential fusion module of the cost-volume-based part, the
EPE of the model boosts by a remarkable 0.05. Overall,
the EPE is reduced by 21.4% (0.42 v.s. 0.33) with our ELF
framework on Scene Flow [25]. ELFNet also outperforms
the baseline by 6.6% (1.28 v.s. 1.37) for the D1-1px metric.

4.5. Fusion Strategies Comparison

Table 4. Fusion strategy comparison on Scene Flow [25]. Avg.:
take the average of the separate estimation as the final disparity
map. Conv.: add a 2D convolution layer as the late fusion module,
and finetune for 5 epochs with the former parts frozen.

EPE(px)↓ D1-1px(%)↓
PCWNet [32] 0.85 1.94
STTR [19] 0.42 1.37
Avg. 0.65 1.75
Conv. 0.42 1.38
ELFNet(Ours) 0.33 1.28

The proposed ELF framework can be viewed as a pow-
erful late fusion strategy. To further verify the fusion per-
formance, we compare other late fusion strategies with our
ELFNet. In Table 4, we observe that simply computing the
average of the output disparity maps or employing the con-
volution layer as a late fusion cannot achieve satisfactory
results and may perform worse than STTR [19]. In con-
trast, ELFNet combines the cost-volume-based model and
transformer-based model effectively with improved results.

4.6. Cross-domain Generalization

We conduct experiments to prove that our pre-trained
model on the synthetic Scene Flow dataset [25] can achieve

strong cross-domain generalization in the zero-shot setting.
As shown in Table 3, our proposed ELFNet presents com-
parable generalization ability with the existing state-of-art
models on the real-world datasets. Specially, compared
with PCWNet [32] baseline, ELFNet brings a 17.5% EPE
score (1.79 v.s. 2.17) and a 37.1% 3px Err score (5.72 v.s.
9.09) improvement on Middlebury 2014 [29], and a 10.6%
EPE score (1.18 v.s. 1.32) and 11.7% D1-3px score (4.74
v.s. 5.37) improvement on KITTI 2012 [12]. On the KITTI
2015 [26], our ELFNet also achieves overall competitive
generalization results. ELFNet improves 9.1% on the D1-
3px metric (5.82 v.s. 6.40) compared with STTR [19].

4.7. Uncertainty Analysis

Uncertainty estimation with deep evidential learning
provides both aleatoric and epistemic uncertainties [16] of
the predictions. The aleatoric uncertainty reflects the extent
to which disparity value differs from ground truth, which is
related to data noise and cannot be reduced by optimization,
while epistemic uncertainty represents the degree of disper-
sion of disparity values, which is related to model capacity.

Figure 4 shows several results of uncertainty analysis.
As presented in Figure 4(a) and 4(b), both aleatoric and
epistemic uncertainties present a general decline during
training, which shows that the model assigns lower un-
certainties as learning more from the data. Based on the
ELFNet pretrained on the Scene Flow [25] dataset, we con-
duct the Pearson correlation analysis between the EPE met-
ric and two uncertainties tested on the Scene Flow [25]
and KITTI 2015 [26] separately to shed light on the uncer-
tainty estimation mechanism. The correlation heat maps are
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Figure 5. Visualization on Scene Flow of the proposed ELFNet. (a) The left image. (b) The estimated disparity map. (c) The error map.
(d) The epistemic uncertainty map. (e) The aleatoric uncertainty map.

shown in Figure 4(c) and 4(d). We have two main observa-
tions. Firstly, the correlation value is consistently positive,
which indicates that uncertainties can serve as an indica-
tor of accuracy during inference. Secondly, the correlation
value between EPE and aleatoric uncertainty on the Scene
Flow [25] dataset is higher than the corresponding value
(0.76 v.s. 0.47) on the KITTI 2015 [26] dataset, while the
correlation value between EPE and epistemic uncertainty is
lower (0.28 v.s. 0.65). It can be inferred that when deal-
ing with out-of-domain samples, the disparity error is more
closely related to epistemic uncertainty. In contrast, if the
model has been trained on similar data distributions, the er-
ror is more likely to be influenced by aleatoric uncertainty.
It is worth noting that the behaviour of estimated uncertain-
ties is still influenced by various other factors, including
the model architecture, the training strategy, the intensity
of data noise, and more.

We provide the qualitative results on Scene Flow [25]
in Figure 5. Although there is no ground truth for uncer-
tainties, we observe that high uncertainties are assigned in
the occluded and boundary regions. Compared with the er-
ror maps, the uncertainty maps are also active in the areas
where the error occurs, such as the wheel hub of a bicy-
cle, which suggests that uncertainty maps provide clues for
estimation offset.

4.8. Limitations

Although ELFNet enables uncertainty estimation and
brings notable improvement, the inference speed poses a
main limitation. Our framework requires more time since
it involves two individual parts. We will consider applying
efficient methods in the further work, such as constructing
adaptive and sparse cost-volumes [9, 22, 33, 36].

5. Conclusion

In this paper, we have proposed an Evidential Local-
global Fusion (ELF) framework to fuse multi-view infor-
mation for stereo matching reliably. We leverage deep ev-
idential learning to estimate multi-level aleatoric and epis-
temic uncertainties alongside the disparity maps, which fur-
ther allows a trustworthy fusion strategy based on evidence
to exploit complementary knowledge. Experimental results
show that our model performs well on both accuracy and
generalization across different datasets.
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