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Abstract

Video Tagging intends to infer multiple tags spanning
relevant content for a given video. Typically, video tags
are freely defined and uploaded by a variety of users, so
they have two characteristics: abundant in quantity and
disordered intra-video. It is difficult for the existing multi-
label classification and generation methods to adapt di-
rectly to this task. This paper proposes a novel gener-
ative model, Order-Prompted Tag Sequence Generation
(OP-TSG), according to the above characteristics. It re-
gards video tagging as a tag sequence generation problem
guided by sample-dependent order prompts. These prompts
are semantically aligned with tags and enable to decouple
tag generation order, making the model focus on modeling
the tag dependencies. Moreover, the word-based generation
strategy enables the model to generate novel tags. To verify
the effectiveness and generalization of the proposed method,
a Chinese video tagging benchmark CREATE-tagging, and
an English image tagging benchmark Pexel-tagging are es-
tablished. Extensive results show that OP-TSG is signifi-
cantly superior to other methods, especially the results on
rare tags improve by 3.3% and 3% over SOTA methods on
CREATE-tagging and Pexel-tagging, and novel tags gener-
ated on CREATE-tagging exhibit a tag gain of 7.04%.

1. Introduction
Video tags are a series of discrete descriptive text in a

free form, usually freely defined and uploaded by video
platform users, to represent the specific content of the video.
Short video platforms have a large number of videos with no
tags or low-quality tags. Exploring automatic video tagging
technology can effectively serve practical industrial require-
ments such as video recommendation, retrieval, and content
review, and significantly reduce labor costs.

* Equal contribution. † Corresponding author.
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Figure 1. Comparison of video categories, tags, and captions.
Video tags are more abundant in quantity than categories and are
intra-video disordered compared to video captions.

Video tags have the nature of being abundant in quantity
and disordered intra-video compared with video categories
(labels)1 and video captions, respectively, as shown in Fig-
ure 1. Compared to the fixed number of video categories
strictly defined by experts, the abundance of user-defined
video tags is primarily reflected in the following two as-
pects: (1) Multiple perspectives for the same video, such as
entities, attributes, scenes, or styles; (2) Distinct granular-
ities for the same content, such as separate words or more
expressive phrases. As a result, large collections of tags can
easily reach tens of thousands or even hundreds of thou-
sands of magnitude in a large-scale scenario, presenting an
extreme long-tail distribution. Compared to video captions

1Note that video categories and labels are generally represented in the
form of indexes, and the number is fixed and small. This paper does not
distinguish between them.
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that consider grammatical correctness and fluency, multiple
video tags have no fixed order within the same video, al-
though they are correlated with each other.

The above characteristics of video tags make it diffi-
cult to directly apply current video multi-label classification
models [4, 37, 6, 20] and generation models [24, 10, 34] to
video tagging task. On the one hand, multi-label classifi-
cation methods face a serious long-tail problem and also
need to construct a classification head consistent with the
pre-defined tag set, which will introduce a large number
of parameters and cannot be replicated when the tag set
changes. On the other hand, although the autoregressive-
based generation methods can avoid bloated classification
heads through word-by-word generation, the feature of tag
disorder will plague the decoder of sequential generation
and thus reduce the generation quality. Specifically: (1)
Rule-based tag orders (e.g., frequency-first) are subopti-
mal; (2) Randomly ordering tags at each sampling without
prompts puts the model in the dilemma of the same vision
input with different tag sequences.

To this end, we propose a novel generative model, OP-
TSG, which regards video tagging as a sequence generation
problem guided by prompts and equips with a word-based
generation strategy. OP-TSG includes a Video-Title Mul-
timodal Hybrid Encoding module and an Order-prompted
Tag Sequence Decoding module. Specifically, the encod-
ing module integrates visual and textual multimodal infor-
mation into a unified video representation. The decoding
module consists of two components: the prompt encoder
and the order-aware tag decoder. The prompt encoder takes
a fixed number of learnable quires as input and interacts
with the video representation to generate a series of sample-
dependent order prompts. These order prompts are then as-
sociated with multiple annotated tags through the similarity
measure function to form a similarity matrix. The Hungar-
ian algorithm is introduced to acquire the bipartite matching
between prompts and tags. In other words, the meaningful
prompt is assigned to a specific tag, whereas the meaning-
less prompt is assigned to a pre-defined [PAD] tag. Since
each prompt gets a unique assigned tag, we feed prompts
into the order-aware tag decoder whose generation target is
a sentence composed of corresponding tags.

Our model has several advantages: (1) Improved tag de-
pendency modeling: we decouple the tag generation order
by introducing order prompts as a guide, i.e. the generation
order of tags depends on the input order of prompts, making
the model focus on modeling the tag dependencies and thus
alleviating the long tail problem; (2) Allowing the genera-
tion of novel tags: the model can infer novel tags by using
the word-based generative model and pre-training; (3) Easy
to extend: there is no need to pre-define a fixed number of
tag sets and no need to modify the model for end-to-end
training on new data.

We newly establish two benchmarks2: the Chinese
video tagging benchmark CREATE-tagging and the En-
glish image tagging benchmark Pexel-tagging, to validate
both the effectiveness and generalization of the proposed
method. CREATE-tagging is comprised of CREATE-210K
and CREATE-3M, which contain about 210K and 3M
videos respectively. The larger dataset is used to validate the
extensibility in pre-training mode. The Pexel-tagging con-
tains 162k images, which is used to verify the generaliza-
tion of the model in different languages and visual modali-
ties. Videos/Images and titles are provided for each sample.
The tags are separated into common high-frequency tags
and rare low-frequency tags, followed by the introduction of
label-based and example-based metrics to comprehensively
evaluate the model’s performance at the tag and video lev-
els, respectively. In addition, we define a novel metric, tag
gain, to quantify the model’s ability to generate novel tags.

The contributions of this work are listed as follows:
(1) Based on the practical application scenario, we ana-

lyze the characteristics of the video tagging task and
explain the differences with the traditional multi-label
classification and video captioning tasks.

(2) We propose the order-prompted tag sequence genera-
tion approach to finish the video tagging task, which
improves the modeling of tag relationships and allows
the generation of novel tags.

(3) We develop two benchmarks for evaluation, i.e.,
CREATE-tagging and Pexel-tagging. The results
of both benchmarks demonstrate that the proposed
method is significantly superior to the others.

2. Related Work
Multi-label Classification. Mainstream multi-label classi-
fication methods require pre-defined categories, such as ob-
jects and actions, encoding input information through var-
ious backbone networks, such as CNN [27], GCN [4, 5,
29, 26, 30, 28] and Transformer encoder [36, 11, 37, 6],
and then reasoning multiple categories simultaneously via
a multi-classification head or multiple binary classification
heads. In addition, a number of works [13, 20] are de-
voted to the investigation of novel loss functions to alleviate
the problem of imbalanced positive and negative labels for
each sample. These works mainly focus on the categories of
video content. However, in the actual short video platform,
the number of video tags far exceeds the number of video
categories, making it difficult to generalize the multi-label
classification methods to the task of video tagging.
Multi-label Sequence Generation. Some works model
the multi-label classification task into a multi-label se-
quence generation problem and employ encoder-decoder

2https://drive.google.com/drive/folders/
1gA4j9j0kWD99AIMGvpeaOK0M2xQCZHNo
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Figure 2. Overview of the proposed OP-TSG for video tagging. It consists of two major components: video-title multimodal hybrid
encoding and order-prompted tag sequence decoding. Video-title multimodal hybrid encoding takes both video and title as input, which
first independently encodes each modality and then performs video-title fusion. Order-prompted tag sequence decoding utilizes multimodal
embeddings to produce sample-dependent order prompts, and further construct ordered tag sequence under the guidance of order prompts.
OP-TSG uses a word rather than a tag as the basic generation unit.

approaches [22, 8, 31, 35, 34] to solve it. CNN-RNN [24]
first explores the use of CNN and LSTM to generate a la-
bel sequence, which is sorted in descending order according
to the occurrences of labels. Jin et al. [10] use the frequent-
first and rare-first strategies to connect labels. Liu et al. [14]
design a semantically regularised embedding layer as the in-
terface between the CNN and RNN to enable efficient train-
ing. Order-Free [3] automatically provides a label connec-
tion order by the correlations between the visual areas and
the labels. These methods still take each label as the basic
unit of prediction, inevitably limiting the number of labels.
Instead, our method takes the word as the base unit, flexibly
predicting tags in the form of phrases and novel tags. More-
over, our order-prompt-based method is more effective than
the rule-based methods at tag order decoupling.
Learnable Queries for Decoding. DETR [2] accomplishes
object detection using encoder-decoder architecture for the
first time and introduces a series of learnable queries to re-
alize the decoding of the object sequence. The effective-
ness of DETR has led to its expansion into additional fields.
Moment-DETR [12] considers the queries as highlight mo-
ments in the video for language-based moment retrieval,
and PDVC [25] creates connections between queries and
events for dense video captioning. Inspired by prior re-
search, we refer to learnable queries as order prompts and
establish associations with tags to determine the generation
order of tags sequence.

3. Method

In this section, we will introduce the specific workflow of
the proposed OP-TSG: the Video-Title Multimodal Hybrid

Encoding in section 3.1, the Order-Prompted Tag Sequence
Decoding in 3.2, and the training and inference in 3.3.

3.1. Video-Title Multimodal Hybrid Encoding

We propose multimodal hybrid encoding to fully inte-
grate the multimodal information of the video. As illus-
trated in Figure 2, we first sample frames from the video
Vi before feeding each sampled frame into a frozen image
encoder to acquire the frame features F v

i . Since video tags
usually contain a large number of specific entity concepts,
such as the name of a celebrity or place, it is challenging to
effectively obtain these concepts using only visual informa-
tion. As a result, we choose to use the corresponding title
as input, as certain concepts can be reflected directly in it.
We use a pre-trained text encoder to encode the title and get
text features F t

i for each word.
The multimodal hybrid encoder ME(·, ·) is a multi-

layer transformer encoder. Each layer consists of a multi-
head self-attention head, a cross-attention head, and a
feed-forward network. The frame features and text fea-
tures are fused into multimodal hybrid features by Fi =
ME(F

t
i , F

v
i ), which treats the text features as queries and

frame features as keys and values. The multimodal hybrid
features will be used for both the encoding of order prompts
related to the video and the decoding of the tag sequence.

3.2. Order-Prompted Tag Sequence Decoding

Order-prompted tag sequence generation can be divided
into three steps: (1) Providing learnable sample-dependent
order prompts based on the interaction of initialized shared
queries with multimodal hybrid features; (2) Aligning or-
der prompts with multiple unordered tags and performing
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bipartite matching to assign order prompts to unique tags;
(3) Connecting the assigned tags to form the ordered tag se-
quence as a training target according to the order prompts.

3.2.1 Sample-dependent Order Prompts Encoding

The order-prompted tag sequence decoding begins with
producing sample-dependent order prompts for each video.
Learnable queries Q = {q(n)}Nn=1 are initialized and shared
between all the videos. The order prompts Pi = {p(n)i }Nn=1

for the video Vi are subsequently derived from the interac-
tion of queries and multimodal hybrid features:

Pi = Wp(PE(Q,Fi)), (1)

where the prompt encoder PE(·, ·) is a cross-attention mod-
ule composed of multi-layer transformers, which treats
learnable queries as queries and multimodal hybrid features
as keys and values; Wp(·) is a linear projection. The or-
der prompts are sample-dependent because they incorporate
the specific content of the video, unlike the common visual
prompts [38, 9] shared by all samples.

3.2.2 Alignment between Order Prompts and Tags

To make order prompts cover different semantic informa-
tion, we use bipartite matching to uniquely align the order
prompts to unordered video tags, as shown in the Prompt-
Tag Matching part of Figure 2.

Let us denote by Ei = {e(l)i }Li

l=1 = {LM(t
(l)
i )}Li

l=1 the
embeddings of the ground-truth tags {t(l)i )}Li

l=1 extracted
through a frozen pre-trained language model LM(·) for the
video Vi, and Pi = {p(n)i }Nn=1 the set of N order prompts.
Assuming N is larger than the number of tags Li in each
video, we consider Ei as a set of size N padded with the
embeddings of the pre-defined meaningless tag [PAD]. σ(·)
is an index mapping function from the set Pi to the set Ei,
i.e., l = σ(n). To find a bipartite matching between these
two sets, we search for a permutation of N elements of σ
with the lowest cost:

σ̂i = argmin
σ

∑
n

−Lmatch(p
(n)
i , e

(l))
i ), (2)

where Lmatch(p
(n)
i , e

(l)
i ) is a pair-wise matching cost

with cosine similarity between the order prompt p(n)i and
ground-truth tag embedding e

(l)
i . The optimal assignment is

computed efficiently with the Hungarian algorithm, follow-
ing prior work [2]. The final alignment result is l̂ = σ̂i(n),
and the corresponding tags are defined as:

Align(p
(n)
i ) =

{
t
(l̂)
i , if l̂ ∈ {l}Li

l=1

[PAD], otherwise
. (3)

To further improve the accuracy of matching scores, we
leverage contrastive learning by introducing InfoNCE loss

function [17] to pull the positive prompt-tag pairs and push
the negative pairs, which is defined as follows:

Li,l̂
t2p = −log

exp(e
(l̂)
i , p

(n)
i , τ)∑B

i′=1

∑N
n′=1 exp(e

(l̂)
i , p

(n′ )
i′ , τ)

,

Li,l̂
p2t = −log

exp(p
(n)
i , e

(l̂)
i , τ)∑B

i′=1

∑Li

l′=1
exp(p

(n)
i , e

(l′ )
i′ , τ)

,

(4)

where exp(x, y, τ) = ex
⊤y/τ , τ is a learnable temperature

hyper-parameter, and B is the batch size. Note that only
prompts associated with meaningful tags will be considered
as valid positive pairs, i.e. l̂ = σ̂i(n) ∈ {l}Li

l=1. The total
loss for prompt-tag contrastive learning is defined as:

Lcl =

∑B
i=1

∑Li

l̂=1
(Li,l̂

t2p + Li,l̂
p2t)/2∑B

i=1

∑Li

l̂=1

. (5)

3.2.3 Ordered Tag Sequence Generation

After getting the alignment result of order prompts and tags,
we rearrange the order of the ground-truth tags in the order
of order prompts and combine them into a target sequence
containing tags separated by commas:

Ts = “Align(p
(1)
i ),Align(p

(2)
i ), · · · ,Align(p

(N)
i )”. (6)

Let’s take Figure 2 as an example, the target sequence
after alignment is “[PAD], t(1)i , [PAD], t(3)i , t(4)i , t(2)i ”. To
improve the modeling of tag relationships, we randomly
shuffle the order of input order prompts, and tag connec-
tion order of the target tag sequence is changed accord-
ingly, thus obtaining sequences with different tag combi-
nation patterns.

We build the order-aware tag decoder TD(·, ·, ·) based
on a multi-layer transformer decoder to generate the tag
sequence Ts word-by-word, conditioned on order prompts
Pi and multimodal hybrid features Fi to achieve order-
prompted tag sequence generation. The probability of pre-
dicting the word yt can be expressed as follows:

pθ(yt|y<t, Fi, Pi) = Softmax (TD(y<t, Fi, Pi)) . (7)

The cross-entropy loss function is utilized for model
training. Since there are numerous [PAD] tags in the tag
sequence, using a common cross-entropy loss will cause
the model to seek a shortcut, i.e. the model can converge
quickly by simply focusing on these tags. To resolve this is-
sue, we assign lower weights to [PAD] and higher weights
to other words:

Γ(yt) =

{
λ, if yt = [PAD]

1, otherwise
, (8)

where λ ∈ [0, 1]. The modified tags sequence generation
loss is defined as follows:
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Lgen = −
B∑
i=1

|Ts|∑
t=1

Γ(yt) · logpθ(yt|y<t, Fi, Pi), (9)

where |Ts| is the number of words in the sequence rather
than the number of tags.

3.3. Training and Inference

We train the entire model end-to-end by jointly optimiz-
ing the prompt-tag contrastive loss Lcl and tag sequence
generation loss Lgen, achieving the goal of injecting se-
mantics into the order prompts and generating an ordered
tags sequence based on the order prompts. The total loss is
formulated as follows:

L = Lcl + Lgen. (10)

The model outputs a tag sequence with [PAD] tags in the
inference phase. We perform post-processing by splitting
the tag sequence through the separator “,” and removing the
meaningless [PAD] tags. The remaining multiple tags are
the final inference results. Note that prompt-tag matching is
only used during training to learn the semantic alignment of
prompts and tags, and will be discarded during inference.

4. Benchmarks and Experimental Results
4.1. Datasets

We experiment on two newly established benchmarks,
i.e., the Chinese video tagging benchmark CREATE-
tagging and the English image tagging benchmark Pexel-
tagging, to validate the effectiveness and generalization of
the proposed model on different visual and linguistic forms.

CREATE-tagging is based on the CREATE dataset
[33], including the high-quality annotated CREATE-210K
dataset with 210K videos for training and 5k videos for
evaluation, and large-scale weakly-annotated CREATE-3M
dataset with 3M videos for pre-training. The numbers of
unique tags in CREATE-210K and CREATE-3M are 18464
and 57297, respectively. The 2795 tags that co-occur in the
training and test set of CREATE-210K are split into 705
common high-frequency tags and 2090 rare low-frequency
tags for evaluation, according to the split criterion being that
the sum of common tag occurrences accounts for 90% of all
tags. Pexel-tagging is based on the newly collected dataset
Pexel, which includes 162k images for training and 5k im-
ages for evaluation. There are 28094 unique tags in Pexel,
and 5669 tags appear in both training and test sets. Using
the similar split criterion as CREATE-tagging, we obtain
1627 common tags and 4042 rare tags. Additional infor-
mation regarding the two benchmarks can be found in the
supplementary materials.

4.2. Evaluation Metrics

For tags within the tag set, we introduce the traditional
label-based macro metrics [21] and example-based metrics

[32] to evaluate the Precision, Recall, and F1 score on the
tag and video levels, respectively.

For tags outside the tag set, a novel metric called tag
gain is defined to quantitatively evaluate the model’s ability
to generate meaningful novel tags. Tags that are relevant
to the video’s content but not appearing in the tag set con-
tribute to tag gain. Existing cross-modal video-text match-
ing technology [1, 16] can assess this automatically, but
there are still numerous missed and false matchings. There-
fore we use human evaluation, the gold standard, to deter-
mine whether the novel tags are relevant to video content.
The formula is defined as follows:

∆ =
1

|DV |
∑
i

|T o
i |

|Ti|
, (11)

where |T o
i | is the number of “video matched tags”, i.e. novel

tags generated by the model that are relevant to the con-
tent of i-th video. |Ti| is the number of human-annotated
ground-truth tags of the i-th video. DV is the set of all
videos in the dataset.

4.3. Implementation details

OP-TSG adopts the CLIP-B/32 image encoder [18] as
the frozen image encoder, and a 6-layer transformer [23]
initialized with the first 6 layers of the BERTbase model
[7] as the title encoder. The multimodal hybrid encoder and
the prompt encoder are all 6 layers, and the order-aware tag
decoder is a 12-layer auto-regressive transformer decoder.
Each video is uniformly sampled at 1fps, with a maximum
of 60 frames. Patch features are supplied to the multimodal
hybrid features instead of frame features during image tag-
ging benchmark testing. We employ the AdamW [15] opti-
mizer with a maximum learning rate of 2e−4 and a weight
decay of 0.002. λ for adjusting the loss weight is set to
0.3. The number of order prompts is set to 30 in our model.
Additional implementation details are provided in the sup-
plementary materials.

4.4. Comparison with Start-of-the-Art

OP-TSG is compared to advanced multi-label classi-
fication [19, 20] and generation methods [24, 34] using
CREATE-tagging and Pexel-tagging benchmarks. For a fair
comparison, we re-implement other methods with the same
video-title input, encoder structure and initialization param-
eters, and training schedule as our method, and we also
replace the original LSTM decoder with a 12-layer trans-
former decoder in the generation methods being compared.

Table 1 displays the results of CREATE-tagging. OP-
TSG outperforms other methods for both label-based and
example-based metrics on all tags. Moreover, OP-TSG
demonstrates significant advantages in recognizing rare tags
that users are interested in, achieving 3.3% and 3.5% F1
score gains over the SOTA methods Asy [20] and Open-
Book [34], respectively. This verifies that our method can
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Method Category Dataset
Label-Based Example-BasedFull Rare Common

P R F1 P R F1 P R F1 P R F1

Bin [19] Cls.

CREATE-210K

21.1 28.8 22.4 14.9 17.1 14.6 39.4 63.4 45.5 38.6 39.6 39.1
Asy [20] Cls. 27.8 38.4 29.9 24.4 28.5 24.5 38.0 66.6 45.8 38.5 45.5 41.7
Order-Free [3] Gen. 27.6 35.3 28.9 24.1 26.6 23.8 37.9 60.8 43.8 39.4 41.8 40.9
Open-Book [34] Gen. 28.1 35.8 29.2 24.8 27.3 24.3 38.1 61.0 43.9 39.5 42.2 41.2
Ours Gen. 30.1 40.7 32.2 27.1 32.6 27.8 38.2 64.7 45.3 39.5 46.3 42.7
Bin [19] Cls.

CREATE-3M
+

CREATE-210K

28.8 36.3 30.0 24.0 26.3 23.5 42.3 66.3 48.7 42.8 45.7 44.2
Asy [20] Cls. 30.5 40.1 32.4 27.1 30.9 27.2 40.8 67.3 47.9 41.1 46.3 43.6
Order-Free [3] Gen. 31.5 38.2 32.3 28.0 29.7 27.2 41.9 62.7 47.5 42.4 44.1 43.2
Open-Book [34] Gen. 31.8 38.6 32.5 28.3 29.9 27.5 42.2 63.2 47.8 42.6 44.6 43.5
Ours Gen. 34.1 42.6 35.5 31.2 34.6 30.9 42.6 66.3 48.9 43.0 48.4 45.5

Table 1. Performance comparisons with state-of-the-art methods on CREATE-tagging. “Cls.” and “Gen.” indicate that the model belongs
to multi-label classification and generation methods, respectively. “Full”, “Rare”, and “Common” denote that metrics are evaluated on all
tags, rare tags, and common tags, respectively.

Method Category Dataset
Label-Based Example-BasedFull Rare Common

P R F1 P R F1 P R F1 P R F1

Bin [19] Cls.

Pexel

11.2 17.6 12.2 4.5 4.7 4.1 27.7 49.5 32.4 32.2 50.9 39.6
Asy [20] Cls. 24.2 31.2 25.3 19.5 21.5 19.0 36.1 55.2 40.9 38.7 55.9 45.8
Order-Free [3] Gen. 37.6 38.6 36.5 35.7 35.4 34.0 42.8 46.7 42.7 48.2 49.1 48.4
Open-Book [34] Gen. 37.7 38.9 36.7 35.9 35.7 34.2 42.9 47.1 42.9 48.5 49.6 48.8
Ours Gen. 38.1 44.6 39.1 37.5 41.1 37.2 39.8 53.4 43.6 45.1 55.3 49.7

Table 2. Performance comparisons with state-of-the-art methods on Pexel-tagging. Evaluation settings are the same as CREATE-tagging.

Method Category # Video matched tags ∆
Bin [19] Cls. - 0.0%
Asy [20] Cls. - 0.0%
Order-Free [3] Gen. 0.11 2.43%
Open-Book [34] Gen. 0.15 3.43%
Ours Gen. 0.30 7.04%

Table 3. Comparisons of tag gain through different models. The
numbers of video matched tags listed in the third column are the
average of all videos.

alleviate the long-tail problem by capturing better tag de-
pendencies. Similar conclusions are reached when intro-
ducing CREATE-3M for pre-training, demonstrating that
our method scales well for pre-training.

The results of Pexel-tagging, a benchmark with more
tags and complex tag distribution, are presented in Table 2.
OP-TSG achieves the highest F1 scores across all settings,
especially improving the F1 scores by 18.2% and 3% over
Asy and Open-Book on rare tags, validating the generaliza-
tion of our method.

4.5. Tag gain via human evaluation.

Through the route of pre-training on CREATE-3M and
then fine-tuning with CREATE-210K, the video matched
tags and tag gain of different models can be evaluated on the
test dataset of CREATE-210K. As shown in Table 3, clas-

sification methods, such as Bin and Asy, are unable to infer
novel tags due to the classification head can only output a
fixed number of tags. All the generation methods adopt a
word-based generation strategy, so they all exhibit the abil-
ity to generate novel tags. Among them, OP-TSG generates
an average of 0.3 video matched tags per video and obtains
a tag gain of 7.04%, which significantly outperforms other
generation models. This indicates that the semantics of tags
injected to order prompts in pre-training can be effectively
retained during fine-tuning, thus enabling the model to still
generate tags that are only presented in pre-trainging data.

4.6. Ablation study

In this section, we conduct ablation studies based on
the CREATE-tagging benchmark to verify the effective-
ness of each component. All experiments are performed
on CREATE-210K and reported label-based F1 scores on
all tags, rare tags, and common tags.
The effect of the number of order prompts on results. As
shown in Table 4, the optimal performance is reached with
30 order prompts, and we analyze the reasons as follows:
(1) When reducing the number of order prompts, it is diffi-
cult for prompts to cover all the semantics of the abundant
tags. (2) When increasing the number of order prompts, the
proportion of [PAD] tags relative to meaningful tags also
rises, exacerbating the imbalance between the number of
meaningful tags and [PAD] tags.
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Number of Prompts. Full Rare Common

5 29.8 25.0 44.1
10 30.9 26.3 44.7
15 31.7 27.0 45.3
20 31.8 27.3 45.2
30 32.2 27.8 45.3
50 31.6 26.8 45.1

Table 4. Comparisons of different numbers of order prompts.

Weight for [PAD] Tag Full Rare Common

0.1 31.4 27.6 42.8
0.3 32.2 27.8 45.3
0.5 31.7 27.0 45.9
0.8 31.6 26.8 46.0
1.0 31.2 26.2 46.1

Table 5. Comparisons of different [PAD] loss weights.

The effect of [PAD] loss weight on tags prediction. As
shown in Table 5, when the [PAD] loss weight is small, i.e.,
λ = 0.1, the F1 score is lower, especially for the prediction
of common tags, because the model tends to produce more
incorrect tags, thus reducing the Precision. Conversely, a
larger λ also decreases the F1 score, especially for the pre-
diction of rare tags, as the model generates more meaning-
less [PAD] tags, thus reducing the Recall.
The effect of the number of prompt encoder layers on
results? According to the results in Table 6, the change in
the number of layers has the greatest effect on the F1 score
for rare tags. We argue that it is challenging to build the
correct associations between order prompts and rare tags
with fewer layers. In addition, the performance saturates
when the number of layers reaches 6. We finally choose to
use a 6-layer prompt encoder based on the above discussion.
Is the order-prompted tag sequence decoding mecha-
nism effective? Yes. Model B in Table 7 is the baseline
of generation methods, i.e., Video-Title Multimodal Hy-
brid Encoding module is directly connected to the decoder,
which discards the order prompts and connects tags from
high-frequency to low-frequency to construct the target tag
sequence. Compared with the proposed Model A, the F1
scores of Model B on rare and common tags decreased by
4.6% and 2.1%, respectively, indicating the mechanism in
OP-TSD is superior to the pre-defined tag connection rule.
Is the shuffling of order prompts effective? Yes. Com-
paring Model A with Model C in Table 7, training without
shuffling the prompts yields comparable performance on
common tags, but a decrease in F1 scores of 3% and 2.1%
for the more important rare tags and all tags. By prompt
shuffling to construct various tag combination patterns as
training targets, the model can capture better tag dependen-
cies and thus enhance the ability to generate rare tags.
Should tag embeddings be frozen for prompt-tag associ-
ation? Yes. Model D trained by fine-tuning the language

Depth of PE Full Rare Common

1 31.4 26.6 45.5
2 31.8 27.2 45.4
4 31.9 27.4 45.5
6 32.2 27.8 45.3
8 32.1 27.5 45.6

Table 6. Comparisons of producing order prompts with different
numbers of prompt encoder layers.

Method Full Rare Common

A Ours 32.2 27.8 45.3
B w/o OP-TSD 28.3 23.2 43.2
C w/o shuffle 30.1 24.8 45.4
D Learnable tag emb. 31.4 26.6 45.6
E w/o prompt-tag cl. 28.4 22.9 44.8
F Prompt label 29.7 25.0 43.4
G Prompt cls. 28.7 23.4 44.5

Table 7. Effectiveness of the proposed components.

model to extract learnable tag embeddings shows a slight
performance degradation compared to Model A. We ana-
lyze that the learnable tag embeddings will continuously
change the alignment objective of the order prompts, lead-
ing to instability in prompt-tag contrastive learning during
early training. Furthermore, a fixed pre-trained language
model is sufficient to extract semantic embeddings of tags.
Without prompt-tag contrastive learning. Model E in
Table 7 removes the prompt-tag contrastive learning dur-
ing training, and its performance is significantly inferior to
Model A, especially on rare tags. The objective of prompt-
tag contrastive learning is to inject the semantics of assigned
tags into order prompts, thus enabling the model to decode
the correct tags based on the semantics of order prompts.
Discarding the contrast learning will weaken the semantics
of the order prompts and make it difficult for the model to
decode the correct sequence.
Adding [PAD] tags vs. Predicting prompt label. Another
scheme to handle the prompts aligned with [PAD] tags is to
train a binary classification head to predict label 0 for these
prompts and 1 for others. During training and inference,
the decoder only receives prompts with label 1. Model F in
Table 7 is trained in this way, and the F1 scores drop sig-
nificantly compared with Model A. We attribute the results
to two reasons: (1) 0, 1 labels are predicted independently
on each prompt with unsatisfied accuracy. However, the
generation of the [PAD] tags is performed after all prompts
interact deeply in the decoder and thus enjoys a higher in-
ference accuracy. (2) Prompts aligned with [PAD] tags may
also benefit the decoding of other meaningful prompts, and
thus directly removing them is not appropriate.
Prompts for Generation vs. Prompts for Classifica-
tion. Prompts for classification mean attaching a multi-
classification head on each order prompt to predict the tags
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acting cute

little puppy

domestic pet

French bulldog

cute dog

Title: Babies who love to laugh 
are generally not too bad luck!

Shuffle

Video Frames

Tag Sequence

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

(c) Similarity score between ground-truth tags and order prompts

Order prompts

4 7 9 3 8 5 2 610 11 1213 1415161718 1921 1 2223 2425 927 28292026Shuffled 
Order prompts

Index of order prompt

(b) Generated tag sequences with different order prompts

(a) The input video and title

Figure 3. Visualization of tag sequence generation. We show tag sequences generated with different order of prompts in (b) and the inferred
[PAD] tags are omitted for simplicity. The similarity score matrix between ground-truth tags and order prompts is shown in (c).

Video Title Full Rare Common

A ✓ 21.8 16.8 36.3
B ✓ 23.3 21.6 28.3
C ✓ ✓ 32.2 27.8 45.3

Table 8. Ablation study on the importance of video and correspond
title for tag generation.

directly after prompt-tag alignment, Model G in Table 7 im-
plements this method. Compared to Model A, the F1 score
of Model G on rare and common tags is reduced by 4.4%
and 0.8%, respectively. We believe that it is caused by the
independent reasoning for each order prompt lacks consid-
eration of tag dependence. The architecture of Model F and
Model G can be found in supplementary materials.
Benefits of multimodal hybrid information. We ablate
the input multimodal hybrid information and the results are
shown in Table 8. When only video frame features are avail-
able, the obtained Model A suffers a severe F1 score drop
on rare tags compared to Model C. It is due to the fact that
the vast entity concepts contained in the video tags are diffi-
cult to reason directly from visual information. On the other
hand, Model B, which only takes titles as input, has a larger
performance gap than Model C on common tags. This is be-
cause most of the useful information contained in the title
are entities, which are usually beneficial for inferring rare
tags rather than common tags with generic meanings.

4.7. Qualitative Analysis

Visualization of tag sequence generation. In Figure 3, we
visualize the tag sequences generated with different orders
of prompts in (b) and the similarity score between ground-
truth tags and order prompts in (c). We make the follow-
ing qualitative observations: (1) Our model can decode the
correct tag sequence according to the semantics of order
prompts. E.g., according to Figure 3 (c), the semantics of
the prompt with index 4 match with the tag “domestic pet”

GT:
sports show off, sports master, please do not 
imitate, extreme skydiving

Cls.
sports show off, sports master, please do not 
imitate, extreme cycling

Gen. sports show off, please do not imitate

Ours
sports show off, sports master, please do not 
imitate, extreme skydiving, aerobatics

Title: The legendary 
stepping on the sword 
flight.

GT:
dress, young, young woman, fashion model,
fashion tennis, tennis, tennis court

Cls. young woman, female, tennis

Gen. young, young woman, dress, tennis, tennis court

Ours
young, young woman, dress, fashion model,
fashion tennis, tennis, tennis court

(a) CREATE-Tagging

(b) Pexel-Tagging

Title: A low angle view 
of a female model 
holding a tennis racket.

Figure 4. Examples of tag inference results from multiple methods.
“Cls.” and “Gen.” indicates the classification method Asy and
generation method Open-Book, respectively. The tags in black,
green, red, and purple are common tags, correct rare tags, incorrect
rare tags, and novel tags, respectively.

and our model also generates the corresponding tag from
this prompt as shown at the bottom of Figure 3 (b). (2)
Our model can decode the correct tag sequences regardless
of the prompt order. As shown in Figure 3 (b), with shuf-
fled order prompts, the relative order of generated tags is
changed but the correspondence between prompts and gen-
erated tags remains unchanged.

Case study of different methods. In Figure 4, we show
examples of inferred tags from different methods on two
benchmarks. It can be seen that (1) On CREATE-tagging,
our method achieves more accurate recognition of rare tags
compared with the classification method and generation
method, e.g., our method identifies the tag of “extreme sky-
diving” while the classification method produces a wrong
tag of “extreme cycling” and generation method misses this
tag. In addition, our method also provides a meaningful
novel tag “aerobatic”. (2) On Pexel-tagging, our method
shows greater superiority in generating a more comprehen-
sive tag set, especially for rare tags.
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5. Conclusion
In this paper, we present a novel generative model OP-

TSG for video tagging. OP-TSG introduces a novel order-
prompted tag sequence decoding mechanism to deal with
the disordered nature of multiple parallel tags and to im-
prove tag dependency modeling. The word-by-word tag
generation strategy is also adopted for the first time to dis-
card the fixed tag classification head. We create two new
tagging benchmarks to verify the effectiveness and general-
ization of our method on image/video in English/Chinese.
Experimental results show that our OP-TSG is superior to
previous methods, especially for the generation of rare and
novel tags. In the future, we will investigate the use of re-
trieval enhancement technology to strengthen the ability of
knowledge extraction and new word generation.
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