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Abstract

In this work, we build a modular-designed codebase, for-

mulate strong training recipes, design an error diagnosis

toolbox, and discuss current methods for image-based 3D

object detection. In particular, different from other highly

mature tasks, e.g., 2D object detection, the community of

image-based 3D object detection is still evolving, where

methods often adopt different training recipes and tricks

resulting in unfair evaluations and comparisons. What

is worse, these tricks may overwhelm their proposed de-

signs in performance, even leading to wrong conclusions.

To address this issue, we build a module-designed code-

base and formulate unified training standards for the com-

munity. Furthermore, we also design an error diagnosis

toolbox to measure the detailed characterization of detec-

tion models. Using these tools, we analyze current meth-

ods in-depth under varying settings and provide discus-

sions for some open questions, e.g., discrepancies in con-

clusions on KITTI-3D and nuScenes datasets, which have

led to different dominant methods for these datasets. We

hope that this work will facilitate future research in image-

based 3D object detection. Our codes will be released at

https://github.com/OpenGVLab/3dodi.

1. Introduction
As a new and rapidly developing research field, vision-

based 3D object detection [49] shows promising potential in
autonomous driving and attracts lots of attention from both
academia and industry. Thanks to the unremitting efforts of
numerous researchers, lots of advanced technologies, such
as model designs [3, 46, 29], detection pipelines [95, 83,
27], and challenging datasets [21, 6, 75], are continuously
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proposed, which significantly promotes the development of
this research field.

However, although lots of breakthroughs in detection ac-
curacy and inference speed have been achieved, there are
still some critical problems to be solved, especially the stan-
dardization of evaluation protocols. Specifically, compared
with the encouraging developments at the technique level,
the conventional rules in model building, training recipes,
and evaluation are not well-defined. As shown in Table
1, existing methods generally adopt different settings, e.g.
backbones, training strategies, augmentations, etc., to build
and evaluate their models, and the commonly used bench-
marks (and most of the papers) only record the final accu-
racy. This makes the comparison of the detectors unfair and
may lead to misleading conclusions.

In this paper, we aim to provide a unified platform for
image-based 3D object detectors and standardize the proto-
cols in model building and evaluation. Specifically, simi-
lar to the advanced codebases in 2D detection [9, 86], we
decompose the image-based 3D detection frameworks into
several separate components, e.g. backbones, necks, etc.,
and provide a unified implementation for current methods.
Furthermore, we fully investigate existing algorithms and
formulate several efficient training protocols, e.g. training
schedules, data augmentation, etc. Our summarized train-
ing recipes not only provide a fair environment for evalua-
tion but also significantly improve the performance of cur-
rent methods, particularly in the KITTI-3D dataset. For ex-
ample, the methods [51, 46] published two years ago trained
with our recipes can achieve better (or similar) performance
than the recent works [29, 55], emphasizing the importance
of establishing a standard training recipe.

Furthermore, to systematically analyze the bottlenecks
and issues in image-based 3D object detection, we urgently
require a tool to thoroughly examine detection results. In-
spired by TIDE [2], we propose an error diagnosis toolbox,
named TIDE3D, to measure the detailed characterization of

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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KITTI nuScenes
backbone # epochs data aug. others # epochs data aug. others

GUPNet [46] DLA34-DLAUp 140 flip, crop - - - -
FCOS3D [81] ResNet101-DCN-FPN - - - 12 flip TTA
PGD [80] ResNet101-DCN-FPN 48 flip TTA 24 flip TTA
BEVDet [27] ResNet50-FPN-LSS - - - 24 flip, BEV aug. TTA

Table 1: Overview of example methods on KITTI-3D and nuScenes benchmarks. The existing methods generally adopt
different settings, e.g. backbones, epochs, augmentations, etc., in model training. Besides, KITTI-3D and nuScenes apply
different evaluation metrics and are dominated by different detection pipelines. TTA denotes the test-time augmentation.

detection algorithms. Specifically, we decouple the detec-
tion errors into seven types, and then independently quan-
tify the impact of each error type by calculating the over-
all performance improvement of the model after fixing the
specified errors. In this way, we can analyze a specific as-
pect of given algorithms while isolating other factors. In
addition to characterizing the detailed features of the mod-
els, the proposed TIDE3D also has other useful applica-
tions. For example, the effectiveness and action mechanism
of a specific design/module can be explored by analyzing
the change of error distribution of the baseline model with
or without the target design/module.

Besides, we also find the most concerned two datasets,
i.e. KITTI-3D [21] and nuScenes [6], are dominated by dif-
ferent detection pipelines, and even gradually become sep-
arate research communities. For example, none of the pop-
ular Bird’s Eye View (BEV) detection methods provide the
KITTI-3D results, and the top-performing methods in the
KITTI-3D leaderboard also hard to achieve good results in
nuScenes. We apply the cross-metric evaluation (i.e. ap-
plying the nuScenes-style metrics on the KITTI-3D dataset
and vice versa) on the representative models and report the
adopted metric is the main factor causing this phenomenon.
We also provide TIDE3D analyses for this issue.

To summarize, the contributions of this work are as fol-
lows: First, we build a modular-designed codebase for the
community of image-based 3D object detection, which can
serve as a foundation for future research and algorithm im-
plementation. Second, we investigate the training settings
and formulate standard training recipes for this task. Third,
we provide an error diagnosis toolbox that can quantita-
tively analyze the detection models at a fine-grained level.
Last, we discuss some open problems in this field, which
may provide insights for future research. We hope our code-
base, training recipes, error diagnosis toolbox, and discus-
sions will promote better and more standardized research
practices within the image-based 3D object detection com-
munity.

2. Related Work
Image-based 3D detection. Image-based 3D detection is a
rapidly developing research direction, and there are lots of

detectors are proposed. Here we review these works based
on the taxonomy proposed in [49]: methods based on result-
lifting, methods based on feature-lifting, and methods based
on data-lifting. Refer to [49] for the detailed and compre-
hensive literature review.
Result-lifting. The methods in this branch first estimate the
2D projections and other items (e.g. depth, orientation, etc.)
of the 3D bounding boxes and then lift the results from the
2D image plane to the 3D world space. In particular, pio-
neering works [11, 10, 3, 95, 81, 32, 84] introduce the pop-
ular 2D detection paradigms, e.g. faster R-CNN [64] and
FCOS [77], into this research field, and lots of following
works improve these baseline models in several aspects, in-
cluding backbone designs [3, 29], loss functions [70, 51,
22, 52], depth estimation [46, 93, 71, 80, 35, 37, 56], geo-
metric constraints [60, 41, 39, 8, 44, 28, 62, 31, 61], feature
embedding [42, 94], key-point constrains [7, 33, 45], depth
augmented learning [87, 18, 15, 23, 14, 78], temporal se-
quences [4, 79], semi-supervised learning [54, 48, 40, 26],
NMS [68, 30], data integration [5], etc.
Feature-lifting. OFT [65] and DSGN [13] are the pioneer-
ing works in this research line, which lift the 2D features
into 3D features (generally represented by BEV map) and
then directly estimates the 3D bounding boxes with the re-
sulting features. CaDDN [63] uses a better transformation
strategy [57] and achieves promising results. BEVDet [27]
introduces this paradigm into the multi-camera setting, and
this BEV pipeline gradually dominates the nuScenes [6]
benchmark with effects of lots of follow-up works, such as
[38, 36, 34].
Data-lifting. The data-lifting-based methods first estimate
dense depth maps for the input images and then lift the pix-
els into 3D points using the estimated depth and camera
parameters. After that, they generally leverage the LiDAR-
based 3D detectors to predict the results from these ‘pseudo-
LiDAR’ signals [83, 50]. The followers in this group are
involved in the following aspects: improving the quality
of pseudo-LiDAR [89, 20], focusing on foreground objects
[82, 74, 88], end-to-ending training [59], feature represen-
tation [47, 53], geometric constraints [85] or confidence re-
finement [69].
Codebases. At present, there are two public codebases that
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support vision-based 3D object detection: MMDetection3D
[16] and OpenPCDet [76]. However, these two codebases
are initially designed for LiDAR-based 3D object detection,
and the supported vision-based methods are limited. In par-
ticular, MMDetection3D supports four vision-based detec-
tors [66, 44, 81, 80], and OpenPCDet only support CaDDN
[63]†(also note some methods are developed based on these
two codebases although they are not included in the offi-
cial ones). In contrast, our codebase is designed for vision-
based methods, excluding redundant codes and dependen-
cies for LiDAR-based methods.
Error diagnosis for object detection. To obtain the de-
tailed characterization under the overall evaluation metric
and show the strengths and weaknesses of the given models,
some works [25, 1, 2] exist to analyze the errors in 2D detec-
tors. In particular, [25] divides the errors of false positives
into several categories and selects the top N most confident
detections for errors analysis. [1] further adds statistics for
false negatives. More specifically, it progressively replaces
the predicted items with corresponding ground-truth values
and uses the �AP metric to quantify the importance of each
item. [2] points out that this iterative approach incorrectly
amplifies the impact of later error types, thus proposing a
strategy where each error type is fixed independently. These
works contribute to model analysis in the field of 2D detec-
tion, and to our best knowledge, there is no previous attempt
to provide such a generic toolbox for 3D object detection.
In this work, we provide a costumed error diagnosis toolbox
to fill this gap.

3. Codebase
The objective of this work is to build a fair platform and

provide experimental analysis for image-based 3D detec-
tion algorithms. For this purpose, we first build the general
codebase which can support this work and facilitate future
research. Specifically, we decompose the image-based 3D
detection frameworks into different components, e.g. back-
bones, necks, heads, etc., and we provide common choices
for each component, e.g. ResNet [24], DLA [90], or DCN
[96] for the backbones. In addition to the CNN modules,
we also provide the implementation of other parts, such
as augmentations, post-processing, etc. Currently, the pro-
posed codebase supports more than ten methods such as
[51, 46, 91, 43, 44, 95, 81, 48, 54, 27, 80, 15] and two com-
monly used datasets [21, 6]. Our codebase will be publicly
available and continuously maintained.
Comparison with official implementation. Here we pro-
vide a comparison of our implementation and the official
implementation for some representative works. In particu-
lar, here we take MonoDLE and GUPNet as examples for
KITTI-3D dataset, and FCOS3D as example for nuScenes

†data collected at 24-02-2023

KITTI nuScenes
Easy Mod. Hard mAP NDS

MonoDLE [51] 17.89 13.87 12.03 - -
MonoDLE - ours 18.37 13.79 12.24 - -
GUPNet [46] 21.48 15.22 12.79 - -
GUPNet - ours 21.66 15.45 12.51 - -
FCOS3D [81] - - - 30.6 38.1
FCOS3D - ours - - - 30.4 38.5

Table 2: Comparison of the implementations on KITTI
and nuScenes validation sets. We report the average perfor-
mance of the last epoch for both the official codes and our
implementations over five runs.

dataset. Based on the results shwn in Table 2, we can find
our implementation gets consistent or better results than the
official numbers. More details and the results for other mod-
els can be found in our public codebase.

4. Diagnosis Toolkit
We propose a general toolkit, named TIDE3D, to diag-

nose the cause of errors for 3D object detection models. We
first briefly review the computing process of mean Average
Precision (mAP) [19] and then introduce how to divide the
detection errors into fine-grained types. Finally, we present
how to weigh these errors and the implementation details.
We also recommend readers refer to TIDE [2] for prelimi-
nary knowledge.
Review of mAP. As the most commonly used metric for
evaluating object detection methods, mAP provides a com-
prehensive overview of a detector’s performance. Given the
predictions and corresponding ground truths, each ground
truth is matched to at most one prediction according to a
specified metric, e.g. KITTI-3D uses 3D Intersection over
Union (IoU) and nuScenes adopts center distance as the
metric. If multiple predictions meet the constraint, the
ground truth only matches the prediction which has the
maximum confidence score. The matched predictions are
true positives (TP), and the remaining ones are false posi-
tives (FP). After sorting the predictions by descending con-
fidence, the number of true positives and false positives in
the subset of predictions with confidence scores greater than
c is counted as NTP and NFP. Then, the precision and recall
of the predictions subset are obtained by:

Pc =
NTP

NTP +NFP
Rc =

NTP

NGT
(1)

where NGT is the number of ground-truth objects. As the
confidence threshold c changes, the precision-recall curve is
plotted and the Average Precision (AP) is obtained by cal-
culating the area under the curve. Finally, mAP is obtained
by averaging the AP values of all categories.
Error definitions. Due to the complexity of calculating
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mAP, it prevents researchers from further analyzing the per-
formance, and two detectors with the same mAP value may
have different strengths and weaknesses. To address this
issue, we segment the detection errors into several sepa-
rate groups and measure the contribution of each error type.
Specifically, based on the taxonomy of 2D detection error
proposed in TIDE [2] (including classification error, local-
ization error, both classification and localization error, du-
plication error, background error, and missing error. See
Table 3 for details), we further propose two modifications
for 3D object detection, including the sub-error types of lo-
calization and the ranking error.
Sub-error types of localization. Since the localization of
the 3D bounding box is determined by many factors, we
further divide the localization error into three sub-errors to
explore the effect of predicted location, dimension, and ori-
entation on inaccurate localization.
Ranking error. To describe each object in the scene, the
detection model needs to output the 3D bounding box and
its confidence. However, some detections may have higher
confidence but lower accuracy. In the process of calculating
AP, the detected boxes are sorted by descending confidence

and the precision of the high-confidence detections is calcu-
lated first. Therefore, the misalignment between confidence
and the quality of the box naturally leads to the decline of
AP and brings about possible room for improvement.
Weighting the errors. We use �AP to quantify the impact
of each error type. In particular, similar to TIDE [2], we
independently fix the errors (called “oracle”, see Table 3 for
the details), and compute the change of AP to measure the
impact of this error type by:

�APo = APo �AP, (2)

where APo is the AP after applying the oracle o. In this
way, we can capture the effect of each error type on the final
metric, and a lower �AP of the given error type indicates
the model performs better at this part.

Due to current datasets generally adopting different eval-
uation metrics, the detailed implementations of TIDE3D are
also slightly different for these datasets [21, 6, 17]. More
details of the specific implementations are provided in Ap-
pendix A.3.

5. Approach
We first discuss the effects of common training settings

on the final accuracy of current methods and then provide
efficient and fair training recipes for further work. Fur-
thermore, we also show the state-of-the-art (SOTA) meth-
ods can be further promoted in performance with the sum-
marized training recipes and some existing techniques in
the KITTI-3D benchmark. Besides, the detailed features
of the detection algorithms are evaluated with the proposed

TIDE3D, and we also show our diagnosis tool can be used
to explore some open issues. Finally, we discuss the con-
flicts between KITTI-3D and nuScenes datasets.

Training recipes. We observe that current methods gener-
ally adopt different training recipes, e.g. the training sched-
ule in KITTI-3D ranges from 60 epochs [44] to 200 epochs
[55]. We show that training differences like this greatly af-
fect the performance of the algorithms and may mislead the
latecomers to some extent, and it is necessary to formu-
late standard training recipes. Specifically, in KITTI-3D,
we take the 70-epoch schedule as baseline (1⇥) and also
evaluate the models under 2⇥ and 3⇥ schedules. Similarly,
the corresponding settings in nuScenes are 12, 24, and 36
epochs. We recommend the 2⇥ schedule because this is the
closest one to the common choice of other algorithms, and
use other schedulers for further evaluation. Furthermore,
we also ablate other choices in model training and provide
a general training recipe for image-based 3D detectors. We
report, in addition to some basic choices such as random
crop or horizontal flip, the photometric distortion and one-
cycle learning rate [73] are also highly effective for our task
and should be included in the conventional setting.

Promoted baselines in KITTI-3D. We also find, although
KITTI-3D is released for a longer time and more methods
are proposed on KITTI-3D benchmark, the baseline mod-
els in KITTI-3D are still under-tuned compared to these on
nuScenes. Here we show current baseline models can be
greatly promoted. We report that a two-year-ago model [46]
(re-trained with pre-trained backbone, pseudo-labels, and
the summarized training recipe) can achieve 17.65 AP40 on
the KITTI-3D validation set, surpassing the SOTA by 1.11
points. Even so, we believe this number can be improved
with further tuning or other tricks (e.g. test-time augmenta-
tion and model-ensemble [81]).

Dataset and metrics. KITTI-3D [21] and nuScenes [6]
are the most concerned datasets in the image-based 3D de-
tection field, however, they are dominated by different de-
tection pipelines. We find that they are different in many
aspects, and nuScene is generally considered to be more
friendly to image-based algorithms. We adopt nuScenes-
style evaluation on the KITTI-3D (and vice versa) and pro-
vide our discussion based on the cross-metric evaluation.
More details are given in Section 6.4.

Detailed analysis with TIDE3D. With the TIDE3D intro-
duced in Section 4, we can: (i) Analyze the detailed char-
acteristics of 3D object detection models, whether it is an
image-based model or LiDAR-based model, evaluated with
KITTI-3D-style or nuScene-style metrics, and designed for
outdoor or indoor scenes (see Appendix A.5 for the analy-
ses for indoor dataset [17] and LiDAR-based models). (ii)
Conduct solid ablation studies and explore the action mech-
anisms for specific designs/modules.

6428



Error Type Definition Oracle
Classification Incorrect classification and correct localization. Correct the category classification / location of detection,

and delete this detection if it becomes duplicated.Localization Correct classification and incorrect localization.
Both Cls. and Loc. Incorrect classification and incorrect localization.

Delete the inaccurate / duplicate detection.Duplication
Correct classification and correct localization, but
the corresponding GT has been matched by an-
other higher-scoring detection.

Background Detection from the background area.

Missing Undetected GT not covered by classification and
localization error. Delete the missed ground truth.

Ranking Inconsistency between confidence and localiza-
tion quality of detections.

Sort the detections by descending IoU score and calculate
the precision of accurate detections first.

Table 3: Definition and oracle of detection errors.

Figure 1: Learning curves on nuScenes (Left) and KITTI-3D (Right) with different detection models. With the 3⇥ scheduler,
BEVDet with R50-FPN optimized by AdamW and FCOS3D with R101-DCN-FPN optimized by SGD achieve 28.56 and
31.67 mAP on nuScenes, respectively, while GUPNet with DLA-34 optimized by Adam achieves 15.64 AP40@IoU=0.7 on
KITTI-3D (validation set). For better presentation, we present the curves by moving the average with windows size = 5. The
original curves are shown in Appendix A.4.

6. Experiments and Analysis

Dataset and metrics. We conduct experiments on KITTI-
3D and nuScenes datasets, and the detailed introduction for
these two datasets is provided in Appendix A.1. Due to
access restrictions of testing servers, the evaluation is con-
ducted on validation set, and we further apply cross-dataset
metrics for better evaluation, e.g. applying nuScenes-style
metrics on the KITTI-3D dataset.
Baseline models. In this work, we mainly focus on the
baselines based on the popular detection pipeline, including
the CenterNet pipeline [46, 29], the BEV pipeline [27], and
the FCOS3D pipeline [81, 80].
Other settings. To replicate the reported performance and
minimize the impact of complex architectures and addi-
tional hyper-parameters, we adopt the simplest default con-
figurations provided in the official code for most methods.
Specifically, we use basic training schedules, simple archi-
tectures, and standard data augmentation techniques as the
default settings. Further details beyond to these settings are
provided in according sections.

6.1. Training Recipes

Training schedules. We first present the effects of training
schedules. Specifically, we experiment with three different
schedules, ranging from 1⇥ to 3⇥, for both KITTI-3D and
nuScenes. Notably, we plot the training curves of all three
schedules in the same figure to facilitate comparison. The
AP curves shown in Figure 1 indicate that schedules have
a significant impact on the final performance, highlighting
the importance of a standard scheduler for a fair compari-
son. Furthermore, the following observations can be sum-
marized from these curves:

i. Different detection models require varying numbers of
epochs as the optimal settings. For example, BEVDet ex-
hibits significant and smooth performance improvements as
the number of training epochs increases, while FCOS3D
achieves near-optimal performance faster with perturba-
tion after learning rate decay. This discrepancy may stem
from the difference in optimizers, iterations, and detection
pipelines. Intuitively, required training time can substan-
tially vary across different settings, which may reduce the
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AP40@IoU=0.7 AP40@IoU=0.5
schedule pre-training easy mod. hard easy mod. hard

GUPNet [46] 2⇥ ImageNet 21.48 15.22 12.79 59.30 43.83 38.40
DID-M3D [55] ⇡ 3⇥ ImageNet 22.98 16.12 14.03 - - -
DEVIANT [29] 2⇥ ImageNet 24.63 16.54 14.52 61.00 46.00 40.18
GUPNet 2⇥ None 18.74 13.40 10.62 53.80 40.69 35.73
GUPNet 2⇥ ImageNet 21.51 15.82 13.30 60.18 44.35 39.27
GUPNet 2⇥ DD3D 24.25 15.82 13.26 63.16 44.60 40.08
GUPNet + PL 2⇥ DD3D 24.71 17.25 15.21 63.73 46.56 42.45

Table 4: Promoted baselines on KITTI-3D validation set. We report the 3D object detection performance of GUPNet
with various pretrained backbones, evaluated by AP40@IoU=0.7/0.5. We also present SOTA methods for reference. Note
that both DID-M3D and DEVIANT are built based on the GUPNet baseline, and our modifications are only involved in the
training phase, which shows the importance of building fair training recipes again.

fairness of comparisons between them.
ii. Increasing the training procedure enhances the stability
and precision of the fine-tuned model. Even after complet-
ing the 3⇥ training, the trend of mAP/AP40 improvement
continues to exist. The commonly accepted training sched-
ule (mostly 1⇥ or 2⇥ on nuScenes) may be insufficient to
unlock the full potential of a model. Therefore, the standard
training procedure remains further discussed.
iii. We observe a significant drop and a recovery at the
beginning of the finetuning stage of 1⇥ training in the ex-
periments of BEVDet and GUPNet. With training time in-
creasing from 2⇥ to 3⇥, this phenomenon alleviates and
even disappears. We suppose that longer training time helps
the network learn more robust features, which prevents the
overfitting brought by the sudden decay of the learning rate.
More training steps at a small learning rate also help counter
this issue.
iv. Even when the training is about to be completed, we still
observe performances are unstable (see Appendix A.4 for
the un-smoothed curves). This phenomenon is particularly
evident for the KITTI-3D-style metrics. Based on this, the
comparison based on KITTI-3D metrics should be carefully
conducted.
Other training recipes. Due to strict geometric relations
between the 2D image plane and the 3D world space, some
complicated data augmentations are hard to be applied, and
the horizontal flip is the common choice for existing meth-
ods. Note some simple geometric augmentations, like cen-
ter crop and resize, are also commonly used in the KITTI-
3D dataset, and see Appendix A.6 for more discussions on
such data augmentations. Here we show the photometric
distortion and the one-cycle learning rate schedule are two
cost-free training tricks to improve the detection accuracy
(especially in KITTI-3D) and show their effectiveness with
two representative baselines in Table 5. We can find that
both of them improve the GUPNet by a significant margin
and can work together. Although nuScenes is a large-scale

dataset, applying photometric distortion still brings a mod-
est mAP improvement. Besides, we find the effects of one-
cycle learning rate on nuScenes baselines are unstable, so
we omit the corresponding cells to avoid misleading.

baseline w/ distortion w/ one-cycle lr full
GUPNet [AP40] 15.26 16.54 15.87 16.83
BEVDet [mAP] 25.12 25.20 - -

Table 5: The photometric distortion and one-cycle learning
rate are also effective training choices.

6.2. Promoted KITTI-3D Baselines.
Leveraging pre-training weights. We show the impact of
weight initialization on detection models in Table 4. In par-
ticular, we compare three initial weights, including random
initialization, ImageNet pretraining, and DD3D pertaining
[53]. We can find that: i. Similar to other computer vision
tasks, model pre-training provides useful priors to the mod-
els and improve the performance significantly. ii. As the
data domains and proxy tasks become more similar (see Ta-
ble 6), the pre-training weights also become more effective.
Based on the above observations, designing custom pre-
training algorithms, especially in an unsupervised manner,
should be a promising research direction for future work.

domain proxy task # img. ⇥ # ep.
ImageNet daily scenes classification 1.3M ⇥ 100

DD3D driving scenes depth estimation 15M ⇥ 12.8

Table 6: Information of different pre-training models. Ep.
denotes the pretraining epochs.

Pseudo-labeling. According to [54, 48], we generate the
pseudo-labels (only for the 3,712 training images) from a
LiDAR-based model [67]. Then we use them to train GUP-
Net and report the performance in Table 4. According to the
results, the final result of our GUPNet can achieve 17.65
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(a) KITTI dataset (b) nuScenes dataset

Figure 2: Example error diagnosis results. (a) Error analyses on KITTI-3D validation set under the moderate setting. From
left to right, we show the results of GUPNet [46] for the Car category with 0.7 IoU threshold, 0.5 IoU threshold, and the
results of a LiDAR-based method [67] for the Car category with 0.7 IoU threshold. (b) Error diagnosis results of FCOS3D
[81] on nuScenes validation set. From left to right, we show error diagnosis results based on KITTI-3D-style metrics with
IoU@0.5 for all categories, the Car category, and the results based on nuScenes-style metrics for all categories.

AP40 under the moderate setting, surpassing the previous
SOTA (DEVIANT) by 0.71 points. We emphasize that we
do not make any changes to the detection model, and the
modifications are only involved in the training phase. This
result shows the urgency and importance of establishing a
fair and efficient training recipe.

6.3. TIDE3D Analysis
Error diagnosis. Here we present the error diagnosis re-
sults of some representative methods, settings, and evalua-
tion metrics in Figure 2. According to these error distribu-
tions, we can get the following observations:
i. Similar to [51, 29, 53, 80], we find localization error is
the bottleneck of current methods and it is mainly caused by
the inaccurate location (center). Even for the LiDAR-based
method [67] which estimates the results from the data with
accurate spatial information, localization error still ranks
first among all error types. Differently, for [67], the dimen-
sion and the orientation also have a significant impact on
the quality of localization.
ii. We find the misalignment between the confidence and
the bounding box’s quality is a serious problem in this field,
suggesting that giving more accurate confidence is an effec-
tive way to improve detection accuracy. An empirical study
of this problem is given in the following part.
iii. Under a lower IoU threshold, the KITTI-3D-style metric
is still dominated by the localization error. Meanwhile, this
issue has been alleviated on nuScenes-style metric. This
indicates 3D IoU-based AP is a very sensitive metric, and
center distance-based AP is more friendly to image-based
methods. More TIDE3D results and analyses, e.g. indoor
scenes, are provided in Appendix A.5.
Validating design choices. We show the proposed TIDE3D

AP40 " Eloc # Ebkg # Emiss # Erank #
GUPNet w/ 2D conf. 14.81 69.87 0.46 1.73 15.10
GUPNet w/ 3D conf. 17.02 62.84 0.15 4.41 10.81
Improvement +2.21 -7.03 -0.31 +2.68 -4.29

Table 7: Effects of 3D confidence. Experiments are con-
ducted on KITTI-3D validation set. �AP40 is denoted as
E for brevity.

can validate whether a given design choice supports its mo-
tivation/claim. For instance, some works, such as [46, 69, 5]
proposed their designs to get better confidence scores of de-
tection results. Here we use TIDE3D to validate the design
of GUPNet. Particularly, GUPNet models the uncertainty of
estimated depth (�) and further gets the confidence of depth
with this uncertainty by: pdepth = exp(��). Finally, the
3D confidence (p3D) can be obtained by correcting 2D con-
fidence (p2D) with depth confidence: p3D = pdepth · p2D.
Table 7 gives the results of GUPNet equipped with 2D con-
fidence and 3D confidence respectively. We observe that
the AP40 improved by 2.21 and the ranking error reduces
to 10.81 from 15.10, which confirms the effectiveness of
this design. Meanwhile, we find the localization error also
reduced, which is caused by the high-quality results being
improved and corresponding results having a higher prior-
ity in AP computing. See Appendix A.7 for more analysis
about the ranking error and localization error in TIDE3D.

6.4. Metric Analysis for KITTI-3D and nuScenes

Additionally, we have observed interesting discrepan-
cies in evaluation metrics between KITTI-3D and nuScenes.
Specifically, as shown in Table 8, GUPNet and FCOS3D get
similar AP of Car category under the nuScenes-style met-
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Dataset Class KITTI Metric nuScenes Metric
@0.7 @0.5 @0.25 mAP NDS

GUPNet KITTI-3D Car 14.85 40.85 62.87 47.57 61.85
PV-RCNN KITTI-3D Car 82.41 94.31 94.47 92.74 92.61
FCOS3D nuScenes Car 1.83 20.87 50.74 47.96 54.32
FCOS3D nuScenes All 0.26 6.06 17.57 31.05 40.31
BEVDet nuScenes All 0.10 6.55 19.25 30.75 38.22

Table 8: Evaluation Metric. We exchange the metrics between KITTI-3D and nuScenes for the evaluation of 3D object de-
tectors. This provides a standardized way to compare the performance of 3D object detectors across the two datasets. Dataset
represents the source of training data for the detector. For detectors trained on KITTI-3D, we only compute translation, scale,
and orientation for NDS under nuScenes metric. For KITTI metric, we evaluate the results of cars under the hard strict with
varying IoU thresholds.

Figure 3: TIDE3D analyses of BEVDet [27] and FCOS3D
[81] for all categories on nuScenes validation set based on
the KITTI-style metric with 0.25 IoU threshold. Our results
indicate that FCOS3D is impacted by various errors, while
BEVDet is mainly dominated by localization errors.

ric, but they show a significant performance gap under the
KITTI-style metric. As we know, KITTI-3D primarily uses
the strict 3D IoU metric with a certain threshold as the met-
ric, while nuScenes measures the center distance and a se-
ries of decoupled error attributes such as translation, scale,
orientation, etc., separately (Appendix A.1 provides the de-
tails of metrics). We find that translation, scale, and ori-
entation jointly affect the result of IoU, which means that
methods achieving competitive performance on the KITTI-
3D metric require comprehensive development, while meth-
ods with special strengths in nuScenes can also get a good
performance. According to our experience, a model with
good performance under the KITTI-style metric generally
performs well under the nuScenes-style metric, but the op-
posite is not always true.

Furthermore, we present TIDE3D analyses of BEVDet
[27] and FCOS3D [81] for all categories on nuScenes val-

idation set based on the KITTI-style metric with 0.25 IoU
threshold in Figure 3. Based on the distribution of localiza-
tion sub-errors (6.5-1.6-1.7 v.s. 10.1-1.7-1.2), we can find
that FCOS3D makes more accurate predictions for orienta-
tion and dimension than BEVDet. One of the reasons for
this is the loss of height information of BEVDet in the LSS
(lift, splat, shoot) process, which serves to transform the im-
age feature into BEV space. Consequently, the model may
struggle to estimate the height of objects accurately and the
center height of objects. See Appendix A.2 for more results
and analyses.

The above two reasons explain why the mainstream
methods for KITTI and nuScenes are distinct, and it is rea-
sonable and necessary to separately design models to match
the preferences of these two kinds of metrics.

7. Conclusion
In this paper, we aim to standardize the evaluation proto-

cols for image-based 3D object detection, an ever-evolving
research field. We build a modular-designed codebase and
provide efficient training recipes for this task, leading to sig-
nificant improvements in the performance of current meth-
ods. Besides, we offer an error diagnosis toolbox to mea-
sure the detailed characterization of detection algorithms
and highlight some open problems in the field. We hope our
codebase, training recipes, error diagnosis toolbox, and dis-
cussions will foster better and more standardized research
practices within the image-based 3D object detection com-
munity.
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