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Abstract

The main challenge of Tracking by Natural Language
Specification (TNL) is to predict the movement of the tar-
get object by giving two heterogeneous information, e.g.,
one is the static description of the main characteristics of a
video contained in the textual query, i.e., long-term context;
the other one is an image patch containing the object and
its surroundings cropped from the current frame, i.e., the
search area. Currently, most methods still struggle with the
rationality of using those two information and simply fusing
the two. However, the linguistic information contained in
the textual query and the visual representation stored in the
search area may sometimes be inconsistent, in which case
the direct fusion of the two may lead to conflicts. To ad-
dress this problem, we propose DecoupleTNL, introducing
a video clip containing short-term context information into
the framework of TNL and exploring a proper way to reduce
the impact when visual representation is inconsistent with
linguistic information. Concretely, we design two jointly
optimized tasks, i.e., short-term context-matching and long-
term context-perceiving. The context-matching task aims
to gather the dynamic short-term context information in a
period, while the context-perceiving task tends to extract
the static long-term context information. After that, we de-
sign a long short-term modulation module to integrate both
context information for accurate tracking. Extensive exper-
iments have been conducted on three tracking benchmark
datasets to demonstrate the superiority of DecoupleTNL.

1. Introduction

Tracking by natural language specification (TNL), which
aims to localize the specific target referred to by the textual
query in a given frame, is a new topic to bridge the two het-
erogeneous representations of natural language expression
and visual content. Therefore, TNL [20, 8, 7, 9, 22] has re-
ceived more and more attention thanks to the fact that it does
not require the manually-specified bounding box to initial-

(a)

(b)

(c)
Figure 1: (a) Most TNL methods directly fuse the visual and
linguistic contents to localize the specific target object. (b)
The textual query describes long-term context information,
which may be inconsistent with the visual contents. (c) Our
proposed DecoupleTNL framework.

ize the tracker. The way natural language understanding
is incorporated into visual object tracking has many bene-
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fits, such as breaking the limitation by using a manually-
specified bounding box and providing extra scene informa-
tion from the textual query.

In general, most of the TNL methods share a similar pro-
cedure (Figure 1a): encoding visual and linguistic inputs
through visual and linguistic components and estimating the
location of objects by merging the frame representation and
sentence embedding with multi-modal fusion. However, we
have found that visual and linguistic content is sometimes
inconsistent, in which case a direct fusion of the two may
conflict (Figure 1b). To be specific, for the visual part, the
model wishes to strengthen the discriminative ability to dis-
tinguish the specific target from distractors in the current
scene. On the contrary, the linguistic part desires to max-
imize the representation similarity of objects belonging to
the same category. To this end, the inconsistent optimiza-
tion in these two components limits the development of the
current TNL framework in a more accurate way.

Apart from that, most of the previous methods [20, 8,
7, 9, 22] localizing the target may differ in an indirectly
manner. In practice, they usually aim to design language-
guided candidate matching or selection modules, ignoring
the dynamic surroundings through the video flow. To solve
this problem, some works have to design an extra module
to generate a set of candidates, e.g., region proposals [8]
and anchor boxes [9, 32]. Therefore, the performance of
these methods is fragile since the predictions are derived
from well-designed candidates.

Depending on the above analysis, we propose a self-
motivated feature decoupling strategy and a context mod-
ulation approach in fusion module design, termed Decou-
pleTNL. DecoupleTNL is implemented with Transformers
because the attention module is qualified to establish intra-
and inter-modality correspondence for vision and language.
The pipeline of the proposed framework is shown in Figure
1c. We decouple the context information into the form of
long-term context (i.e., textual query) and short-term con-
text (i.e., video clip). The Short-term Context-Matching
(SCM) branch aims to guide the video network in captur-
ing the dynamic scene information in a certain period. A
contrastive estimation loss is used between the video clip
and frame representations, prompting the learning of short-
term information. Because the textual query contains in-
formation about the entire video, the Long-term Context-
Perceiving (LCP) branch requires the model to perceive
future scenes based on the information of the given video
clip. In such a way, the learned representation contains se-
mantic and long-term scene information. In this branch,
contrastive learning compares the predicted and “ground
truth” at each point through spatial and temporal spans.
Then, the long short-term context tokens and frame to-
kens are fused, and a Long Short-term Modulation (LSM)
module is utilized to perform feature modulation.

In summary, we draw the contribution of this paper in
the following three aspects:

• We analyze the limitations of TNL trackers and propose a
novel long short-term context decoupling framework for
tracking by NL description. It simultaneously models the
long-term and short-term context information for a more
robust representation of learning.

• We propose a long short-term modulation module for in-
jecting the long short-term context information into the
current frame representation, making our model adap-
tively perceive dynamic and static surroundings.

• Extensive experiments are conducted on three popular
tracking benchmark datasets. The experimental results
fully verify the effectiveness of our proposed method for
tracking by the natural language specification.

2. Related Work

2.1. Transformer-based Tracking

Motivated by the powerful feature representation ca-
pability of vision Transformers, some works integrate
the Transformer components into a tracking framework.
TransT [3] introduces the Transformer into a Siamese-like
framework. TrDiMP [31] explores the temporal contexts
across carefully designed parallel branches. These meth-
ods relied on postprocessing for box generation. STARK
[35] joints the template with the search branch into a single
branch. Similarly, DTT [36] builds a discriminative tracker
with an encoder-decoder Transformer architecture. ToMP
[23] replaces the optimization-based predictor with a newly
designed Transformer-based model prediction. Different
from TrDiMP [31] and STARK [35] use an encoder-decoder
structure to enhance or fuse the features, CSWinTT [27]
considers the Transformer as a feature-matching module.
To design a simple yet effective end-to-end Transformer-
based tracker, MixFormer [4] proposes a mixed attention
module for simultaneous feature extraction and information
integration. Recently, AiATrack [10] introduces an atten-
tion in attention module, which enhances appropriate corre-
lations and suppresses erroneous ones. While Transformer-
based tracking by bounding box has achieved competitive
performance, they still run the risk of missing the target
caused by heavy occlusion and appearance variation.

2.2. Tracking by Natural Language Specification

Currently, only a few works focus on TNL, as it is a new
emerging topic. Li et al. [20] first give the definition of
this task and design two efficient tracking frameworks with
a textual query named TNL, which utilizes a textual kernel
to search on the visual features. Inspired by the one-stage
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Figure 2: An overview of the proposed tracking framework. There are three feature encoders used to extract the frame,
video, and linguistic tokens, respectively. Then, we design two branches, i.e., the Short-term Context-Matching (SCM)
branch and Long-term Context-Perceiving (LCP) branch, gathering meaningful long short-term context information with
a short-term context-matching task and a long-term context-perceiving task. After that, we associate the frame tokens and the
learned long short-term tokens representations through a Long Short-term Modulation (LSM) module. In the end, there is
a prediction head for localizing the target object.

regression tracker SiamRPN [19], NLRPN [8] adds a natu-
ral language region proposal network to output the propos-
als jointly. To speed up TNL trackers, RTNL [7] devises a
language network conditioned on the regions proposed by
a visual network. Similarly, SNLT [9] proposes a universal
Siamese Natural Language Region Proposal Network. To
mutually promote the learning of two heterogeneous fea-
tures, CapsuleTNL [22] introduces two routing modules to
facilitate the cluster of linguistic and visual representations
through Capsule Network. To make aware the global scene
, Wang et al. [32] introduce a method based on an adap-
tive local-global-search scheme. Different from these meth-
ods, we decouple the context information into long-term
and short-term manners to further improve the aggregation
of linguistic and visual information.

2.3. Self-supervised Video Learning

Recently, contrastive learning has gained more attention
in image representation learning [24, 12], which achieves
almost a similar performance to the supervised counterpart.
In view of its advances, researchers have introduced the
idea of contrastive learning to the video domain [28, 30],
where clips of the same domains are pulled together, and
clips of different domains are pushed apart. To separate the
motion information from raw RGB, Huang et al. [14] de-
couple the motion supervision from the context bias in the
pretext task. For the multi-modality of videos, many works
investigate mutual supervision across modalities to capture
high-quality video representation. For instance, they con-
sider the consistency between videos and the source of au-
dio [17, 1, 34] as supervision for contrastive learning. Our
work is also motivated by contrastive video representation
learning, where the video representation is explicitly decou-
pled into static and dynamic contextual information.

3. Proposed Method
3.1. Overall Framework

As depicted in Figure 2, given the search area, a video
clip, and the textual query as inputs, we first use three en-
coders to generate frame, video, and sentence embedding.
Then, in the SCM branch, a context-matching task is de-
signed for capturing the short-term and dynamic context
representation. Meanwhile, in the LCP branch, a context-
perceiving task is devised for gathering the long-term and
static context representation. After that, we introduce an
LSM module, which plays the roles of both frame feature
refinement and multi-modal fusion. Different from the pre-
vious methods, we get rid of the candidate box selection and
optimization by localizing the referred region with a simple
and elegant prediction head. In the following subsections,
we elaborate on the details of each component below.

3.2. Encoders

Frame and Video Encoder. The frame encoder comprises
a convolutional backbone network and a transformer en-
coder layer. We select the commonly used ResNet [9, 32, 7]
as the backbone network. We apply a 1 × 1 convolutional
layer to reduce the channels of Res3d and Res4f from 512
and 1024 to 256, respectively. The transformer encoder
layer comprises a multi-head self-attention layer and an
feed-forward network (FFN). Specifically, the multi-head
attention layer contains eight heads, and the FFN includes
two FC layers with a ReLU activation layer. By feeding
the video frame f ∈ R3×W×H into the backbone network,
we gather the fourth convolutional blocks’ feature maps
f’ ∈ RC×w×h where w = W

16 and h = H
16 . Then, the frame

tokens are obtained by flattening f’ to fs ∈ RC×Ns where
Ns = w × h. We use a sine function to generate spatial
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positional encoding and add them with the query and key
embedding.

Given a set of historical search areas with the temporal
scope of T , we first concatenate the local representations
among the tokens of those historical search areas along the
number of tokens axis. Then, we employ an FFN to ob-
tain the video clip representations fv ∈ RC×Nv , which is
complementary to the global expression of a textual query.
Language Encoder. The language encoder includes a to-
ken embedding layer and a linguistic transformer. The lin-
guistic transformer is stacked with 12 transformer encoder
layers. Each word is first converted to a one-hot vector. Fol-
lowed by [5], we generate a linguistic token corresponding
to a one-hot vector. The linguistic embedding is denoted as
fl ∈ RCl×Nl , where Cl and Nl are the channel dimension
and number of linguistic tokens, respectively.

3.3. Short-term Context-Matching Branch

In the short-term context, there is a strong spatial-
temporal relationship between the scenes in consecutive
frames. We present a context-matching task to capture such
information. The context-matching process is shown as the
SCM Branch in Figure 2. To match the size of frame to-
kens, we reshape fv ∈ RC×Nv to fBSCM

context ∈ RC×Ns with an
FC layer followed by a ReLU activation layer. Mathemat-
ically, abbreviating fs and fBSCM

context as z and x respectively,
the context-matching task is optimized by an InfoNCE loss
[24]:

Lshort = −
1

N

N∑
i=1

log
exp(cos(zi, xi)/τ)∑N
k=1exp(cos(zk, xi)/τ)

, (1)

where N is the number of samples in a mini-batch, cos(·)
is the cosine similarity between fs and fBSCM

context, and τ is
a temperature parameter. The supervision of the context-
matching task is the mean value of the video clip. The loss
function pulls video clips and frames from the short-term
context information together.

3.4. Long-term Context-Perceiving Branch

Static long-term context information is more sensitive to
discriminative characteristics than dynamic short-term con-
text information. Therefore, we devise a context-perceiving
task that utilizes the current video clip to predict the fu-
ture scene provided by the textual query. Here, we use the
linguistic tokens extracted from the text query as the super-
vision. The context-perceiving process is shown as LCP
Branch in Figure 2. Similar to the context-matching task,
we obtain the compressed linguistic tokens f

′

l to match the
size of fs, and fBLCP

context is generated by the same operation as
fBSCM
context with another FC layer. Then, the context-perceiving

task is optimized by another InfoNCE loss Llong with the
same form as Lshort. The only difference is that z and x
denote f

′

l and fBLCP
context in Llong, respectively. In such a way,

Llong leads to learning the static and discriminative infor-
mation throughout the whole video.

3.5. Long Short-term Modulation Module

Given the short-term tokens fBSCM
context ∈ RC×Ns ex-

tracted from the SCM branch and the long-term tokens
fBLCP
context ∈ RC×Ns of the LCP branch, we apply the LSM

module to enhance fs with comprehensive context informa-
tion by performing layer modulation. The architecture of
the LSM module is illustrated in Figure 2. Particularly, the
long short-term context representations are injected into the
frame tokens by adding two extra multi-head cross-attention
(MHCA) modules between the MHSA module and the FFN
of the original frame encoder layer. Take the long-term part
as an example, the outputs of the MHSA module are re-
garded as the query embedding of the MHCA module. In
such a manner, the language prompt tokens derived from
this MHCA module are the aggregation of frame features
with the main characteristics throughout the video. To adap-
tively control the amount of long short-term information,
we encode fBSCM

context and fBLCP
context to modulate the frame to-

kens by scaling and shifting. To be specific, the static con-
text information stored in fBLCP

context is projected into a scaling
vector γ, and the dynamic context information contained in
fBSCM
context is projected into a shifting vector β with two MLPs:

γ = tanh(WγfBLCP
context + bγ), (2)

β = tanh(WβfBSCM
context + bβ), (3)

where Wγ , Wβ , bγ , and bγ are learnable parameters. After
that, fs is refined with the two modulation vectors:

f
′

s = F (fs)� γ + β, (4)

where� represents Hadamard product. F consists of a 1×1
convolutional layer followed by an instance normalization
layer. Then, f

′

s is fed into the following FFN to obtain the
input of the next layers. We stack several LSM modules
further to refine the frame representation in such a manner.
In the end, we denote the output of the LSM module as f∗ ∈
R256×256. Notably, we add learnable position encodings
as the input of each transformer encoder layer to retain the
positional information.
Deep insights into the long short-term context decou-
pling strategy. There may be inconsistencies between the
frame representation and the sentence embedding because
the sentence embedding contains the global information of
the video. Such inconsistent information may lead to drift
when the target occurs large appearance variation, occlu-
sion, disappears and then reappears. To address this is-
sue, we propose a context decoupling strategy to model
the short-term and long-term context information via short-
term context-matching and long-term context-perceiving
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Figure 3: (a) Visual comparison between methods w/ and w/o long short-term context decoupling strategy. (b) Performance
gains when equipping with the proposed strategy. (c) Training loss w/ and w/o the proposed strategy.

tasks. On top of that, it ensures that relevant can be gath-
ered to facilitate accurate tracking. As shown in Figure 3,
we add the proposed context decoupling strategy to existing
TNL trackers, including TNL [20], SNLT [9], CapsuleTNL
[22], and AdaSwitcher [32], initializing with only the nat-
ural language. Here, we strictly follow the implementation
settings mentioned in their literature. Thanks to the adaptive
context information learned by the context decoupling strat-
egy, the baseline networks (i.e., TNL, SNLT, CapsuleTNL,
and AdaSwitcher) can generate the feature map (e.g., TNL,
SNLT, and AdaSwitcher) or pose matrix of capsules (e.g.,
CapsuleTNL) more precisely. More visible in Figure 3(b,c),
benefit from the proposed context decoupling strategy, these
methods achieve better performance and converge faster.

3.6. Prediction Head

Similar to previous works [11, 29, 36], the prediction
head of our model consists of two heads, one for predicting
the foreground or background probability for each location
and the other one for computing the target bounding box.
Mathematically, these two predictions can be expressed as:

Pcls = ϕcls(f∗),Preg = ϕreg(f∗), (5)

where ϕcls(·) and ϕreg(·) denote the FFNs for classification
and regression, respectively. The output of Pcls is a 2-D
vector indicating the foreground and background scores of
the corresponding location. Differently, Preg outputs a 4-D
vector that represents the distances from the corresponding
location to the four sides of the bounding box. Then, the
procedure of predicting the bounding box is similar to [36].

3.7. Optimization

Objective Function. For context-matching and context-
perceiving tasks, we linearly combine these two losses:

Lcontext = (1− λ)Lshort + λLlong, (6)

where the λ is a scalar hyper-parameter. Given the long
short-term enhanced features, the prediction head is used
to output binary classification and regression results. Espe-
cially, the binary cross-entropy loss is utilized for classifi-
cation, which is denoted as:

Lcls = −
∑
j

[yj log(pj) + (1− yj) log(1− pj)], (7)

where yj is the label of the j − th sample and pj indicates
the probability that the prediction belongs to the foreground.

For regression, we employ the generalized IoU loss
LGIoU [26]. The total losses are expressed as follows:

L = α·Lcontext + (Lcls + LGIoU ), (8)

where α is the regularization parameters in our experiments.
Training. Following the SNLT tracker [9], we collect the
images and queries from VisualGenome [18], MSCOCO
[21], and Youtube-BoundingBox [25], joint with the train-
ing split of LaSOT [6] and OTB-lang [20] for training the
proposed method. Notably, when testing on the TNL2k
dataset [32], we only used the TNL2k training set.
Initialization. Tracking by Natural Language and BBox
(NL + Box): we initialize the tracker based on language and
BBox. We perform data augmentation by constructing 100
training samples and copying the first frame five times to
form the video clip. We use these samples to optimize the
parameters of the whole model for 50 iterations. Tracking
by Natural Language only (NL only): we first feed the lin-
guistic tokens into the prediction head to locate the target
object. Based on the predicted location, we initialize the
tracker using the same process as NL + Box.
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Table 1: Comparisons on OTB-lang, LaSOT, and TNL2k
datasets. Here, the AUC and precision (P) scores are re-
ported for the three datasets, respectively.

OTB-lang [20] LaSOT [6] TNL2k [32]
Method

AUC P AUC P AUC P

TNL [20] 0.252 0.292 - - - -

RTNL [7] 0.542 0.784 0.284 0.281 - -

SNLT [9] - - 0.473 0.478 - -

AdaSwitcher [32] 0.191 0.242 0.511 0.493 0.114 0.064

CapsuleTNL [22] 0.672 0.886 0.572 0.588 - -

TNL [20] 0.553 0.723 - - - -

NLRPN [8] 0.671 0.811 0.500 0.563 - -

RTNL [7] 0.613 0.793 0.353 0.353 0.250 0.272

STNL [9] 0.666 0.848 0.540 0.574 0.248 0.269

AdaSwitcher [32] 0.682 0.881 0.512 0.552 0.417 0.420

CapsuleTNL [22] 0.711 0.924 0.615 0.633 - -

Ours (NL only) 0.695 0.928 0.649 0.671 0.407 0.400

Ours (NL + Box) 0.738 0.948 0.712 0.753 0.567 0.560

Inference. During the inference phase, we first compute
the prediction of Pcls and Preg . Depending on the highest
foreground score, we predict the bounding box as in [36].
Updating. When the current frame is predicted, we only
replace the search area of the earliest frame in the video
clip with its corresponding search area.

4. Experiments
4.1. Implementation Details

Our model is implemented in Pytorch and runs on the
hardware with Intel(R) 10700k CPU and Nvidia 3090 GPU.
The input of both networks is resized to 256 × 256. The
maximum length of the textual query is set as 40. If the
length of the textual query is shorter than 40, we pad empty
tokens after [SEP] token to make it equal to 40. Otherwise,
we cut off the language query if its length is longer than 38.
We stack four LSM modules in our tracker. The whole is
trained for 47 epochs with 1,000 iterations per epoch. The
ADAM optimizer [16] is also used with an initial learning
rate of 1e-4, and sets a decay factor 0.2 per 10 epochs. Dur-
ing the online updating, we decreased the learning rates to
2e-7. Our DecoupleTNL runs at 32 FPS.

4.2. Comparisons to NL-based Trackers

We evaluate trackers under two different initialization
and tracking settings: NL only (light gray part in Table 1)
and NL + Box (dark gray part in Table 1).
OTB-lang [20]. As shown in Table 1, we can find that De-
coupleTNL (NL + Box) achieves the best performance on
OTB-lang [20], i.e., 0.738/0.948 on the success/precision
score, respectively. We notice that DecoupleTNL (NL only)

Overlap threshold

S
u
cc

es
s 

ra
te

Success plots of OPE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TransInMo [0.720]
SiamGAT [0.714]
TOMP [0.714]
SparseTT [0.710]
CapsuleRRT [0.708]
TransT [0.707]
TrDiMP [0.703]
Siam R-CNN [0.700]
AiATrack [0.698]
STARK [0.691]
PrDiMP50 [0.690]
KYS [0.689]
SiamCAR [0.688]
Ocean [0.685]
AutoMatch [0.646]
TCTrack [0.547]

DecoupleTNL [0.738]

Success plots of OPE on LaSOT Testing Set

Overlap threshold

S
u
cc

es
s 

ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

[0.693] SimTrack
[0.690] AiATrack
[0.685] TOMP

[0.668] SLTtrack
[0.662] CSWinTT
[0.660] SparseTT

[0.656] RBO

[0.435] TCTrack

[0.671] KeepTrack 

[0.653] Alpha Refine 

[0.649] TransT 
[0.648] Siam R-CNN 
[0.639] TrDiMP
[0.617] CapsuleRRT 
[0.598] PrDiMP 
[0.583] AutoMatch
[0.572] LTMU 
[0.569] DiMP 
[0.515] ATOM 

[0.712] DecoupleTNL

Figure 4: Success plots on OTB-lang and LaSOT, respec-
tively.
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Figure 5: Success and precision plots on TNL2k, respec-
tively.

achieves comparable performance against the trackers ini-
tialized with NL + Box, only slightly worse than Decou-
pleTNL (NL + Box). We attribute such a favorable perfor-
mance of DecoupleTNL to the decoupling strategy.
LaSOT [6]. As illustrated in Table 1, on the larger dataset
LaSOT, there are a total of six trackers evaluated for this
benchmark. Our DecoupleTNL (NL + Box) can achieve
0.712/0.753 on the two metrics, which surpasses RTNL,
NLRPN, and SNLT by a large margin. The experiments
on LaSOT validate the effectiveness of our tracker.
TNL2k [32]. As depicted in Table 1, on the more chal-
lenging dataset TNL2k, AdaSwitcher [32] estimates the tar-
get state with a local tracking algorithm and global ground-
ing module and achieves 0.417/0.420 on success/precision
plots, respectively. When we decouple the context infor-
mation in a long-term and short-term manner, we achieve
0.567/0.560 on the TNL2k dataset. Although our method
has achieved good competitive results on TNL2k, it still
cannot solve the problem of switching target objects dur-
ing tracking, such as “The player who controls the ball”,
and “The orange calabash which can become a baby”, etc.

4.3. Comparisons to State-of-the-art Trackers

OTB-lang [20]. In addition to the above comparison with
the NL-based trackers, we also evaluate the proposed De-
coupleTNL with other state-of-the-art trackers on the OTB-
lang benchmark. OTB-lang is an extended version of OTB-
100 [33], where each sequence is annotated with a textual
query. As shown in Figure 4, the proposed DecoupleTNL
achieves the advanced performance of 0.738, outperforming
all the compared trackers.
LaSOT [6]. To further evaluate the proposed tracking
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Figure 6: AUC scores of different attributes on TNL2k.
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Figure 7: Comparison of different backbones.

method, we conduct experiments on the challenging bench-
mark LaSOT [6]. We report the results in Figure 4, and
the proposed tracker DecoupleTNL achieves the best per-
formance among all the compared trackers. Compared with
the recently released trackers SimTrack [2], AiATrack [10],
TOMP [23], SLTtrack [15], DecoupleTNL performs better.
Notably, we obtain the best AUC score of 0.712.
TNL2k [32]. It should be noted that adversarial samples
and thermal images are introduced to verify the robust-
ness of trackers. We utilize the bounding box and natural
language query initialization to evaluate all the compared
methods on 700 video sequences. As illustrated in Figure
5, DecoupleTNL achieves the best AUC score of 0.567, ex-
ceeding 3.5% and 3.6% on success and precision metrics,
compared to the second-best tracker SimTrack.

In addition, as shown in Figure 6, we select the top nine
performance trackers for the comparison of 17 attributes.
The proposed DecoupleTNL outperforms all the compari-
son trackers, which demonstrates that the proposed tracking
paradigm is capable of handling different complex scenes.

Since our backbone is slightly different from other state-
of-the-art trackers (e.g., ToMP [23], TransT [3], AiATrack
[10], TrDiMP [31], SNLT [9], and AdaSwitcher [32]), we
conducted an experiment to verify the impact of backbone
on model performance (see Figure 7). When these track-
ers use the same backbone as ours, i.e., ResNet50 [13]+our
transformer layer, their results are lower than our method.
When we replace the backbone with ResNet50 and only uti-
lize a 1× 1 convolutional layer to match the output dimen-
sions, our results are still better than those methods. These
results demonstrate that our method is able to achieve state-
of-the-art results while using the same backbone.

Table 2: Ablation study of each component, where fs, SCM,
LCP, LSM and P are short for frame tokens, SCM branch,
LCP branch, LSM module and prediction head, respec-
tively. Here, the AUC scores are reported for the three
datasets, respectively. (·) indicates the results initialized
with (NL only).

SCM LCP LSM P OTB-lang [20] LaSOT [6] TNL2k [32]

fs 3 0.535(0.406) 0.427(0.364) 0.318(0.288)
fs 3 3 0.674(0.625) 0.605(0.544) 0.367(0.305)
fs 3 3 0.665(0.617) 0.620(0.559) 0.378(0.329)
fs 3 3 3 3 0.738(0.695) 0.712(0.649) 0.567(0.407)
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53

54

55

56

57

58

2 3 4 5 6

56.7
56.4

55.2

53.8

56.1

(e) Influence of coefficient    in the loss function (1) 

53

54

55

56

57

58

0.1 0.3 0.5 0.7 0.9

55.6

56.7

55.9

55.2 55.0

 (f) Influence of coefficient    in the loss function (2) 

53

54

55

56

57

58

0.2 0.3 0.4 0.5 0.6

56.7
56.1

54.1

53.2

56.4

(c) Different aggregations for long short-term tokens 

49

51

53

55

57

58

Ours Sum Concat Multi-conv

52.9
51.5

49.8

56.7

49

51

53

55

57

58

    (b) Number of LSM Module stacks 

53

54

55

56

57

58

1 2 3 4 5

56.756.6
56.2

55.7

56.5



Ours Sigmoid Sigmoid+Multi-conv

55.1

55.6

56.7

(d) Different aggregations for frame tokens 

Figure 8: Ablation studies about aggregations and hyper-
parameters, measured by AUC score on TNL2k.

Figure 9: Ablation studies about context decoupling.

4.4. Ablation Experiments

To verify the effectiveness of DecoupleTNL, we conduct
ablation experiments on three benchmarks. The comparison
results are illustrated in Table 2.
Efficient of each component. Table 2 illustrates the effi-
cacy of each component on three benchmark datasets. No-
tably, the performance of both branches has its own advan-
tages, demonstrating the necessity of long short-term con-
text decoupling strategy. Figure 9 visualizes the tokens of
both branches, where it shows the score map differences
with and without dual branches. SCM branch predicts bet-
ter when the target undergoes dynamic changes. In contrast,
the LCP branch consults representative exemplars from the
textual query and consistently outputs high confidence for
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Figure 10: Ablation studies about SCM branch.

Figure 11: Ablation studies about LCP branch.

Figure 12: Ablation studies about LSM module.

the case of large movement or reappear.
Ablations about SCM branch. As illustrated in Figure 10,
we show some visual examples. Obviously, the effect of
the SCM branch is more pronounced when the target ap-
pearance changes dynamically. As shown in Figure 8(a),
we study the influence of temporal scope T for context-
matching and explore that 5 is a proper choice for the SCM
branch. The reason behind this may be that too long tempo-
ral scope would bring noises, while the too short temporal
scope is insufficient to gather meaningful context informa-
tion.
Ablations about LCP branch. LCP branch characterizes
the change of the target and its surroundings throughout the
video. As depicted in Figure 11, it can be seen that the
LCP branch can effectively improve the performance of the
tracker. The superiority of the LCP branch is that when
the target has a large displacement or reappears after being
occluded, the model can accurately locate the target.
Ablations about LSM module. As shown in Figure 12,
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Figure 13: Ablation studies about contrastive learning.

models capitalizing on the LSM module achieve better ac-
curacy, which demonstrates the advantage of the proposed
fusion strategy. Besides, as depicted in Figure 8(b), we
stack four LSM modules in our tracker. Apart from this,
without the LSM module, directly fusing the outputs of two
branches (e.g., using the sum, concat, and multi-conv op-
eration, see Figure 8(c)) only gains limited improvements,
while the proposed LSM module can further improve the
tracking performance. Compared with the whole scene in-
formation contained in the long-term tokens and the pre-
vious context information contained in the short-term to-
kens, only frame tokens contain information about the cur-
rent frame. Therefore, we need to make full use of frame
tokens. In Figure 8(d), we find that sigmoid or sigmoid +
multi-conv may ignore some information about the current
frame, resulting in a decrease in performance.
Ablations about hyper-parameters. Figure 8(e,f) studies
the coefficient λ and α for the loss functions. We find that
λ = 0.5 and α = 0.5 are proper choices.
Ablations about contrastive learning. In Figure 13, we
perform an analysis on contrastive learning for NL + Box,
where the variants without constructive learning mean that
we concatenate the tokens of this branch with the frame to-
kens. Obviously, contrastive learning can not only reduce
the training time but also improve the model performance.

5. Conclusions
This paper proposes DecoupleTNL, decoupling the con-

text information into short-term and long-term forms. The
short-term context information is gathered by a context-
matching task, while the long-term information is cap-
tured by a context-perceiving task. We embed these two
types of context information into the visual tracking frame-
work, fusing them with the frame representation to obtain
a better tracking performance. Extensive experiments show
that the proposed DecoupleTNL achieves significantly bet-
ter performance against the state-of-the-art TNL trackers.
The prominent efficacy of DecoupleTNL would inspire re-
searchers to pay attention to long short-term context mod-
eling for tracking by the natural language specification.
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