
CAD-Estate: Large-scale CAD Model Annotation in RGB Videos

Kevis-Kokitsi Maninis
Google Research

Stefan Popov
Google Research

Matthias Nießner
TUM

Vittorio Ferrari
Google Research

Figure 1. Example annotations of the CAD-Estate dataset. We create globally consistent 3D representations from RGB videos, by retrieving
CAD models and estimating their poses. We visualize them by overlaying them on the video frames (left, mid), and from a top-view (right).

Abstract

We propose a method for annotating videos of com-
plex multi-object scenes with a globally-consistent 3D rep-
resentation of the objects. We annotate each object with
a CAD model from a database, and place it in the 3D
coordinate frame of the scene with a 9-DoF pose trans-
formation. Our method is semi-automatic and works on
commonly-available RGB videos, without requiring a depth
sensor. Many steps are performed automatically, and the
tasks performed by humans are simple, well-specified, and
require only limited reasoning in 3D. This makes them fea-
sible for crowd-sourcing and has allowed us to construct
a large-scale dataset by annotating real-estate videos from
YouTube. Our dataset CAD-Estate offers 101k instances of
12k unique CAD models placed in the 3D representations
of 20k videos. In comparison to Scan2CAD, the largest ex-
isting dataset with CAD model annotations on real scenes,
CAD-Estate has 7× more instances and 4× more unique
CAD models. We showcase the benefits of pre-training a
Mask2CAD model on CAD-Estate for the task of automatic
3D object reconstruction and pose estimation, demonstrat-
ing that it leads to performance improvements on the pop-

ular Scan2CAD benchmark. The dataset is available at
https://github.com/google-research/cad-estate .

1. Introduction

Semantic 3D scene understanding from images and
videos is a major topic in 3D scene understanding, cru-
cial for many computer vision applications, ranging from
robotics to AR/VR scenarios. The final goal is to detect all
objects in the scene, recognize their class, reconstruct their
3D shape, as well as their pose within the overall scene co-
ordinate frame. With the advances of scalable deep learning
techniques, the field has progressed from reconstructing the
3D shape of one object in a simple image with trivial back-
ground [32, 50, 40, 33, 8, 17], to limited reasoning about ob-
ject arrangements in simple multi-object scenes [36, 18, 23],
and finally to unrestricted multi-object 3D reconstruction in
complex real-world scenes [49, 30, 42, 12]. This evolution
has been dependent on the availability of ever larger and
more diverse data sets for training and evaluation [3, 10, 6,
44, 47, 7, 27, 15, 16]

Existing datasets for Semantic 3D scene understanding

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

20189



Dataset Type of data Sensor type Multi-object Annotation type Requires 3D reasoning Total # objects
SUN RGB-D [44] image RGB-D ✓ 3D box yes 64.6k

PASCAL 3D+ [51] image RGB ∼ CAD yes 36k
IKEA [28] image RGB ✗ CAD limited 759
Pix3D [47] image RGB ✗ CAD limited 10k

ABO [9] image RGB ✗ CAD no 6.3k
Objectron [1] video RGB ✗ 3D box yes 17k

CO3D [37] video RGB ✗ object point cloud no 19k
Replica [46] video RGB-D++ ✓ labels on scene point cloud yes ∼3k

Matterport3D [6] video RGB-D ✓ labels on scene point cloud yes 50.8k
Scan2CAD [3] video RGB-D ✓ CAD yes 14.2k

CAD-Estate (Ours) video RGB ✓ CAD limited 101k

Table 1. Real 3D scene understanding datasets and their attributes. ‘Multi-object’: whether there is more than one annotated object in the
same image/video. ‘Annotation type’: what constitute the annotation for an object. ’Requires 3D reasoning’: whether annotators need to
reason in 3D. ’Total’: number object instances with annotations.

fall broadly in two categories: synthetic and acquired from
real images/videos. The former [27, 15, 16, 45, 41] feature
artificial 3D scenes that are manually designed by human
artists, and then rendered into synthetic images. While these
datasets are relatively large, their images/videos expose a
domain gap to real imagery [52, 39, 48, 19, 38, 35].

Acquired datasets [10, 3, 44, 46, 6] annotate 3D objects
on real images and videos (Table 2). Such datasets have
been limited in size and diversity so far, partly due to limi-
tations in their annotation process. They rely on specialized
equipment to capture depth images (RGB-D) in order to get
a high-quality 3D point cloud reconstruction of the scene.
Humans then annotate objects on this 3D point cloud. How-
ever, it is very expensive and cumbersome to go and physi-
cally acquire RGB-D videos in the real world, which limits
the number of scenes captured, as well as their variety (e.g.
RGB-D sensors struggle outdoors due to sunlight, fail on
glossy surfaces, and they have limited depth range). More-
over, annotating on 3D point clouds requires expert annota-
tors able to reason in 3D.

In this paper, we present the CAD-Estate dataset, which
annotates real videos of complex scenes from Real Estate
10k [53] with globally-consistent 3D representations of the
objects within them. For each object we find a similar
CAD model from a database, and place it in the 3D coordi-
nate frame of the scene with a 9-DoF pose transformation.
We designed a semi-automatic approach which works on
commonly-available RGB videos, without requiring a depth
sensor, thereby opening the door to annotating many videos
readily available on the web. In our approach many steps
are performed automatically, and the tasks performed by hu-
mans are simple, well-specified, and require only very lim-
ited reasoning in 3D. This makes them feasible for crowd
sourcing, enabling to distribute work to a large pool of an-
notators. In turn, this has allowed us to construct a truly
large-scale data set.

CAD-Estate contains 100,882 instances of 12,024
unique CAD models, covering 19,512 videos (Sec. 4). The

models span 49 categories, 28 of which with more than
100 objects annotated. In comparison, the largest existing
dataset with CAD model annotations on real multi-object
scenes (Scan2CAD [3]) has 7× fewer objects (14,225), 4×
fewer unique CAD models, 2× fewer categories with more
than 100 objects (14) and 13× fewer videos (1,506).

In our experiments, we show that pre-training a modern
model for automatic 3D object reconstruction and pose es-
timation [23] on CAD-Estate improves performance on the
popular Scan2CAD benchmark [3]. Moreover, we estab-
lish baseline performance on our own test set, and provide
ablation experiments to validate various choices of our an-
notation pipeline.

2. Related Work
Synthetic scene understanding datasets. Datasets of
3D object assets (without their poses on images) include
ShapeNet [7], 3D-FUTURE [16], ABC [22] and ABO [9].
Most recently, Objaverse [13] released a large dataset of
818k 3D assets. Other synthetic datasets contain 3D objects
placed in artificial 3D scenes designed by artists, usually
indoor rooms [27, 45, 41], and then rendered into images.

Synthetic datasets are large scale (up to 818k objects
of [13]), but require extra efforts to bridge the domain gap
for applications on real imagery [52, 39, 48, 19, 38, 35].

Real 3D scene understanding datasets. Several datasets
have objects annotated on individual images (Table 1, top
block). Sun RGB-D [44] provides image-depth pairs from
an RGB-D sensor along with objects annotated with 3D
bounding-boxes (no 3D shapes). PASCAL-3D+ [51] aligns
simple CAD models to images by manually specifying the
object pose and the focal length of the camera. They focus
on simple images with fewer than 2 instances on average.
IKEA Objects [28] and Pix3D [47] annotated one object
per image by aligning a 3D CAD model on it. Moreover,
their scale is limited by the requirement for having CAD
models exactly matching the objects in the images, which

20190



M2

M3

M1 A3
A4

A5 M3

M1

M4

M2

A3

A5

A4

A2

M4

M3

M1

M2

A3

A5
A2

A6

M4
A2

A1
Figure 2. Automatic (A) and manual tracks (M). Automatic tracking can miss objects if they are truncated, occluded (like M4), or small
(like M1). We complete such tracks manually, on the validation and test sets.

are difficult to find. More recently, ABO [9] automatically
estimated 3D object poses for part of their 3D assets, on au-
tomatically retrieved images (6.3k images with one object
annotated in each).

Other datasets annotate objects on videos (Table 1, bot-
tom block). CO3D [37] and Objectron [1] have videos
mostly featuring one object each, and provide either a re-
constructed point cloud of the object [37] or a 3D bounding
box [1]. Several works [46, 6, 10] use an RGB-D sensor
to capture videos of rooms with multiple objects, then re-
construct a 3D point cloud scan of the scene by fusing the
acquired depth maps. They then label this 3D scan with ob-
ject class and instance labels, resulting in incomplete object
shapes. Closer to our work, Scan2CAD [3] goes a step fur-
ther, building on [10] by manually annotating posed CAD
models on the 3D scan. These datasets heavily rely on a
depth sensor, which limits their scale and applicability. In
contrast, we propose an annotation method which works
on RGB videos, enabling annotating videos readily avail-
able on the web. Moreover, our human annotation tasks are
very simple, and require little reasoning in 3D. These two
features make our approach more scalable. We construct
CAD-Estate, which annotates 101k objects with clean CAD
models and full 9-DoF poses on pure RGB videos. This
is larger than any other dataset of real imagery, and is 7×
larger than Scan2CAD, which also offers posed CAD mod-
els (on RGB-D video).

Multi-object 3D reconstruction Many works tackle
multi-object 3D reconstruction from a single image [18, 36,
23, 24]. They are either trained on synthetic data [36],
or on small real datasets [18, 23, 24]. Similarly, re-
cent learning-based approaches reconstruct a scene from a
video [30, 25, 26, 49, 42], and use Scan2CAD as their main
evaluation benchmark. Our CAD-Estate dataset can benefit
all of these works as it offers new, large-scale, diverse, real
video data with annotated complex spatial arrangements of
3D objects into scenes. In Section 5 we show that pretrain-
ing on CAD-Estate boosts the results of [23] on the original
dataset it has been trained for [3].

3. Dataset construction

Given a video of a static scene, our goal is to create a
globally-consistent 3D representation that contains all its
objects. To achieve this, we propose a semi-automatic sys-
tem that relies on a large database of CAD models. For each
object in the scene, we find a similar-looking CAD model
from the database and place it in the 3D coordinate frame of
the scene by estimating its 9-DoF pose (i.e. 3D translation,
3D rotation, and 3D scale, allowing for independent scaling
along each axis).

We design the system so that many steps are performed
automatically. We leave only a few, simple and well-
specified tasks for human annotators. These are all decom-
posed over individual objects, removing the complexities
of considering the whole scene, and involve only very lim-
ited reasoning in 3D. These characteristics make the tasks
feasible for crowd sourcing, enabling to distribute work to
a large pool of annotators, as opposed to few in-house ex-
perts [10, 3]. This enables constructing a truly large dataset.

We annotated videos of RealEstate10K [53], which show
multiple rooms of real estate properties. The videos are split
into shots, and camera poses have been extracted using an
SfM pipeline [43]. We use ShapeNet [7] as our CAD model
database, which contains 51k objects over 55 classes.

System overview. Our system receives an RGB video as
input, with camera parameters for each frame (typically de-
rived using SfM [43]). The output is the class, 3D pose
(rotation, translation, scale), and 3D shape of each object in
the video (represented as a CAD model from a database).

The system amounts to a sequence of 5 stages:
(1) We start by detecting objects in the video and tracking
them over time, either automatically or with the help of hu-
mans (Sec. 3.1). Each track corresponds to one physical
object in the scene and forms the unit of annotation. All
further stages operate on one track at a time with the goal
of reconstructing its pose, shape, and class.
(2) For each track, we automatically select a few similar-
looking CAD model candidates from the database, and then
ask humans to choose the best match (Sec. 3.2).
(3) We ask humans to annotate 3D ↔ 2D point correspon-

20191



dences between the chosen CAD model and the object in
the video, on a few key-frames (Sec. 3.3).
(4) We use the annotated correspondences together with the
camera parameters of the key-frames to automatically esti-
mate the 9-DOF pose of the object (Sec. 3.4).
(5) Finally, we ask humans to verify the estimated pose for
quality control (Sec. 3.5).

3.1. 2D Object detection and tracking

In this first stage we detect objects in the video and track
them over time. Each track then corresponds to one physical
object and forms the unit of annotation for all subsequent
stages. We apply somewhat different procedures for the
training and val/test sets of our dataset, in order to strike a
good trade-off between automation (hence reducing human
effort) and completeness of annotation (we want to capture
all objects in the val/test set).

Train set. We detect objects in each frame automatically
using a SpineNet-based model [14].

We also extract an appearance descriptor for each detec-
tion box, by applying a Graph-Rise-based [20] model.

Next, we associate detections over time, as common in
tracking-by-detection approaches [4, 11, 2]. We compute
various similarity scores between two detections in different
video frames, including the similarity between their appear-
ance descriptors, the difference in their class labels, and the
spatial continuity of the box positions in adjacent frames.
Then we cluster all detections across all frames into tracks
based on these similarity scores using the Clique Partition-
ing approach of [31].

Val/Test sets. Automatic detection and tracking models
can sometimes miss objects as they do not work perfectly.
Since for the validation and the test sets we strive for a high
degree of completeness, we annotate missing object tracks
manually (in addition to the automatic ones). For this we
developed an efficient custom interface that allows anno-
tators to draw a whole object track in time, i.e. drawing
a bounding-box [34] on each key-frame where a particular
physical object appears. For efficiency, we automatically
focus work on 6 frames regularly-spaced in time. The anno-
tators see all current tracks already found by the automatic
approach, and only draw missing ones.

Note how we apply this manual annotation procedure
only to a rather small subset of the data (val/test sets have
fewer videos than train, Table 2).

3.2. Selecting a CAD model

The second stage is to select a suitable CAD model for a
tracked object. We first select 10 candidates automatically
from the database. We then ask a human to chose the one

that looks the closest to the object in the video. This re-
moves the need for annotators to search through the large
database.

Finding candidates automatically. We find candidate
CAD models for an object track by considering both ap-
pearance similarity and class label similarity cues. During
pre-processing, we render the CAD models in the database
from 10 random viewpoints and compute an appearance de-
scriptor for each view (the same as in Sec. 3.1). We then
compute the appearance similarity between an object box
in a frame of the object track and a CAD model view as the
cosine similarity of their descriptors.

For the class label similarity we need to take special care,
as the label spaces of the CAD model database and the ob-
ject detector are different and feature multi-way relation-
ships (e.g. the CAD ”cabinet” matches the detector’s ”filing
cabinet”, ”wardrobe”, and ”chest of drawers”). Hence, we
embed each class label name into a common semantic space
using the Universal Sentence Encoder [5], and compute the
cosine similarity between any two class labels in this space.
This is a general solution that can work with any label space.
We combine the appearance and class similarity scores with
a simple product.

To compute the overall similarity between an object
track and a CAD model, we aggregate the combined
appearance-class similarity over all pairs of frames and
CAD model views. We use this overall similarity score to
rank CAD models and select the top 10 as candidates for
an object track. In practice the class similarity act as a soft
filter for the appearance similarity, so the best CAD models
are the most similar-looking ones to the object in the track,
among those that have a similar class label.

Selecting the best candidate with a human. We ask an-
notators to choose the best matching candidate. We show
them the detected object on a set of evenly spaced key-
frames, next to the rendered CAD model candidates. An-
notators can navigate between key-frames, to see the ob-
ject from multiple views. Annotators can declare that none
of the candidates are similar enough to the tracked object
(hence that track is not passed on to the later stages).

3.3. 3D ↔ 2D point correspondences

We now ask humans to annotate point correspondences
between the 3D surface of the CAD model and the video
frames of the tracked object (Fig. 3). As for the CAD can-
didate selection case, the interface enables annotators to
navigate between key-frames. We show the selected CAD
model next to the key-frames. For each key-frame, we ask
annotators to annotate 4-6 point correspondences between
the CAD model and the frame. To make the task easier,
they can rotate and flip the CAD model in 3D, in order to

20192



Figure 3. We ask humans to annotate point correspondences be-
tween the 3D surface of the CAD model and the video frames of
the tracked object.

roughly match the orientation of the object in the frame. We
will use these correspondences to recover the 9-DOF object
pose in the next stage.

Our approach consists of steps that are easy to under-
stand and easy to master. Annotators control rotation with
Orbit Controls [29], which translates 2D mouse movements
to view-local object rotation in 3D in an intuitive way. Af-
terwards, clicking on CAD-to-image point correspondences
is very easy and is similar to other familiar 2D annotation
tasks. Most importantly, this approach is object-centric and
requires no reasoning in 3D in the global coordinate frame
of the scene. Instead, this harder task is done automatically
in the pose estimation stage of our system. Finally, anno-
tating point correspondences is decoupled between frames:
the annotator is free to pick different points in every frame.
This makes it easy even for objects with complex shapes.

3.4. Object 3D pose estimation

We use the 3D ↔ 2D point correspondences to auto-
matically estimate a global 9-DOF pose for the object. We
apply a non-linear optimization method, which integrates
evidence from all views in a track, and consists of multiple
objectives.

We express the object pose as a 9-DOF transformation
that brings the CAD model from its canonical pose to the
world coordinate frame of the scene.

The transformation has 3 components: 3D translation
T , 3D rotation R, and anisotropic 3D scale S (i.e. we al-
low independent scaling along each axis). The goal is to
recover this unknown transformation (T,R, S). We setup
below several objectives, which are functions of (T,R, S),
and combine them into an overall objective. Finally we min-
imize that overall objective over (T,R, S).

Point re-projection objective. We know the extrinsic and
intrinsic camera parameters at each video frame. Given a
potential (T,R, S) we can use it along with the camera pa-
rameters to project the 3D points on the surface of the CAD

Figure 4. Point re-projection objective. We project the annotated
points on the CAD model to the video frames given a candidate
pose (T,R, S), and penalize the displacement with respect to their
2D correspondences (arrows in cyan). We minimize this objective
over poses (along with two others).

model to the video frame. Therefore, we setup a point re-
projection objective Lrepr(T,R, S) which measures the L1
distance between the projected 3D points and their corre-
sponding 2D points in each frame (and sum over all frames,
Figure 4). The correspondences are given by the 3D ↔ 2D
annotations from Sec. 3.3, and we also take into account
whether the annotator flipped the CAD model.

Up-axis objective. Most objects in our videos are usually
placed vertically in an upright position. We reflect this by
imposing an L1 objective that penalizes 3D rotations that
change the ”up”-axis of the object with respect to the world.
We do this directly on the target rotation matrix R by ap-
plying the additional objective Lup(R). This objective is
applied to object classes that are usually found in upright
position (e.g. chairs, tables, cabinets, etc.), whereas other
classes such as pillows are excluded. For this objective to be
applied, we need to know the up-axis for the objects in our
CAD database, and in the world coordinate frame (which
we do for ShapeNet and RealEstate10K).

Front-of-camera objective. We encourage object pose
transformations that place all annotated 3D points in front
of their respective cameras (rather than behind), by penal-
izing 3D points that have a negative depth in the coordinate
frame of that camera.

Special scale parameterization for co-planar 3D points.
Sometimes, all 3D points chosen in Sec. 3.3 by the an-
notator on the CAD model are co-planar. This typically
happens when the video shows only a planar part of the
object, e.g. a table seen only from the top, or a cupboard
seen only frontally. Co-planar 3D points prevent resolving
all three dimensions of the target scaling transformation S.
We detect such cases automatically during annotation. We
then resolve them during pose estimation by constraining

20193



0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
0

0.2

0.4

0.6 CAD-Estate
Scan2CAD [3]

Figure 5. Truncation histogram for CAD-Estate and Scan2CAD.
We measure the degree of object truncation as the fraction of a
CAD model surface that projects outside of the video frame.

the scaling factor perpendicular to the annotated plane to be
the average of the other two scale factors. This reduces the
DOF of the scaling transformation S down to 2.

Special rotation/scale parameterization for symmetric
objects. In many cases the retrieved CAD models are
symmetric, which typically leads to inconsistent point cor-
respondence annotations across frames (e.g. an annotator
picking a particular 3D point on a rotation-symmetric lamp
corresponds to a point in the video in a frame, but then pick-
ing a different 3D point in a different frame, as these are
equivalent up to symmetry). We handle these cases by op-
timizing for a rotation w.r.t any of the symmetries of the
object in the reprojection objective. We consider the same
symmetries as in Scan2CAD, i.e. 2-way (e.g. a rectangular
table), 4-way (e.g. a square table), and 36-way (e.g. a round
table). We detect symmetries automatically directly on each
CAD model. For fully symmetric objects (36-way symmet-
ric), we further constrain the two scaling factors around the
up-axis to be identical.

Optimization We combine the above objectives in an
overall one:

Lpose(T,R, S) = Lrepr(T,R, S) + α · Lup(R)

+ β · Lfront(T,R, S)
(1)

We minimize this objective over (T,R, S) with
Adam [21]. α and β are hyperparameters set empirically.

3.5. Pose verification by humans

In this last stage, we verify whether the pose computed in
the previous stage matches the image contents in the video.
This is necessary as pose estimation can fail for several rea-
sons, including limited/degenerate camera motion, occlu-
sion, and truncated objects.

We render the CAD model as overlay on top of the video
frames in a track, using the camera parameters and the esti-
mated object pose (T,R, S). We then ask human annotators
to judge whether the rendered CAD aligns well with the ob-
ject in the video. If it aligns well in all key-frames, we mark
the pose as correct.

CAD-Estate
Dataset Train Val/Test Total Scan2CAD

#Scenes 16713 2799 19512 1506
#Posed objects 77832 23050 100882 14225

#Classes 49 40 49 35
#Classes > 1000 11 5 13 4

#Classes > 100 24 22 28 14
#Objects per scene 4.7 8.2 5.2 9.4

#CAD models 10358 6192 12024 3049
#Frames per scene 138 139 138 1604

Source RGB RGB RGB RGB-D

Table 2. General statistics of CAD-Estate and Scan2CAD.

4. Dataset analysis

General statistics. Table 2 compares general statis-
tics of CAD-Estate to the closest existing video dataset
Scan2CAD [3]. We further split the stats of our dataset into
training set and val/test test sets.

CAD-Estate is an order of magnitude larger than
Scan2CAD (20k vs. 1.5k scenes, and 101k vs. 14.2k posed
objects). The annotated objects cover more classes (49 vs.
35 in Scan2CAD). Figure 6 shows the distribution of anno-
tated objects over classes. Despite the long tail, there are
many more classes that have a large number of objects (13
classes with > 1000 objects vs 4 in Scan2CAD, and 28
classes with > 100 objects vs 14).

CAD-Estate also offers greater diversity of object 3D
shapes. It is annotated with 12k CAD models vs 3k for
Scan2CAD (noting that in both datasets the CAD shapes
are a close match rather than exactly matching the shape of
the object in the image).

Camera framing. There is a qualitative difference be-
tween the video captures of Scan2CAD (from Scan-
Net [10]) and CAD-Estate (from RealEstate10K [53]). The
videos of [10, 3] were captured with an RGB-D sensor, tak-
ing close-up views which facilitates acquiring good quality
depth maps. Instead, the videos of CAD-Estate are captures
of real estate properties with more distant views that depict
a larger part of each room, as the goal was to showcase the
space for selling it. The video shots are also shorter (138
frames per video in CAD-Estate vs. 1.6k in Scan2CAD).

As a consequence of the more distant views, several
key statistics are different in CAD-Estate, compared to
Scan2CAD: (1) More objects are visible in one video frame
at the same time: on average, 7.9 in CAD-Estate vs 3.3 in
Scan2CAD. (2) More objects are further way from the cam-
era and thus appear smaller on the images: on average, the
bounding-box of a CAD-Estate object covers 7.5% of the
image area vs. 16.5% in Scan2CAD. (3) The dynamic range
of the Z position of objects is larger: in CAD-Estate the far-
thest object is 4.5× farther from the camera than the nearest
one, vs. 2.3× in Scan2CAD. (4) Object truncation is much

20194



ca
bi

ne
t

ch
ai

r
ta

bl
e

la
m

p
st

ov
e

pi
llo

w
so

fa
be

d
m

ic
ro

w
av

e
ba

th
tu

b
po

t
fa

uc
et

bo
ok

sh
el

f
di

sh
w

as
he

r
di

sp
la

y
w

as
he

r
be

nc
h

cl
oc

k ja
r

bo
w

l
lo

ud
sp

ea
ke

r
bo

ttl
e

ba
sk

et ca
r

pi
an

o
ve

ss
el

as
hc

an
pr

in
te

r
gu

ita
r

la
pt

op
m

ug
to

w
er

ke
yb

oa
rd

ba
g

te
le

ph
on

e
fil

e
m

ot
or

cy
cl

e
ca

p

he
lm

et
m

ai
lb

ox
te

le
ph

on
e

m
ic

ro
ph

on
e

bu
s

ca
m

er
a

tr
ai

n
kn

if
e

co
nt

ro
l

ai
rp

la
ne ca
n

1

10

100

1000

10000
25000

CAD-Estate
Scan2CAD [3]

Figure 6. Class histogram of CAD-Estate vs. Scan2CAD [3]. We annotate more classes with many more objects. Note the logarithmic
scale of the vertical axis.

higher in ScanNet compared to CAD-Estate, where most
objects are completely visible (Figure 5). This is also a con-
sequence of the capture process, as ScanNet needs close-up
captures due to the range of the depth sensor.

The camera framing statistics above highlight how CAD-
Estate poses a different challenge than Scan2CAD for auto-
matic scene understanding methods, as they need to handle
more complex views with more objects visible at the same
time, many smaller objects, a higher variability of their dis-
tance to the camera, but also less truncated by the image
frame.

5. Experiments

We first perform several experiments by training a
learning-based method for CAD model alignment [23] on
CAD-Estate (Sec. 5.1), demonstrating that it leads to per-
formance improvements on the Scan2CAD test set, and es-
tablishing that our test set offers a harder challenge. Then in
Sec. 5.2 we provide ablation experiments for the different
components of our annotation pipeline, showing their rela-
tive merit and demonstrating that they are all necessary to
achieve high quality.

5.1. Training Mask2CAD on CAD-Estate

In this section, we showcase how CAD-Estate can be
used to train Mask2CAD [23], a deep learning method for
single-image 3D object reconstruction and pose estimation.
We start by studying the benefits of having a large training
set by pre-training [23] on CAD-Estate and then fine-tuning
and evaluating on Scan2CAD [3] (where Mask2CAD was
originally benchmarked on). Then we establish baseline re-
sults for Mask2CAD trained and tested on CAD-Estate.

From CAD-Estate to Scan2CAD. Mask2CAD has been
extensively evaluated [23] by training and testing on the
Scan2CAD dataset [3], whose training set consists of 9.5k
objects over 19k frames on 1194 scenes. We run the
same experiment, but first pre-train Mask2CAD on a much

larger training set of 45k objects over 150k frames sam-
pled from 11k scenes of CAD-Estate’s trainval. Then we
fine-tune on the train set of Scan2CAD, and evaluate on
the test set with the popular metrics APmesh, AP 50

mesh, and
AP 75

mesh [23, 18].
Table 3 presents the results on all 3 metrics above, and

additionally per-class APmesh. As the results show, pre-
training on our large dataset improve the performance of
Mask2CAD significantly, for almost all classes. We observe
that the improvement is greater for classes for which CAD-
Estate has many objects (cabinet, table, bed).

Train and test on CAD-Estate. We now establish base-
line results for Mask2CAD on CAD-Estate (training on
our trainval set, and evaluating on the test set). We use
the same classes as Scan2CAD for this experiments, and
the same evaluation metrics, enabling approximate compar-
isons across datasets.

The results in Table 4 show that Mask2CAD achieves
considerably lower performance on CAD-Estate than on
Scan2CAD. Especially on the strict IoU threshold AP 75

mesh,
the performance is much lower (5.7 vs. 2.4). This indi-
cates that our test set might offer a harder challenge. CAD-
Estate provides more complex scenes that are difficult to
reconstruct, and objects are in general further away from
the camera, which makes pose estimation harder.

5.2. Optimization objectives for 3D pose estimation

We study the influence of the object pose optimization
objectives of Section 3.4 on pose estimation quality. We
evaluate by asking annotators to verify the poses produces
by different versions of the pose estimator (as in Sec. 3.5,
but on a subset of the data). A higher percentage of posi-
tively verified object poses indicates a better pose estimator.

Starting from 52.2%, the percentage of positively veri-
fied poses improves steadily as we add the special param-
eterization of the re-projection objective for handling co-
planar 3D points (57.6%), the one for handling symmetric
objects (62.9%), and the up-axis objective (74.9%). This

20195



Figure 7. Annotated scenes from CAD-Estate, overlaid on video frames (left, mid), and shown from a top view (right).

20196



Pretraining on CAD-Estate APmesh AP 50
mesh AP 75

mesh bed sofa chair cabinet bin display table bookshelf
no (original [23]) 8.4 23.1 4.9 14.2 13 13.2 7.5 7.8 5.9 2.9 3.1

no 8.2 23.1 4.9 14.0 12.7 12.9 7.1 7.6 6 2.5 3.0
yes 9.4 25.0 5.7 15.1 13.2 14.5 9.0 7.4 7.8 4.0 4.5

Table 3. Performance of Mask2CAD on Scan2CAD’s test set. Top row: results reported by [23] by training on Scan2CAD train set; Second
row: our reproduction of that experiment, which reaches nearly identical performance. Bottom row: pre-training on CAD-Estate train set,
then fine-tuning on Scan2CAD train set. Performance improves thanks to our additional training data.

APmesh AP 50
mesh AP 75

mesh bed sofa chair cabinet bin display table bookshelf
Maks2CAD on CAD-Estate 7.5 21.2 2.4 13.4 10.2 10.7 10.3 2.0 4.1 5.2 4.2

Table 4. Mask2CAD results on CAD-Estate.

demonstrates that all of them contribute to the quality of
our dataset, as they enable to estimate a correct pose for a
greater number of objects. The largest contribution is made
by the up-axis objective, as it affects many objects. Instead,
27.8% of all objects in our dataset are symmetric, and only
15.5% received co-planar 3D point annotations.

6. Conclusions

We introduced a new way to annotate 9-DoF pose of
CAD models on monocular RGB videos. As a result of
our method, we obtained the CAD-Estate dataset, which
features 101k instances of 12k unique CAD models placed
in the 3D representations of 20k videos. This dataset is
an order of magnitude larger than existing CAD annota-
tion efforts facilitated by our new annotation method. We
have shown experimentally that the quantity and diversity
of such data significantly benefits the modern CAD align-
ment technique Mask2CAD, leading to improved perfor-
mance on Scan2CAD. However, we believe that this is only
a first step, and CAD-Estate is an important stepping stone
towards leveraging CAD priors for 3D scene reconstruction
and understanding in the context of a wide range of down-
stream tasks.

Acknowledgements: We thank Prabhanshu Tiwari,
Sweety Chaudhary, Abha Dwivedi, Ashlesha Shantikumar,
Umesh Vashisht, Mohd Adil for coordinating the anno-
tation process, and Weicheng Kuo who helped us with
running Mask2CAD on our dataset.

References
[1] Adel Ahmadyan, Liangkai Zhang, Artsiom Ablavatski, Jian-

ing Wei, and Matthias Grundmann. Objectron: A large scale
dataset of object-centric videos in the wild with pose anno-
tations. In CVPR, pages 7822–7831, 2021. 2, 3

[2] Mykhaylo Andriluka, Stefan Roth, and Bernt Schiele.
People-tracking-by-detection and people-detection-by-
tracking. In CVPR, pages 1–8. IEEE, 2008. 4

[3] Armen Avetisyan, Manuel Dahnert, Angela Dai, Manolis
Savva, Angel X Chang, and Matthias Nießner. Scan2CAD:
Learning cad model alignment in RGB-D scans. In CVPR,
2019. 1, 2, 3, 6, 7

[4] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixe.
Tracking without bells and whistles. In ICCV, pages 941–
951, 2019. 4

[5] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant, Mario
Guajardo-Cespedes, Steve Yuan, Chris Tar, Brian Strope,
and Ray Kurzweil. Universal sentence encoder for English.
In EMNLP, pages 169–174, Brussels, Belgium, Nov 2018.
Association for Computational Linguistics. 4

[6] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d
data in indoor environments. In 3DV, 2017. 1, 2, 3

[7] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. arXiv preprint, arXiv:1512:03012, 2015. 1, 2, 3

[8] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3D-R2N2: A unified approach
for single and multi-view 3D object reconstruction. In
ECCV, 2016. 1

[9] Jasmine Collins, Shubham Goel, Kenan Deng, Achlesh-
war Luthra, Leon Xu, Erhan Gundogdu, Xi Zhang, Tomas
F Yago Vicente, Thomas Dideriksen, Himanshu Arora, et al.
ABO: Dataset and benchmarks for real-world 3D object un-
derstanding. In CVPR, pages 21126–21136, 2022. 2, 3

[10] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
CVPR, 2017. 1, 2, 3, 6

[11] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and
Michael Felsberg. Atom: Accurate tracking by overlap max-
imization. In CVPR, pages 4660–4669, 2019. 4

[12] Anton Konushin Danila Rukhovich, Anna Vorontsova.
ImVoxelNet: Image to voxels projection for monocular and
multi-view general-purpose 3d object detection. In WACV,
2022. 1

20197



[13] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs,
Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana
Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse:
A universe of annotated 3d objects. arXiv:2212.08051, 2022.
2

[14] Xianzhi Du, Tsung-Yi Lin, Pengchong Jin, Golnaz Ghiasi,
Mingxing Tan, Yin Cui, Quoc V Le, and Xiaodan Song.
Spinenet: Learning scale-permuted backbone for recognition
and localization. In CVPR, pages 11592–11601, 2020. 4

[15] Huan Fu, Bowen Cai, Lin Gao, Ling-Xiao Zhang, Jiaming
Wang, Cao Li, Qixun Zeng, Chengyue Sun, Rongfei Jia, Bin-
qiang Zhao, et al. 3d-front: 3d furnished rooms with layouts
and semantics. In ICCV, pages 10933–10942, 2021. 1, 2

[16] Huan Fu, Rongfei Jia, Lin Gao, Mingming Gong, Binqiang
Zhao, Steve Maybank, and Dacheng Tao. 3d-future: 3d fur-
niture shape with texture. IJCV, pages 1–25, 2021. 1, 2

[17] R. Girdhar, D.F. Fouhey, M. Rodriguez, and A. Gupta.
Learning a predictable and generative vector representation
for objects. In ECCV, 2016. 1

[18] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh
R-CNN. In ICCV, 2019. 1, 3, 7

[19] Haoshuo Huang, Qixing Huang, and Philipp Krahenbuhl.
Domain transfer through deep activation matching. In
ECCV, September 2018. 2

[20] Da-Cheng Juan, Chun-Ta Lu, Zhen Li, Futang Peng, Aleksei
Timofeev, Yi-Ting Chen, Yaxi Gao, Tom Duerig, Andrew
Tomkins, and Sujith Ravi. Graph-rise: Graph-regularized
image semantic embedding. CoRR, abs/1902.10814, 2019.
4

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv:1412.6980, 2014. 6

[22] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis
Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa,
Denis Zorin, and Daniele Panozzo. Abc: A big cad model
dataset for geometric deep learning. In CVPR, pages 9601–
9611, 2019. 2

[23] Weicheng Kuo, Anelia Angelova, Tsung-Yi Lin, and Angela
Dai. Mask2CAD: 3D shape prediction by learning to seg-
ment and retrieve. In ECCV, 2020. 1, 2, 3, 7, 9

[24] Weicheng Kuo, Anelia Angelova, Tsung-Yi Lin, and Angela
Dai. Patch2cad: patchwise embedding learning for in-the-
wild shape retrieval from a single image. In ICCV, pages
12589–12599, 2021. 3

[25] Kejie Li, Daniel DeTone, Yu Fan Steven Chen, Minh Vo, Ian
Reid, Hamid Rezatofighi, Chris Sweeney, Julian Straub, and
Richard Newcombe. Odam: Object detection, association,
and mapping using posed rgb video. In ICCV, 2021. 3

[26] Kejie Li, Hamid Rezatofighi, and Ian Reid. MOLTR: Mul-
tiple object localization, tracking and reconstruction from
monocular rgb videos. RA-L, 6(2):3341–3348, 2021. 3

[27] Wenbin Li, Sajad Saeedi, John McCormac, Ronald Clark,
Dimos Tzoumanikas, Qing Ye, Yuzhong Huang, Rui
Tang, and Stefan Leutenegger. Interiornet: Mega-
scale multi-sensor photo-realistic indoor scenes dataset.
arXiv:1809.00716, 2018. 1, 2

[28] Joseph J Lim, Hamed Pirsiavash, and Antonio Torralba.
Parsing ikea objects: Fine pose estimation. In ICCV, pages
2992–2999, 2013. 2

[29] Mark Livingston, Arthur Gregory, and William Culbertson.
Camera control in three dimensions with a two-dimensional
input device. Journal of Graphics Tools, 5, 01 2000. 5

[30] Kevis-Kokitsi Maninis, Stefan Popov, Matthias Nießner, and
Vittorio Ferrari. Vid2CAD: CAD model alignment using
multi-view constraints from videos. IEEE Trans. on PAMI,
45(1):1320–1327, 2023. 1, 3

[31] Manuel Jesús Marin-Jimenez, Andrew Zisserman, Marcin
Eichner, and Vittorio Ferrari. Detecting people looking at
each other in videos. IJCV, 106(3):282–296, 2014. 4

[32] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In CVPR,
2019. 1

[33] Chengjie Niu, Jun Li, and Kai Xu. Im2Struct: Recovering
3D shape structure from a single RGB image. In CVPR,
2018. 1

[34] Dim P Papadopoulos, Jasper RR Uijlings, Frank Keller, and
Vittorio Ferrari. Extreme clicking for efficient object anno-
tation. In ICCV, 2017. 4

[35] Xingchao Peng, Ben Usman, Kuniaki Saito, Neela Kaushik,
Judy Hoffman, and Kate Saenko. Syn2real: A new bench-
mark forsynthetic-to-real visual domain adaptation. CoRR,
abs/1806.09755, 2018. 2

[36] Stefan Popov, Pablo Bauszat, and Vittorio Ferrari. CoReNet:
Coherent 3D scene reconstruction from a single RGB image.
In ECCV, 2020. 1, 3

[37] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler,
Luca Sbordone, Patrick Labatut, and David Novotny. Com-
mon objects in 3d: Large-scale learning and evaluation of
real-life 3d category reconstruction. In ICCV, pages 10901–
10911, 2021. 2, 3

[38] S. Richter, V. Vineet, S. Roth, and V. Koltun. Playing for
data: Ground truth from computer games. In ECCV, 2016. 2

[39] Stephan R. Richter, Hassan Abu Alhaija, and Vladlen
Koltun. Enhancing photorealism enhancement. IEEE Trans.
on PAMI, 45(2):1700–1715, 2023. 2

[40] Stephan R. Richter and Stefan Roth. Matryoshka networks:
Predicting 3D geometry via nested shape layers. In CVPR,
pages 1936–1944, 2018. 1

[41] Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit
Kumar, Miguel Angel Bautista, Nathan Paczan, Russ Webb,
and Joshua M. Susskind. Hypersim: A photorealistic syn-
thetic dataset for holistic indoor scene understanding. In
ICCV, 2021. 2

[42] Martin Runz, Kejie Li, Meng Tang, Lingni Ma, Chen Kong,
Tanner Schmidt, Ian Reid, Lourdes Agapito, Julian Straub,
Steven Lovegrove, et al. Frodo: From detections to 3d ob-
jects. In CVPR, 2020. 1, 3

[43] Johannes L Schönberger and Jan-Michael Frahm. Structure-
from-motion revisited. In CVPR, 2016. 3

[44] S. Song, S. Lichtenberg, and J. Xiao. SUN RGB-D: A RGB-
D scene understanding benchmark suite. In CVPR, 2015. 1,
2

[45] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Mano-
lis Savva, and Thomas Funkhouser. Semantic scene comple-
tion from a single depth image. In CVPR, pages 1746–1754,
2017. 2

20198



[46] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik
Wijmans, Simon Green, Jakob J Engel, Raul Mur-Artal, Carl
Ren, Shobhit Verma, et al. The replica dataset: A digital
replica of indoor spaces. arXiv:1906.05797, 2019. 2, 3

[47] Xingyuan Sun, Jiajun Wu, Xiuming Zhang, Zhoutong
Zhang, Chengkai Zhang, Tianfan Xue, Joshua B. Tenen-
baum, and William T. Freeman. Pix3D: Dataset and methods
for single-image 3D shape modeling. In CVPR, 2018. 1, 2

[48] Jonathan Tremblay, Aayush Prakash, David Acuna, Mark
Brophy, V. Jampani, Cem Anil, Thang To, Eric Cameracci,
Shaad Boochoon, and Stan Birchfield. Training deep net-
works with synthetic data: Bridging the reality gap by do-
main randomization. CVPR-W, pages 1082–10828, 2018. 2

[49] Michał J Tyszkiewicz, Kevis-Kokitsi Maninis, Stefan Popov,
and Vittorio Ferrari. Raytran: 3d pose estimation and shape
reconstruction of multiple objects from videos with ray-
traced transformers. In ECCV, pages 211–228. Springer,
2022. 1, 3

[50] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2Mesh: Generating 3D mesh
models from single RGB images. In ECCV, 2018. 1

[51] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. Beyond
pascal: A benchmark for 3d object detection in the wild. In
Proc. WACV, pages 75–82. IEEE, 2014. 2

[52] Sergey Zakharov, Rares Ambrus, Vitor Campanholo
Guizilini, Wadim Kehl, and Adrien Gaidon. Photo-realistic
neural domain randomization. In ECCV, 2022. 2

[53] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: learning view
synthesis using multiplane images. ACM Transactions on
Graphics, 37(4):1–12, 2018. 2, 3, 6

20199


