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Abstract

In stark contrast to the case of images, finding a con-
cise, learnable discrete representation of 3D surfaces re-
mains a challenge. In particular, while polygon meshes
are arguably the most common surface representation used
in geometry processing, their irregular and combinatorial
structure often make them unsuitable for learning-based
applications. In this work, we present VoroMesh, a novel
and differentiable Voronoi-based representation of water-
tight 3D shape surfaces. From a set of 3D points (called
generators) and their associated occupancy, we define our
boundary representation through the Voronoi diagram of
the generators as the subset of Voronoi faces whose two
associated (equidistant) generators are of opposite occu-
pancy: the resulting polygon mesh forms a watertight ap-
proximation of the target shape’s boundary. To learn the
position of the generators, we propose a novel loss func-
tion, dubbed VoroLoss, that minimizes the distance from
ground truth surface samples to the closest faces of the
Voronoi diagram which does not require an explicit con-
struction of the entire Voronoi diagram. A direct optimiza-
tion of the Voroloss to obtain generators on the Thingi32
dataset demonstrates the geometric efficiency of our repre-
sentation compared to axiomatic meshing algorithms and
recent learning-based mesh representations. We further use
VoroMesh in a learning-based mesh prediction task from
input SDF grids on the ABC dataset, and show comparable
performance to state-of-the-art methods while guaranteeing
closed output surfaces free of self-intersections.

1. Introduction
Geometry processing of three-dimensional shapes typi-

cally relies on a discrete representation of its surface bound-
ary. Among various boundary representations, point sets
and surface polygon meshes are popular because they are
simple to generate, edit, or render. While most tasks can be

(a) Target surface (b) Optimization (c) VoroMesh

Figure 1: VoroMesh at a glance: To fit our representation
to (a) a target shape (top: curve; bottom: surface), (b) the
positions of generators around the shape boundary are op-
timized based on our VoroLoss, before a binary occupancy
is assigned to each generator; (c) the VoroMesh is then ex-
tracted as a subset of the Voronoi diagram of the generators
containing only the Voronoi faces between pairs of genera-
tors of opposite occupancy.

efficiently performed with non-learning tools from the stan-
dard geometry processing toolbox, some of them (e.g., ill-
posed problems such as reconstruction from sparse data, or
data-driven tasks) require learning tools. Using neural net-
works with a differentiable (explicit or implicit) boundary
representation can be a powerful way to tackle these prob-
lems. Yet, discrete representations such as surface poly-
gon meshes rely on two parts: vertex locations, and vertex
connectivity defining the polygonal facets. The first part,
continuous in nature, is easy to learn, but the second part,
now combinatorial, is substantially more difficult, which
has hampered mesh-based learning methods in the past. In-
deed, besides the complexity issues arising from modeling
vertex connectivity, the discrete nature of topological con-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

14565



figurations in meshes poses two accompanying differentia-
bility issues that are particularly relevant in learning appli-
cations. First, the way connectivity is induced from corre-
sponding discrete variables generally is not differentiable;
even if probabilistic modeling can offer differentiable sam-
pling from discrete variables [17], the combinatorial nature
of connectivity forces faces and edges to be considered in-
dependently, which often produce polygon soup predictions
instead of watertight meshes. Second, vertex position op-
timization can also be hindered since non-stable mesh pre-
diction during training results in discontinuity in most of the
commonly-used loss functions based on sampling from pre-
dicted mesh surfaces, such as chamfer distance and point-
to-surface distance: any change of topology in the predic-
tion over the course of training can result in discontinuous
changes in the coordinates of on-surface samples.

State-of-the-art data-driven methods for mesh predic-
tion can be roughly categorized into two groups: meth-
ods producing shapes with neural implicit representations
and meshing their zero-level sets [16, 31, 33, 38], and ap-
proaches predicting explicit meshes as sets of vertices and
faces [6, 9, 13, 32, 40, 47]. While proven to be powerful at
capturing surfaces, implicit representations have their draw-
backs, such as the need for additional test-time surface dis-
cretization to produce meshes (which can be costly for high
resolutions), and limited control over the geometry of the
produced meshes due to the inability to explicitly define
optimization objectives on the output surfaces. While re-
cent works in the second category show promising results
in explicit mesh prediction, most of them rely on the use of
regular discretization grids, which limit their expressivity
and do not guarantee watertightness of the output meshes.

In order to circumvent the issues mentioned thus far,
we propose to use a differentiable surface representation
based on the 3D Voronoi diagram [4] of an input point
set of generators which canonically derives its combinato-
rial information from their location. The continuous place-
ment of generators results in an adaptive discretization of
3D surfaces which substantially improves the expressivity
of our representation compared to methods relying on reg-
ular grids. We leverage the geometric properties of the
Voronoi diagram (specifically, the fact that Voronoi cells
are defined as intersections of halfspaces) to formulate a
novel loss based only on bisectors between generators rather
than the full Voronoi diagram: this allows for a differen-
tiable optimization of the 3D Voronoi generators. Since our
loss function only requires the position of generators for
faithful surface approximation, our Voronoi representation
successfully mitigates the differentiability issues associated
with explicit connectivity modeling. Compared to previ-
ous Voronoi-based representations [48], we do not focus on
volume decomposition but on surface approximation, so our
loss does not need to be regularized via the addition of the

centroidal Voronoi tessellation energy to favor the spreading
of generators.

In summary, the main contributions of this work are:
•We establish a novel loss function, the VoroLoss, which

directly optimizes 3D Voronoi generators to fit an input
target shape (provided as a surface triangle mesh) without
requiring an explicit computation of the Voronoi diagram;

•We show that the representation power of our VoroMesh
outperforms Marching Cubes, Dual Contouring, and two
recent learning approaches in terms of geometric fidelity;

•We demonstrate that the proposed VoroMesh and
VoroLoss can be integrated into a learning pipeline to pre-
dict 3D Voronoi generators, along with their occupancy,
to reconstruct closed and non-self-intersecting meshes
from input regular grids of SDF values.

2. Related Work

Numerous prior works have sought 3D shape representa-
tions amenable to learning. We review the most relevant ap-
proaches while pointing the reader to a recent thorough re-
view on intelligent mesh generation [24] — which, notably,
identifies the generation of watertight manifold meshes as
one of the most significant open challenges.

Implicit representations. To bypass the issues of shape
discretization, pioneering 3D learning methods proposed to
use implicit surface representations defining shape bound-
aries as iso-surfaces of neural distance fields [12, 14, 33] or
as decision boundaries of neural occupancy classifiers [8,
29, 30, 50]. Most of the earlier methods, however, rely
on global features, trying to encode complete surface in-
formation into a single global latent vector. This constraint
limits the ability of these models to encode sharp local fea-
tures and prevents efficient generalization of models across
different categories and data domains. Additionally, most
of these works resort to Marching Cubes [26] for the final
mesh extraction, needing a cubic number of forward passes
of the occupancy/distance prediction network. As a con-
sequence, sharp features partially captured by the implicit
function are further smoothed out at low resolutions. Sin-
gle shape optimization [15, 41] is yet another type of im-
plicit representation, for which a shape is encoded by fit-
ting a whole neural network; but learning from previous
data is not possible, preventing many data-driven applica-
tions. Although our work focuses on the prediction of ex-
plicit discrete surface representation, it could potentially be
combined similarly to related mesh prediction approaches
discussed below, since inferred SDF values could be used
as inputs of our model.

Discrete representations. Different shape representations
have been proposed to capture geometric information for
learning-based applications. Early 3D shape modeling
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methods used regular [22, 49] and adaptive [44] grids of bi-
nary occupancy, or their decomposition [39] predicted by
3D CNNs to represent reconstructed geometry. A sepa-
rate line of works proposed to predict shapes as sets of
points inferred with MLPs [2, 42], invertible normaliz-
ing flows [21, 51], and diffusion-based generative mod-
els [28, 52]. Our representation relates to point clouds in
two aspects: we predict continuous point coordinates to rep-
resent shapes and use distance-based loss functions to pro-
vide the training signal; but our representation does not re-
strict output points to lie on the surface, using them instead
as generators of a 3D Voronoi diagram fitting the surface.

Occupancy grids and point clouds can be viewed as ap-
proximations of target surfaces suitable for prediction with
neural networks and continuous optimization, but contain-
ing only partial mesh information. Despite the challenges
stated in Section 1, numerous works have proposed mod-
els capable of producing meshes. Deformation-based ap-
proaches [43] use template meshes and predict vertex off-
sets to fit target surfaces without any changes in the initial
connectivity. The approach of Nash et al. [32] treats ver-
tices and connectivity as random variables and uses an au-
toregressive probabilistic model to derive likelihood-based
objectives, suitable for optimization. Several works also
proposed to model surfaces with predicted parametric prim-
itives [7, 11], allowing differentiation by continuous relax-
ation of discrete variables. However, representations from
this family do not generalize well to new data.

Most relevant to our work are methods that lift the
limitation of global shape encoding and use local features
obtained from coarse, noisy, or partial inputs. Deformable
volumetric tetrahedral meshes [13, 40] for instance can
synthesize shapes from SDF grids. While achieving good
performance, these approaches mainly compare themselves
to global models, do not provide topological guarantees
on the output shapes, and suffer from artifacts due to
their use of regular grids. Deep Marching Cubes [25]
propose differentiable point-to-mesh distance and curva-
ture losses as expectations over the space of topological
configurations to train occupancy and vertex displacements
on a grid. Since occupancy is modeled independently,
this approach is unable to provide guarantees on topo-
logical correctness. A similar approach introduces a new
representation inspired by Marching Cubes to capture
topological and vertex information [9] with extended
sets of discrete and continuous variables for every vertex
of a regular grid. Two separate networks predict these
variables independently for each grid vertex, so they form
a consistent output mesh. Follow-up work [6] substitutes
these variables with a reliance on the mesh produced by
Dual Contouring [18] and extends the approach to various
types of input data. Both of these approaches circumvent
the necessity to differentiate through meshing procedures

by the construction of ground truth proxy data structures
during pre-processing and training networks to infer them
from input data. However, resulting meshes are not always
manifold for NDC [6], and both methods often produce
self-intersections. Shape-as-points [35] predicts coordinate
offsets and normals for noisy point cloud inputs which
are used to produce indicator grids with a differentiable
version of PSR [19]. These indicator grids are supervised
with precomputed grids obtained from ground truth surface
samples. Compared to these works, 1) we do not construct
output meshes during training, thus avoiding the pitfalls
associated with differentiation through explicit meshing; 2)
supervision relies on sampled points and does not require
any pre-computed data structures; 3) our approach is not
limited in expressivity by the use of a fixed grid, since it
allows adaptive placement of generators.
Shape representation via computational geometry. A
few works have already exploited Voronoi diagrams to rep-
resent 3D shapes [1, 3]. However, providing a differen-
tiable loss to compute such a diagram is not straightforward.
VoronoiNet [48], for instance, uses a soft definition of the
Voronoi diagram to match the occupancy of a given array
in 2D applications. However, their formulation offers a dif-
ferentiable implicit representation of solid objects, in the
sense that they spread generators across the whole volume
(through a CVT-based regularizer) to offer a convex decom-
position of the inside and outside of the 2D object, thus ex-
tending CvxNet [11]. (A single 3D example, a sphere, was
exhibited.) Instead, we focus on approximating the bound-
ary of a 3D object: as a consequence, far fewer generators
are required and they remain close to the boundary as their
role is purely to approximate the surface well, capturing the
normal field and sharp features of the surface. Our intro-
duction of a dedicated loss also removes the need to use
a soft-argmin version of Voronoi diagrams. Finally, other
related works have proposed to use the dual of Voronoi di-
agrams, i.e., Delaunay triangulations, to offer a differen-
tiable approach to surface triangulations [36, 37]; however,
they do not offer topological guarantees due typically to the
presence of “non-manifold” triangles in resulting meshes.

3. Voronoi Mesh Representation
We now describe the VoroMesh approach by first ex-

plaining our Voronoi-based representation via generators,
then the VoroLoss which minimizes the distance from an in-
put point cloud sampling a surface to Voronoi facets of the
generators, then occupancy determination and mesh extrac-
tion. Finally, we discuss the optimization of this represen-
tation for a given input shape and its use in learning tasks.

3.1. VoroMesh Overview

Our VoroMesh representation canonically defines a wa-
tertight mesh via a Voronoi diagram. Given a set of N dis-
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tinct 3D points that we call generators Q = {qi ∈ R3}, the
Voronoi cell Vi of a generator qi is the set of points y ∈R3

whose distance to qi is smaller than their distance to any
other site qj . Each Vi is known to be a convex polytope,
whose boundary is composed of flat polygonal Voronoi
faces lying on bisectors between qi and some of its closest
neighboring generators qj . The union of these disjoint 3D
regions forms a convex decomposition of R3 [4]. We assign
a binary occupancy O = {oi} ∈ {0, 1}N to each generator,
such that the union of the cells with non-zero occupancy
yields a 3D volume composed of convex polyhedral cells.
The boundary of this 3D volume is then a Voronoi-induced
surface mesh, that we call VoroMesh(Q,O). Assuming that
all infinite cells are tagged as outside, we obtain a watertight
surface mesh (i.e., without holes or self-interpenetrations,
and with a clearly defined inside). Our approach then con-
sists in optimizing the generators so that induced Voronoi
faces best fit the 3D ground truth shape.
VoroLoss loss function. For optimization and learning pur-
poses, we need to be able to minimize the distance between
a VoroMesh and a dense sampling X of a target shape.
Computing the entire Voronoi diagram induced by the gen-
erators at each step of the optimization would be too costly.
Instead, we leverage the geometric properties of Voronoi di-
agrams (and in particular, their locality) to find a loss func-
tion that can directly provide the correct distance without
invoking a full Voronoi diagram construction. More specif-
ically, we optimize the generators Q not by minimizing the
distance from X to the current Voronoi faces, but by mini-
mizing the distance from X to all the faces of the full dia-
gram, i.e.,

∑
x∈X mini ‖x−∂Vi‖2 — which can efficiently

be achieved by only considering all close pairs of genera-
tors. This property stems from the following theorem (see
supplementary material for a proof):

Theorem 1 The distance from x to its closest face in a
Voronoi diagram equals the distance from x to the closest
bisector Hix,j formed between qix whose Voronoi cell con-
tains x and another Voronoi site qj:

‖x− ∂Vi‖ = min
j 6=ix
‖x−Hix,j‖.

We thus introduce a loss function, dubbed VoroLoss:

VoroLoss(X,Q) :=
∑
x∈X

min
j 6=ix
‖x−Hix,j‖2

The simplification implied by evaluating distances to
planes instead of distances to the polygonal faces of a com-
puted Voronoi diagram allows for a simple and efficient im-
plementation. In practice, we use a k-nearest neighbor al-
gorithm to select the closest cells ix and the closest bisector
planes Hix,j to cull a large number of computations. For
N generators and a sampling X of size |X|=D, the aver-
age complexity for computing this loss becomes O(ND).

Note finally that the VoroLoss is computed without any oc-
cupancy information: it simply tries to make each sample
be on a face of the Voronoi diagram of the generators.
Occupancy and watertight mesh extraction. Once the
VoroLoss is minimized, we must determine the occupancy
of each generator (see colors of the generators in Figure 1).
This is quickly achieved by simply using the ground truth
occupancy of the barycenter of each Voronoi cell in prac-
tice. Once the occupancy of all generators is established,
the polygon mesh can be extracted by keeping the Voronoi
faces separating generator pairs of complementary occu-
pancy. By construction, this mesh represents the bound-
ary of a volume: it thus has a separate interior and exterior,
and it is self-intersection free. In theory, cospherical (resp.
cocircular) points of different occupancies may create non-
manifold vertices (resp. edges). To fix these topological
exceptions one can simply duplicate the corresponding ver-
tices (resp. edges). Note however that in our tests, such a
case never happened in practice.
Shape optimization. Based on the building blocks we de-
scribed thus far, we can now fit a VoroMesh(Q,O) to a tar-
get surface as follows (see Figure 1):
1. Densely sample a set of pointsX∈RM×3 from a ground

truth surface mesh (V, F );
2. Initialize Q ∈ RN×3;
3. Minimize VoroLoss(X,Q);
4. Compute the Voronoi diagram of Q;
5. Determine the ground truth occupancy O of the barycen-

ter of each Voronoi cell;
6. Compute the final polygonal mesh VoroMesh(Q,O).
For Step 2, we initialize the generators Q by selecting, out
of a regular voxel grid, every grid node adjacent to one or
more voxels containing samples from X .

(a) Target (b) MC [26] (c) DC [18] (d) UDC [6] (e) Ours

Figure 2: Marching Cubes (b) and Dual Contouring (c) can-
not capture details of a target shape (a) smaller than the grid
size; UDC (d), based on edge-crossings, can but at the price
of a non-manifold elements. VoroMesh (e) both captures the
details and returns a closed and manifold mesh

3.2. Learning VoroMeshes

To demonstrate the effectiveness of our representation in
data-driven settings, we focus on one application: shape re-
construction from a sparse grid sampling of the SDF. Unlike
other 3D learning tasks (such as single view reconstruction),
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there is no need to encode complete shape information into
a single global latent variable, so we can make use of spe-
cific features representing local configurations of particular
parts of the volume rather than a single global representa-
tion: this will allow the network to generalize to new shapes
that are strikingly different from the training set.

To generate a VoroMesh from a grid I ∈ RN×N×N of
signed distances, we predict the positions of the generators
along with their occupancy (see Figure 3). Knowing that
most of the information describing the surface is concen-
trated in the SDF values closest to the surface, we mask
the SDF grid through thresholding around the isovalue and
convert it into a sparse grid. Selected grid points close to
the surface vi serve as the initial positions of the generators.
The sparse grid of SDF values is fed to a generic ResNet-
like Sparse 3D CNN (SCNN) [10] with a receptive field of
size 193 to produce local features. Using SCNNs not only
alleviates the computational complexity burden of 3D con-
volutions, but also forces the CNN filters to focus on near-
surface variations in SDF values and to spend the parameter
budget efficiently, capturing information that is most rele-
vant for surface reconstruction. We obtain the final position
qi and occupancy oi of generators with two separate MLPs
acting on local features produced by the SCNN, via:

qi = vi + MLP1(SCNN(SDF(vi))),

oi = MLP2(SCNN(SDF(vi))),
(1)

where SDF(vi) is SDF values at the corresponding point vi.
We optimize the parameters of our model in two steps.

First, we train the SCNN and MLP1 to predict the position
of the generators Q using our VoroLoss. Previous offset
prediction based networks often introduced hyperbolic tan-
gent non-linearity at the end of the network to bound the
values of possible offsets. We observed that at the start
of optimization, this may lead to offsets quickly reaching
these bounds and never returning to lower values because of
the vanishing gradients of the hyperbolic tangent function.
Since we do not necessarily want to force generators to stay
in their initial cells and wish to obtain more informative gra-
dients during training, we refrained from using hyperbolic
tangent and instead, introduced a mild regularization on the
maximum values of predicted offsets with:

R(Q) = maxi ||∆vi||2 (2)

which we add to VoroLoss to form a loss L(X,Q) as:

L(X,Q) = VoroLoss(X,Q) + λR(Q), (3)

with λ being a regularization weight. Unlike NDC [6], we
do not pre-compute the position of generators, but rely on
our loss to move the generators in place without any mesh
supervision. By not requiring mesh construction and point
sampling to fit surfaces at all, our approach completely
evades the difficulties typically arising from the differen-
tiation of these operations.

SDF

Inference

SCNN + MLP1,2
Position +
Occupancy Voromesh

SDF SCNN + MLP1

SCNN + MLP2

VoroLoss

BCE

Position Ground-truth
Surface

SDF Occupancy Ground-truth
Occupancy

Training

Figure 3: We train SCNN and first MLP to predict the posi-
tion of generators, supervised by the VoroLoss with respect
to a sampling of the input shape (top row). We then compute
the ground truth occupancy of the predicted generators, and
use this information to train a second MLP (middle row).
During inference, the whole network predicts the position
and occupancy of each generator from which the VoroMesh
can be extracted (bottom row).

The second training step freezes the convolutional part
and optimizes the parameters of MLP2 with minimization
of the binary cross-entropy (BCE) between predicted and
ground truth occupancy probabilities, extracted as discussed
in the previous section. At inference time, a wrong oc-
cupancy prediction for a Voronoi cell could create an un-
desired surface artifact. Two fallback solutions based on
queries to input SDF values can be used to fix incorrect oc-
cupancies: (1) increase the thickness of the SDF mask to
include additional fixed Voronoi generators with determin-
istic occupancy, which will then bound the spatial scale of
possible artifacts; (2) assign the occupancy of some cells us-
ing their vertices’ input SDF values and check that no voxel
having a vertex with signed distance larger than the diagonal
length of a voxel does not contain the target surface. Since
predicted occupancy is only needed for near-surface cells,
we found that these two simple actions remove all potential
issues in practice.

A last, yet important technical remark is that compared
to NMC and NDC, our implementation allows multi-shape
batching and parallelized forward and backward computa-
tions during training and inference, since MLPs and SC-
NNs [10] can process several samples simultaneously.
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4. Experimental Results
We implemented our VoroMesh approach in Python with

PyTorch [34], SciPy [46] and CGAL [45]. All timings
were computed on a Dell Precision desktop machine with
54 cores, a NVidia A6000 GPU, and 512GB of RAM. Our
code can be found online at our project page, along with
most of our results.

4.1. Optimization-based 3D Reconstruction

We first compare the ability of different representations
— including our VoroMesh — to capture ground truth sur-
faces by fitting them with direct optimization. For all
methods, we assume that we have access to the ground
truth meshes from Thingi32 dataset, which is a subset of
Thingi10K [53], from which we can derive signed dis-
tance values and sample dense point clouds. We exclude
two non-watertight models (96481 and 58168) to obtain
a final dataset composed of 30 valid shapes. We eval-
uate our method using grid resolutions of sizes g3s with
gs∈ [32, 64, 128]. We sample the ground truth surface with
150 × g2s points, and use grid vertices adjacent to sampled
points as initial Voronoi generators. To boost the optimiza-
tion, we randomly select 20% of the surface points X that
we feed in the VoroLoss and use 400 optimization steps
of the Adam optimizer [20] with a learning rate of 0.005,
further divided by two at steps 80, 120, 200 and 250. We
timed MC [26] and DC [18] (excluding the SDF extraction
step), and measured the optimization time (which is sys-
tematically the longest step) for the rest of the methods (see
supplementary material for timings).

Baselines. As no public implementation is available, we re-
implemented the soft-Voronoi loss from VoronoiNet [48].
We simplified their pipeline by assigning the correct occu-
pancy to each generator prior to optimization in order to fo-
cus only on the ability to fit the surface and ignore the two
additional losses (bounds loss and signed-distance loss) de-
signed to relocate the generators to their assigned regions
(inside or outside). In addition, we do not utilize centroidal
Voronoi loss for two reasons: (1) it requires computing the
full Voronoi diagram at each iteration (which we avoid to
keep computations low); (2) and because we start with a
uniform grid, so the generators are already well distributed.
We select only the generators close to the input mesh to be
able to use the same number of samples as for our method.

We also compare to Shape-As-Points (SAP) [35] which,
similarly to VoroMesh, relies on the optimization of point
positions, using regular grids in the process. SAP performs
an iterative refinement scheme with more iterations at each
step, giving it a slim advantage over VoronoiNet [48] and
our method, but increasing its computation time. We com-
pare to two axiomatic methods as well, namely Marching
Cubes (MC) [26] and Dual Contouring (DC) [18]. These

(a) MC [26] (b) DC [18] (c) VoronoiNet [48]

(d) SAP [35] (e) Ours (f) Ground Truth

Figure 4: Visual comparison of optimization-based recon-
structions. All methods utilize a grid of size 323.

two methods require a sampling of the SDF as input instead
of a point cloud. We evaluate their representation power
given the same resolution of the input SDF grid that was
used to initialize near-surface generators for VoroMesh. We
also provide additional comparisons with DMTet [40] in
the supplementary material, for completeness.

Results. Both MC [26] and DC [18] suffer from discretiza-
tion artifacts, missing parts as shown in Figure 4 (see sup-
plemental material for examples on more grid sizes), while
MC does not reproduce sharp features well.

Originally designed for 2D images, VoronoiNet [48] pro-
vides a good fit of the overall volume, but a poor fit of the
surface normals, which leads to poor visual appearance and
NC distance, see Figure 4. Since all the generators are in-
volved in the loss, it does not scale well with increasing
grid resolution either: optimization of a grid larger than 323

does not fit into a 50GB GPU. Consequently, our approach
is approximately ten times faster, see Table 1.

SAP [35] tends to generate shapes with fewer details and
no sharp edges since its reconstruction is based on March-
ing Cubes. The output mesh, however, is guaranteed to be
watertight. SAP requires an optimization of the whole vol-
ume, and is thus substantially slower than VoroMesh.

Our method performs the best across all considered met-
rics and resolutions given a similar amount of output infor-
mation (our choice of initial generators around the surface
guarantees that we use approximately the same number of
cells as MC [26] and DC [18]). This confirms that our gen-
erators can effectively represent surfaces in 3D and that our
VoroLoss allows for an efficient optimization of their posi-
tions to fit target surfaces. This optimized placement of gen-
erators (see Figure 2), including the ability to move them
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Grid Size CD (×10−5) F1 (δ = 0.003) NC Time (s)
323 643 1283 323 643 1283 323 643 1283 323 643 1283

Marching Cubes [26] 10.653 1.196 0.686 0.585 0.852 0.932 0.900 0.951 0.977 0.001 0.005 0.03
Dual Contouring [18] 5.992 0.814 0.648 0.758 0.911 0.937 0.923 0.961 0.979 0.09 0.7 5.6
VoronoiNet [48] 3.252 - - 0.543 - - 0.886 - - 11.6 - -
Shape As Points [35] 6.543 1.906 0.669 0.589 0.857 0.934 0.894 0.949 0.978 51.2 106.3 191.3
VoroMesh 0.791 0.645 0.634 0.920 0.938 0.939 0.958 0.975 0.982 2.0 4.1 36.3

Table 1: Quantitative comparisons of Chamfer distance (CD), F1 score, and normal consistency (NC) of VoroMesh for an
optimization-based 3D reconstruction task on the Thingi32 dataset for three different grid resolutions.

beyond their initial cells, means that VoroMesh can capture
fine details, yielding faithful reconstructions even for low
numbers of generators.

4.2. Robustness to Noise

In theory, a small displacement of the generators or of
their occupancy could induce a large deformation of the
VoroMesh: for instance, swapping the position of two gen-
erators while preserving their occupancy creates a 180-
degree flip of the associated face. However, in practice, our
representation is robust to small perturbations due to the lo-
cality of the Voronoi diagram construction. To demonstrate
this property, we applied uniform perturbations to the gen-
erators with different magnitudes to one of our reconstruc-
tions, see Figure 5. This suggests that VoroMesh is suitable
for learning-based applications.

(a) δ = 0% (b) δ = 3.2% (c) δ = 32% (d) δ = 320%

Figure 5: Robustness to noise. We evaluate the impact of
noise on the reconstructed VoroMesh, where δ is the uni-
form noise magnitude given as percentage of voxel size.

4.3. Learning-based 3D Reconstruction

We now verify the suitability of VoroMesh and VoroLoss
as target representation and training loss function in an
inference-based 3D shape reconstruction from input SDF
grids. All methods were trained on the ABC dataset [23],
composed of surface triangle meshes of CAD models. We
use the train/validation split from [6, 9], with 4,280 models
in the training set and 1,071 models in the testing set. We re-
move approximately 10% of non-watertight models in both
sets. We additionally verify the generalization capabilities
of our method by reconstructing shapes from the Thingi32
dataset without any fine-tuning. For this experiment, we

Method Grid Size CD (×10-5) F1 NC Watertight
NDC [6] 323 66.08 0.787 0.941 31%
NMC [9] 323 60.70 0.833 0.954 25%
VoroMesh32 323 13.15 0.819 0.933 100%
VoroMesh32+64 323 2.23 0.835 0.941 100%
NDC [6] 643 2.209 0.882 0.975 20%
NMC [9] 643 2.144 0.891 0.980 18%
VoroMesh64 643 1.317 0.882 0.962 100%
VoroMesh32+64 643 1.199 0.886 0.966 100%

Table 2: Comparison of learning-based 3D reconstruction
methods on the ABC dataset.

consider two grid resolutions, 323 and 643, for which we
trained three models using batches of 32, 16, and 24 shapes
(one model for each resolution and one using both) and 105

ground truth sample points per shape with the AdamW op-
timizer [27] and step-wise scheduling of momentum, learn-
ing rate, and regularization weight λ (see project page for
code). We first train the SCNN and MLP predicting gen-
erators of VoroMesh for 200 epochs, then reuse the convo-
lutional features and train a separate MLP predicting occu-
pancy for each generator for 75 epochs.

Baselines. We compare our method against state-of-the-
art NMC [9] and NDC [6] and use their pre-trained mod-
els, normalization, and evaluation code to recompute the
results on the filtered datasets. Note that NDC proposes an
unsigned, augmented version of their algorithm (UNDC);
however, the underlying mesh representation does not cor-
respond to the boundary of a volume, as it can collapse thin
regions and predict zero thickness surfaces — see Figure 2
— so we do not compare to this variant. The Voronoi dia-
gram could also be potentially leveraged to represent a tri-
angle soup: the occupancy information would then lie on
the (dual) Delaunay edges rather than Voronoi cells. Since
we focus on generating topologically correct surfaces in this
work, we leave this possibility for future work.

Results. VoroMesh outperforms both baselines in terms of
Chamfer distance (CD), while being comparable in terms
of normal consistency (NC) and F1 score, see Table 2. We
believe that these results are due to NDC and NMC recon-
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(a) NDC [6] (b) NMC [9] (c) VoroMesh (d) GT

Figure 6: Visual comparison of learning-based reconstruc-
tion. Input grids of sizes 323 and 1283 for Thingi32 (top
rows), 323 and 643 for ABC (bottom rows). Our VoroMesh
reconstruction, relying on a model trained on 323 SDF in-
puts, is able to reconstruct thin details.

structing overall smoother surfaces, but failing to capture
parts that VoroMesh can resolve with proper placement of
the generators. NMC, which relies on a custom tessellation,
uses more vertices, and thus has a slight advantage in terms
of geometric fidelity, as explained by its authors [6]. Note
that both NMC and NDC fail to produce any mesh at all
for certain thin shapes from the test set. We also check for
watertightness using CGAL [45] by confirming the absence
of self-intersection and verifying that each edge is incident
to exactly two faces: as expected, all VoroMeshes are wa-
tertight while only a fraction of NDC and NMC meshes are.

Generalization to Thingi32. To test the ability of our
model to transfer knowledge across datasets and verify the
stability of our VoroMesh representation, we reconstruct the
same meshes from the Thingi32 dataset used in our di-
rect optimization experiment, with models pretrained on the
ABC dataset. As can be seen in Figure 6, our approach sys-
tematically produces valid detailed reconstructions of un-
seen shapes. On a coarse resolution, our approach man-
ages to outperform baselines in terms of CD by a signifi-
cant margin, meaning VoroMesh can capture more details
with similar shape parameter budgets. On higher resolu-

Method Grid Size CD (×10-5) F1 NC Watertight
NDC [6] 323 6.396 0.734 0.918 10%
NMC [9] 323 5.212 0.796 0.936 0%
VoroMesh32 323 2.146 0.738 0.898 100%
VoroMesh32+64 323 2.833 0.758 0.902 100%
NDC [6] 643 0.863 0.906 0.960 0%
NMC [9] 643 0.779 0.923 0.969 0%
VoroMesh32 643 0.868 0.901 0.934 100%
VoroMesh32+64 643 1.031 0.906 0.939 100%
NDC [6] 1283 0.651 0.937 0.980 0%
NMC [9] 1283 0.642 0.938 0.984 0%
VoroMesh32 1283 0.659 0.935 0.956 100%
VoroMesh32+64 1283 0.731 0.932 0.959 100%

Table 3: Quantitative comparisons with VoroMesh for
inference-based 3D mesh reconstruction on the Thingi32
dataset, using input SDF grids of different resolutions.

tions, NMC slightly pulls ahead, see Table 3; we speculate
that it is due to the fact that Thingi32 contains fewer thin
structures, so successful reconstructions of such shapes do
not demonstrate the ability to capture such details. Note
that all three methods outperform classical MC across all
resolutions and, in some cases, DC (although it uses richer
inputs with normals at edge intersection points): with the
same SDF inputs, neural methods are able to recover more
information.

5. Conclusion
In this paper, we presented VoroMesh, a differentiable

Voronoi-based representation of watertight 3D shape sur-
faces along with its VoroLoss. As the resulting water-
tight surface mesh is defined uniquely (but implicitly) by
a Voronoi diagram of optimized generators, we showed that
our representation provides significant improvement in ge-
ometric fidelity compared to previous works, and captures
small or sharp features well. We demonstrated how our
VoroLoss applies to either direct optimization of generators,
or to the training of a neural network for prediction of gen-
erators. While we assume for simplicity of exposition that
our ground truth inputs for generator optimization are trian-
gle meshes, note that any format supporting inside/outside
queries would do as well — even point sets, where, e.g., the
generalized fast winding number [5] can be used to extract
occupancy information.

Our work offers a number of further research directions.
First, the VoroMesh could be post-processed to remove the
small faces that can cause surface artifacts in the final mesh,
in particular for low-resolution VoroMeshes (see supple-
mentary material for additional details). Second, our ini-
tialization of generators has the advantage of being simple,
but there may be more efficient ways to proceed, even at
the risk of having initially too many generators; if some of
them do not affect the VoroMesh, they can simply be dis-
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carded later. Third, surface-based regularization may pro-
vide a mechanism to further improve preservation of sharp
features of the input in the VoroMesh. Finally, our repre-
sentation can potentially be combined with recent advances
in generative modeling of point clouds, in order to produce
global mesh prediction models that are suitable for genera-
tive applications with guarantees of the topological correct-
ness of output meshes.
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