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Abstract

The skeleton of a digital image is a compact represen-
tation of its topology, geometry, and scale. It has utility in
many computer vision applications, such as image descrip-
tion, segmentation, and registration. However, skeletoniza-
tion has only seen limited use in contemporary deep learning
solutions. Most existing skeletonization algorithms are not
differentiable, making it impossible to integrate them with
gradient-based optimization. Compatible algorithms based
on morphological operations and neural networks have been
proposed, but their results often deviate from the geometry
and topology of the true medial axis. This work introduces
the first three-dimensional skeletonization algorithm that
is both compatible with gradient-based optimization and
preserves an object’s topology. Our method is exclusively
based on matrix additions and multiplications, convolutional
operations, basic non-linear functions, and sampling from
a uniform probability distribution, allowing it to be easily
implemented in any major deep learning library. In bench-
marking experiments, we prove the advantages of our skele-
tonization algorithm compared to non-differentiable, mor-
phological, and neural-network-based baselines. Finally, we
demonstrate the utility of our algorithm by integrating it with
two medical image processing applications that use gradient-
based optimization: deep-learning-based blood vessel seg-
mentation, and multimodal registration of the mandible in
computed tomography and magnetic resonance images.

1. Introduction
Skeletonization algorithms aim at extracting the medial

axis of an object, which is defined as the set of points that
have more than one closest point on the object’s boundary
[7]. This lower-dimensional representation compactly en-
codes various geometric, topological, and scale features. As
such, it is useful for many tasks in computer vision, including
object description, compression, recognition, tracking, regis-
tration, and segmentation [18, 22, 25, 40, 45]. While there
are several efficient approaches to calculate the medial axis in
continuous space, extracting the skeleton of a discrete digital

image is not trivial. The search for accurate skeletoniza-
tion algorithms, which can process two-dimensional and
three-dimensional digital images, has spawned a plethora of
research works [5, 6, 8, 15, 18, 31, 42, 46]. For a comprehen-
sive overview and taxonomy of skeletonization algorithms
and their applications, we refer to the excellent survey by
Saha et al. [32].

Today, computer vision tasks are commonly solved us-
ing deep learning. Skeletonization may be used as building
block or inductive bias in these image processing applica-
tions [13, 16, 38]. However, most established skeletoniza-
tion methods are not compatible with backpropagation and
gradient-based optimization [32]. The few works that have
integrated skeletonization with deep learning pipelines rely
on morphological skeletonization algorithms [38]. This class
of algorithms is based on simple morphological operations,
such as erosion and dilation [20, 44]. However, they will of-
ten result in breaks in the skeleton, causing it to diverge from
the geometry and topology of the true medial axis. Recently,
learning-based methods have also been harnessed for skele-
tonization [9, 13, 16, 23, 24, 26, 36, 37]. Most of these works
train an encoder-decoder neural network on pairs of input
images and ground truth skeletons, which have previously
been obtained using a classical skeletonization algorithm.
While learned approaches are intrinsically compatible with
backpropagation, they are not guaranteed to preserve the
topology of the input. Additionally, they are susceptible
to domain shifts between the training and inference data
[10, 43].

Our contribution This work bridges the gap between tradi-
tional skeletonization principles with strict topology guaran-
tees and their integration with gradient-based optimization.
We introduce a skeletonization algorithm that is topology-
preserving, domain-agnostic, and compatible with backprop-
agation (see Figure 1). Our algorithm is exclusively based
on matrix additions and multiplications, convolutional oper-
ations, basic non-linear functions, and sampling from a uni-
form probability distribution, allowing it to be easily imple-
mented in any major deep learning library, such as PyTorch
or Tensorflow [2, 27]. In benchmarking experiments, we
establish that our algorithm outperforms non-differentiable,
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Figure 1. Most existing skeletonization algorithms are not differentiable, making it impossible to integrate them with gradient-based
optimization. Morphological and neural-network-based solutions can be used with backpropagation, but alter the topology of the object
by introducing breaks along the skeleton. Our proposed skeletonization algorithm preserves the topology while simultaneously being
compatible with gradient-based optimization.

morphological, and neural-network-based baselines. Finally,
we directly integrate our skeletonization algorithm with two
medical image processing applications that rely on gradient-
based optimization. We show that it enhances both deep-
learning-based blood vessel segmentation, and multimodal
registration of the mandible in computed tomography (CT)
and magnetic resonance (MR) images.

2. Prerequisites
Digital images A discrete three-dimensional image is an
array of points P = {p(x, y, z)}, which are each assigned an
intensity value, on a lattice defined by Cartesian coordinates
x, y, z ∈ Z [14]. Owing to the grid nature of the image,
we can define the 6-neighborhood N6(p), 18-neighborhood
N18(p), and 26-neighborhood N26(p) of a point [30]:

N6(p) = {p′;(|x−x′|+ |y−y′|+ |z−z′|) ≤ 1},
N26(p) = {p′;max(|x−x′|,|y−y′|,|z−z′|) ≤ 1}, (1)
N18(p) = {p′;(|x−x′|+ |y−y′|+ |z−z′|) ≤ 2}∩N26(p).

Points that are inside each other’s n-neighborhood are called
n-adjacent. Two points p and p′ are said to be n-connected,
if there is a sequence of points p = p0, ..., pk = p′ so that
each pi is n-adjacent to pi−1 for 1 ≤ i ≤ k.
Euler characteristic In the special case of a binary image
the value of each point is either 1 or 0. The foreground of a
binary image is represented by the set S of points with value
1, while the set S denotes the remaining points with value 0.
Based on above’s definition of connectedness, we can define
an object O as a set of n-connected points in S. An object
in S that is completely surrounded by points in S is called a
cavity C in S. Finally, a hole H can be intuitively described
as a tunnel through S. Objects, cavities and holes can be
analogously defined for S. By combining the number of

objects, cavities, and holes the Euler characteristic, or genus,
of a 6-connected set of points G6 can be determined [14]:

G6 = #O − #H + #C . (2)

It is also possible to span a graph between all 6-neighbors.
On this graph, simplicial complexes consisting of one, two,
four, or eight points are called vertex v, edge e, face f , or
octant oct, respectively [14]. G6 can also be calculated based
on the number of these complexes via

G6 = #v − #e+ #f − #oct . (3)

In the following, we only consider the case in which objects
in S are 26-connected and objects in S are 6-connected. To
calculate the genus of a 26-connected S G26(S) we can
derive G6(S) using Equation 2 or 3 and use the following
relation [14]:

G26(S) = G6(S)− 1 (4)

Simple points Crucial to the skeletonization of digital im-
ages is the definition of a simple point. A point belonging
to S is simple if it can be deleted, that is changed from 1 to
0, without altering the image’s topology. Morgenthaler [21]
shows that this is the case if the deletion of a point does not
change the number of objects and holes in S and S. Using δ
to denote the difference in topology between S and S \ {p},
we can write this relation as:

p is simple ⇐⇒
δO(S) = 0 , δO(S) = 0 , δH(S) = 0 , δH(S) = 0 .

(5)

Lee et al. [15] prove that these conditions are equivalent to
calculating the change in the number of objects and Euler
characteristic of S in a point’s local 26-neighborhood:

p is simple ⇐⇒ δO(S) = 0 , δG26(S) = 0 . (6)
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3. Method
Arguably, the most common class of skeletonization al-

gorithms for digital images are iterative boundary-peeling
methods [32]. These algorithms are based on the repeated
removal of simple points until only the skeleton remains.
[4, 15, 17, 21]. At its core, our skeletonization algorithm
follows the same paradigm (see Figure 2). To ensure that
our method is compatible with gradient-based optimization
while remaining topology-preserving, we make the follow-
ing contributions:

• We introduce two methods to differentiably identify
simple points (see Section 3.1). One solution relies on
the calculation of the Euler characteristic, and the other
one is based on a set of Boolean rules that evaluate a
point’s 26-neighborhood.

• We adopt a scheme to safely delete multiple simple
points at once, enabling the parallelization of our algo-
rithm (see Section 3.2).

• We introduce a strategy to apply our algorithm to non-
binary inputs and integrate it with gradient-based opti-
mization by employing the reparametrization trick and
a straight-through estimator (see Section 3.3).

• All of above’s contributions are formulated using ma-
trix additions and multiplications, convolutional oper-
ations, basic non-linear functions, and sampling from
a uniform probability distribution. We combine them
into a single PyTorch module, which we make publicly
available (see Section 3.4).

Input binary 
image

For each
subfield

For each
iteration

Detect
endpoints

Detect simple 
points in subfield

Delete simple
non-endpoints

Output 
skeleton

Figure 2. Data flow through an iterative boundary-peeling skele-
tonization algorithm. Our method follows the same paradigm, while
ensuring that the identification of simple points, endpoints, and
the subfield-based parallelization are all compatible with gradient-
based optimization.

3.1. Identification of simple points

3.1.1 Euler characteristic to identify simple points

Lobregt et al. [17] base their detection of simple points on
the observation that the removal of a simple point does not
alter the genus of its 26-neighborhood:

p is simple =⇒ δG26(S) = 0 , (7)

which is a relaxation of Equation 6. To efficiently determine
δG26(S), their algorithm assesses the change of the genus
in each of the 26-neighborhood’s eight octants and sums
their contributions. Thereby, they rely on a look-up table
in which each entry corresponds to one of the 28 possible
configurations of an octant.

In order to reduce the number of comparisons and pro-
vide a smoother learning signal for backpropagation, we use
eight convolutions with pre-defined kernels to determine the
number of vertices, edges, faces, and octants (see Figure 3).
By inserting these into Equation 3, we calculate G6(S) of
each 26-neighborhood. Afterwards, we repeat this process
with the central point of each neighborhood set to zero and
assess whether the Euler characteristic has changed. This
process is parallelized while ensuring that only one point in
each 26-neighborhood is deleted at a given time. To this end,
we use multiple sets of points given by

Si,j,k ∈{p′(x+ i, y + j, z + k)};
x, y, z ∈ {0, 2, 4, . . .}, i, j, k ∈ {0, 1}

(8)

Cycling through all combinations of i, j, and k yields eight
subfields of points that can be processed simultaneously.
The same subfields are also used during the later removal of
simple points (see Section 3.2).

Lee et al. [15] show that the invariance of the Euler char-
acteristic under deletion of a point is a necessary but not
sufficient condition for it being simple (cf. Equation 6).
Consequently, above’s strategy slightly overestimates the
number of simple points [15]. On the set of all possible
226 configurations of a 26-neighborhood, above’s algorithm
characterizes the central point as simple in 40.07% of cases
when in fact only 38.72% are truly simple.

3.1.2 Boolean characterization of simple points

For this reason, we propose a second method that identi-
fies the exact set of simple points. It is based on work by
Bertrand et al. [4] who introduce the following Boolean
characterization of a simple point:

p is simple ⇐⇒ (#X6 = 1) or (#X26 = 1)

or (#B26 = 0, #X18 = 1)

or (#A6 = 0, #B26 = 0, #B18 = 0,

#X6 − #A18 + #A26 = 1)

(9)

where #Xn and #Xn are the number of n-neighbors of a
point belonging to S and S, respectively. #B26, #A6, #B18,
#A18, and #A26 correspond to the number of specific cell
configurations depicted in Figure 4.

Similar as before, the presence of these five configura-
tions and their 6-, 8-, and 12-rotational equivalents can be
efficiently checked by convolving the image with pre-defined
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Figure 3. In order to calculate the Euler characteristic of a point, we initially invert its 26-neighborhood. Next, we determine the number of
vertices, edges, faces, and octants of the background via eight simple convolutions with predefined kernels. Finally, Equations 3 and 4 are
used to derive the Euler characteristic of the foreground.

kernels. Compared to our first strategy, this algorithm trades
off computational efficiency for accuracy. It requires a total
of 57 convolutions with three-dimensional kernels, but is
guaranteed to correctly classify all points of a binary image
as either simple or not.

Figure 4. The five cell configuration introduced by Bertrand et al.
[4] used for Boolean characterization of simple points.

3.2. Parallelization and endpoint conditions

Sequentially checking each point using above’s condi-
tions and deleting them if they are simple already consti-
tutes a functioning skeletonization algorithm. However,
this strategy is very inefficient when applied to large three-
dimensional images. Naively deleting all simple points at
once is not possible as simultaneous removal of neighboring
points may affect the object’s topology even if both points
are simple. For this reason, previous works have researched
strategies to safely remove multiple simple points in parallel
[5, 15, 18, 21, 31, 42]. We adopt a subiterative scheme based
on the same eight subfields that are already used during the
calculation of the Euler characteristic (see Equation 8) [5].

In conventional skeletonization algorithms, the program ter-
minates once a full iteration does not result in any points
being deleted. To keep the number of operations compara-
ble during repeated application, we explicitly provide the
number of outer-loop iterations. This simple scalar hyperpa-
rameter can be easily tuned on a few representative samples
of the considered dataset.

Merely preserving non-simple points would lead to a
topological skeleton. For example, a solid object without
any holes or cavities would be reduced to a single point.
For many applications in image processing, it is desirable to
also preserve some information about the image’s geometry,
such as the existence and position of extremities. This can
be achieved by also preserving so-called endpoints. Our
algorithm uses the following definition of an endpoint:

p is endpoint ⇐⇒ #X26 ≤ 1 (10)

Other definitions for endpoints could potentially be inte-
grated with our algorithm and would result in different prop-
erties of the obtained skeleton. For example, endpoint condi-
tions could be chosen to extract a medial surface instead of
a medial axis, or the number of short extremities, sometimes
called spurs, may be reduced [34, 46].

3.3. Processing of continuous inputs

The previously introduced definitions for simple points
and endpoints are only valid for binary images. However,
in many applications the input is often a matrix of contin-
uous values, such as probability maps output by a learning
algorithm. Simply rounding these inputs inhibits learning
via backpropagation. We circumvent this issue by treat-
ing each point as a discrete, stochastic node modeled by a
Bernoulli distribution, and use the reparametrization trick
and a straight-through estimator to facilitate sampling and
gradient estimation from it [3, 12, 19].
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Figure 5. The results of applying the seven tested skeletonization algorithm to representative samples of three diverse datasets. Of the
six algorithms that are compatible with gradient-based optimization, only our two methods are able to extract a thin, topology-preserving
skeleton, similar to the one obtained using the non-differential baseline. Additional samples are shown in the Supplementary Material.

The reparametrization trick splits each node into a differ-
entiable function, the raw grayscale input, and a fixed noise
distribution [11, 12, 19]. We can sample from each node via

X = σ

(
(logα+ βL)

τ

)
, α =

α1

(1− α1)
, (11)

where α1 ∈ (0, 1) is the probability of the input being 1,
σ denotes the sigmoid function, L is a sample from a Lo-
gistic distribution that is scaled by factor β ∈ [0,∞), and
τ ∈ (0,∞) is the Boltzmann temperature. Both β and τ
control the entropy of the distribution. Others have proposed
gradually annealing these parameters as learning progresses
or even updating them via backpropagation [11, 12, 19]. In
this work, we treat them as simple tunable hyperparameter.

Afterwards, we discretize the obtained samples using a
straight-through gradient estimator [3, 29]. It returns the
rounded binary value during the forward pass. Instead of
using the zero gradient of the rounding operation during the
backward pass, the modified chain rule is applied and the
identity function is used as proxy gradient.

3.4. Implementation in PyTorch

Our proposed algorithm consists exclusively of matrix
additions, multiplications, convolutional operations, basic
activation functions, and sampling from a uniform probabil-
ity distribution. As such, it can easily be implemented in any
major deep learning library and runs efficiently on graph-
ics processing units. Our skeletonization module, which
we make publicly available1, is implemented in PyTorch

1https://github.com/martinmenten/
skeletonization-for-gradient-based-optimization

[27] and is fully integrated with its automatic differentiation
engine.

4. Experiments and results
Initially, we benchmark the performance of our skele-

tonization algorithm with regard to spatial and topological
correctness, run time, and the ability to combine it with back-
propagation (see Section 4.1). Afterwards, we showcase the
utility of our method by integrating it with two medical im-
age processing pipelines: deep-learning-based blood vessel
segmentation and multimodal registration of the mandible
(see Section 4.2).

For the experiments, we use three different datasets:

• the DRIVE dataset consisting of 40 two-dimensional
retinal color fundus photographs and matching annota-
tions of the visible blood vessels [39],

• the VesSAP dataset comprising 24 three-dimensional
light-sheet microscopy images of murine brains after
tissue clearing, staining, and labeling of the vascular
network, which we split into 2,400 patches, [41].

• an in-house dataset of 34 matched three-dimensional
CT and MR images and manually extracted segmenta-
tion masks of the mandible.

Additional information about each dataset and our experi-
mental setup can be found in the Supplementary Material.
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Table 1. Quantitative comparison of the topological accuracy and run time of seven skeletonization algorithms on three datasets.
Dataset Skeletonization algorithm # points β0 error β1 error β2 error Run time [ms]

DRIVE

Non-differentiable – Bertrand et al. [6] 8316±618 0±0 0±0 - -
Morphological – Shit et al. [38] 9926±667 1156±197 50±23 - 19±1
Morphological – Viti et al. [44] 11834±976 266±62 45±19 - 23±3
Neural network – Panichev et al. [26] 10420±915 6±3 13±11 - 14±1
Neural network – Nguyen [24] 10619±806 10±5 18±8 - 117±1
Ours – Euler characteristic 8393±611 0±0 0±0 - 101±3
Ours – Boolean 8393±611 0±0 0±0 - 540±2

VesSAP

Non-differentiable – Bertrand et al. [6] 471±212 0±0 0±0 0±0 -
Morphological – Shit et al. [38] 1914±809 173±79 3±5 0±1 20±1
Morphological – Viti et al. [44] 3783±1797 2±2 23±18 0±1 21±2
Neural network – Panichev et al. [26] 423±182 64±38 3±5 0±1 16±1
Neural network – Nguyen [24] 422±189 33±19 4±6 0±1 115±1
Ours (Euler characteristic) 540±245 0±1 0±1 0±1 100±2
Ours (Boolean) 540±243 0±0 0±0 0±0 520±26

Mandible

Non-differentiable – Bertrand et al. [6] 236±37 0±0 0±0 0±0 -
Morphological – Shit et al. [38] 2698±387 131±24 13±10 0±0 37±1
Morphological – Viti et al. [44] 4866±758 1±1 81±26 0±0 42±1
Neural network – Panichev et al. [26] Insufficient training data
Neural network – Nguyen [24] Insufficient training data
Ours (Euler characteristic) 409±67 1±1 1±1 0±0 160±2
Ours (Boolean) 405±68 0±0 0±0 0±0 1081±10

4.1. Benchmarking experiments

4.1.1 Spatial and topological accuracy

We compare our two skeletonization algorithms with five
baselines:

• a well-established non-differentiable skeletonization
algorithm by Bertrand et al. [6], which has been imple-
mented in the open-source DGtal library [1],

• two morphological skeletonization algorithm based on
repeated opening and erosion proposed by Shit et al.
[38] and Viti et al. [44], respectively,

• two neural-network-based methods by Panichev et al.
[26] and Nguyen [24], respectively, that each train a
encoder-decoder network to output the skeleton of a
binary input image.

On all three datasets, both of our proposed algorithms pro-
duce continuous, thin skeletons that agree well with the non-
differentiable baseline (see Figure 5). When applying the
morphological skeletonization algorithms, we observe that
continuous blood vessels are split into many small objects
along the medial axis. Similarly, the mandible is broken into
small components that are positioned at the medial surface
of the input structure. The neural-network-based algorithms
also cannot preserve the topology of the vascular network
when applied to data from the DRIVE and VesSAP datasets,
and completely fail to converge during training on the small
mandible dataset.

These observations are corroborated by quantitative mea-
surements (see Table 1). We assess the topological correct-

ness of all skeletons by evaluating the error of the first three
Betti numbers, β0, β1, and β2. These measure the absolute
difference of the number of objects, holes, and cavities, re-
spectively, between the input structure and obtained skeleton.
Our skeletonization algorithm based on the Boolean char-
acterization of simple points preserves the exact topology
of the base object in all cases as does the non-differentiable
baseline. The skeletons obtained by the morphological and
neural-network-based algorithms both contain topological er-
rors in all three Betti numbers. Furthermore, their produced
skeletons are often thicker than one voxel. This is reflected
by the substantially larger number of points included in the
results.

4.1.2 Run time analysis

Table 1 also lists the average run time of each skeletoniza-
tion algorithm when processing images of varying sizes and
dimensions. We report the duration of a single forward
and backward pass through each skeletonization module as
required during gradient-based optimization. All measure-
ments were conducted using a workstation equipped with a
Nvidia RTX A6000 GPU (Nvidia Corporation, Santa Clara,
California, United States), 128 GB of random access mem-
ory, and a AMD Ryzen Threadripper 3970X 32-core central
processing unit (Advanced Micro Devices, Inc., Santa Clara,
California, United States). We find that our algorithms are
slower than both morphological and neural-network-based
methods. Still, all algorithms run in a second or less and are
fast enough to be effectively employed for the applications
described in the following (see Section 4.2).
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4.1.3 Compatibility with gradient-based optimization

In order to make our skeletonization algorithms compatible
with gradient-based optimization, logistic noise is added
to the input during the reparametrization trick (see Section
3.3). We demonstrate the efficiency of this approach and the
importance of well-tuned noise parameters, β and τ , in a
simple experiment (see Figure 6). Hereby, an input tensor
is initialized with random values and passed through our
skeletonization module. Using backpropagation, the tensor’s
values are learned so that its ultimate output resembles that of
the ground truth skeleton. While several degenerate solutions
that all yield the same skeleton, exist, we expect the learned
tensor to ultimately resemble the skeleton itself.

Skeletonization Differentiable 
skeletonization

PredictionImage

Mean
squared

error

Forward pass
Backpropagation

Learned
tensor

Figure 6. Experiment to test the compatibility of our skeletonization
algorithm (orange box) with backpropagation.

With very low levels of entropy, we observe that learning
with our skeletonization module is very slow (see Figure
7). Increasing the entropy results in single passes through
the skeletonization to be less faithful to the geometry and
topology of the true medial axis (see Figure 8). However,
averaging over repeated samples mostly recovers the true
skeleton and enables learning of the correct structure. At
too high entropy, convergence slows down as the obtained
skeleton is not sufficiently accurate anymore.
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Figure 7. Effect of the scale β of the added logistic noise on the
ability to propagate a gradient through our skeletonization mod-
ule. Both very low entropy and very high entropy inhibit learning.
Similar results can be found when varying τ (see Supplementary
Material).

Figure 8. Effect of scaling the added logistic noise (β) in our skele-
tonization algorithm. Repeated sampling (n) mostly recovers the
true skeleton.

4.2. Application experiments

4.2.1 Topology-aware blood vessel segmentation

We explore the utility of our skeletonization methods by
integrating them with a deep-learning-based segmentation
algorithm for the VesSAP dataset (see Figure 9). The training
of the basic U-Net incorporates the centerline Dice (clDice)
loss function that encourages topology preservation across
different vessel scales by comparing skeletons of the predic-
tion and ground truth [28, 38]. The loss formulation requires
a skeletonization function that is compatible with backprop-
agation. In all cases, we tune the weighting factor λ, which
balances the clDice loss with the standard Dice loss.

Neural
network

Ground truth Skeletonization

Differentiable 
skeletonization

PredictionImage Centerline 
Dice Loss

Forward pass
Backpropagation

Figure 9. Deep learning pipeline for training a vessel segmentation
network using the centerline Dice loss [38]. The loss formulation
requires the use of a skeletonization algorithm that is compatible
with backpropagation (orange box).

Using the clDice loss instead of a vanilla Dice loss slightly
improves the topological agreement between prediction and
ground truth as indicated by a lower error of the first three
Betti numbers (see Table 2). Moreover, we find that using
our skeletonization methods yield slightly better results than
using a morphological skeletonization algorithm. Spatial
accuracy, quantified by the Dice similarity coefficient (DSC),
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was nearly identical in all cases. We obtain similar findings
when conducting the same experiment using the DRIVE
dataset (see Supplementary Material).

Table 2. Performance of the vessel segmentation network using
either a standard Dice loss (’Without’) or clDice loss with different
skeletonization algorithms.

Skeletonization DSC β0 error β1 error β2 error
Without 0.85±0.01 5.1±0.8 3.1±0.1 0.8±0.3
Morphological 0.85±0.01 4.3±0.5 2.8±0.2 0.7±0.1
Ours (Euler) 0.86±0.01 3.5±0.2 2.7±0.1 0.4±0.1
Ours (Boolean) 0.86±0.01 3.7±0.3 2.8±0.1 0.5±0.2

4.2.2 Multimodal registration of the mandible in CT
and MR images

Finally, we explore whether incorporating skeletonization
can improve multimodal registration of the mandible (see
Figure 10). This application is motivated by the fact that
bones often appear larger in MR images than in CT images.
When registering segmentation masks from both modalities,
the smaller mask can be orientated flexibly inside the larger
one. We propose extracting the skeleton of both structures
and calculating their overlap as image distance function in-
stead. We employ a conventional registration algorithm that
optimizes the image distance with respect to the rigid trans-
formation between both images using a gradient-based opti-
mization method, thus requiring a compatible skeletoniza-
tion method. We implement this application in AirLab [33],
which uses Pytorch’s autograd functionality to compute the
gradient based on the objective function. This allows a
seamless integration of our skeletonization module in a con-
ventional registration algorithm.

Moving image Warped image Differentiable 
skeletonization

Fixed image Skeletonization

Mean
squared 

error

Rigid trans-
formation

Forward pass
Backpropagation

Figure 10. Workflow for multimodal registration of the mandible.
To compensate for the different size of the mandible in CT and MR
images, the skeleton of both images are calculated (orange box)
and registered instead.

We report the DSC, the Hausdorff distance (HD) and
the average surface distance (ASD) between the fixed and
warped segmentation as proxy measure for registration accu-
racy (see Table 3). Our findings show registering the images
based on the skeleton of their segmentation map slightly
improves the alignment of both structures.

Table 3. Registration accuracy using two different loss functions:
either the image distance is calculated using the full binary mask
of the mandible (’Without’), or based on their skeletons obtained
via one of three skeletonization algorithms.

Skeletonization DSC HD [mm] ASD [mm]
Without 0.38±0.01 29.9±0.9 6.6±0.2
Morphological 0.32±0.01 29.2±1.1 6.7±0.2
Ours (Euler) 0.37±0.02 28.6±1.2 6.6±0.2
Ours (Boolean) 0.37±0.01 28.0±1.1 6.5±0.2

5. Discussion and conclusion

This work bridges the gap between classical skeletoniza-
tion algorithms and the ability to integrate these with
gradient-based optimization. We have introduced a three-
dimensional skeletonization algorithm that is compatible
with backpropagation, domain-agnostic and preserves an
object’s topology. Our method combines a characterizations
of simple points, a parallelization scheme for their efficient
removal, and a strategy for discretization of non-binary in-
puts that are all compatible with gradient-based optimization.
In benchmarking experiments, we have proved the superior
spatial and topological accuracy of our method compared to
morphological, and neural-network-based baselines.

Our algorithm consists exclusively of matrix additions,
multiplications, convolutional operations, activation func-
tions and sampling from basic probability distributions. Con-
sequently, it can be implemented in any deep learning library
and can be seamlessly integrated with diverse image pro-
cessing pipelines that use gradient-based optimization. We
showcase this utility by applying it in two realistic medical
image processing applications: semantic segmentation of
blood vessels with deep learning, and automated multimodal
image registration. In both cases, we find that our skele-
tonization algorithms allows the incorporation of topological
and geometric information within the respective optimiza-
tion objective, leading to modest performance gains.

To our knowledge, this work introduces the first topology-
preserving skeletonization algorithm for gradient-based op-
timization. Still, we discern that there may be other, poten-
tially more effective, approaches to create such algorithms.
We hope that this work can serve as a blueprint for others to
further explore skeletonization. Building upon a rich body
of literature on classical skeletonization algorithms, future
work could further explore alternative strategies to identify
simple points [32, 35]. Similarly, past works have exten-
sively studied schemes to efficiently remove simple points in
parallel of which some may be better suited for processing
on graphics processing units. Finally, the endpoint condi-
tion used during skeletonization influences the properties of
the created skeleton [35, 46]. In other applications skeletal
surfaces may be preferable over a medial axis or a different
trade-off between a geometric and topological skeleton may
be chosen. Ultimately, we envision that our method may
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also be beneficial in many computer vision applications that
have historically utilized skeletonization, but have since been
increasingly solved using deep learning.
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[25] Kálmán Palágyi et al. A sequential 3D thinning algorithm and
its medical applications. In Biennial International Conference
on Information Processing in Medical Imaging, pages 409–
415. Springer, 2001. 1

[26] Oleg Panichev et al. U-net based convolutional neural network
for skeleton extraction. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Work-
shops, 2019. 1, 6

[27] Adam Paszke et al. Automatic differentiation in pytorch.
NIPS 2017 Workshop Autodiff, 2017. 1, 5

[28] Olaf Ronneberger et al. U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Com-
puting and Computer-Assisted Intervention–MICCAI 2015:
18th International Conference, Munich, Germany, October
5-9, 2015, Proceedings, Part III 18, pages 234–241. Springer,
2015. 7

[29] Frank Rosenblatt. The perceptron, a perceiving and recog-
nizing automaton. Cornell Aeronautical Laboratory, 1957.
5

[30] Azriel Rosenfeld et al. Digital picture processing. Academic
press, 1976. 2

[31] Punam K Saha et al. A new shape preserving parallel thin-
ning algorithm for 3D digital images. Pattern recognition,
30(12):1939–1955, 1997. 1, 4

21402



[32] Punam K Saha et al. A survey on skeletonization algorithms
and their applications. Pattern recognition letters, 76:3–12,
2016. 1, 3, 8

[33] Robin Sandkühler et al. Airlab: autograd image registration
laboratory. arXiv preprint arXiv:1806.09907, 2018. 8

[34] Doron Shaked et al. Pruning medial axes. Computer vision
and image understanding, 69(2):156–169, 1998. 4

[35] Wei Shen et al. Skeleton pruning as trade-off between skele-
ton simplicity and reconstruction error. Science China Infor-
mation Sciences, 56:1–14, 2013. 8

[36] Wei Shen et al. Object skeleton extraction in natural images
by fusing scale-associated deep side outputs. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 222–230, 2016. 1

[37] Wei Shen et al. Deepskeleton: Learning multi-task scale-
associated deep side outputs for object skeleton extraction
in natural images. IEEE Transactions on Image Processing,
26(11):5298–5311, 2017. 1

[38] Suprosanna Shit et al. cldice-a novel topology-preserving loss
function for tubular structure segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16560–16569, 2021. 1, 6, 7

[39] Joes Staal et al. Ridge-based vessel segmentation in color
images of the retina. IEEE transactions on medical imaging,
23(4):501–509, 2004. 5

[40] David Thibault et al. Terrain reconstruction from contours by
skeleton construction. GeoInformatica, 4:349–373, 2000. 1

[41] Mihail Ivilinov Todorov et al. Machine learning analysis of
whole mouse brain vasculature. Nature methods, 17(4):442–
449, 2020. 5

[42] YF Tsao et al. A parallel thinning algorithm for 3-D pictures.
Computer graphics and image processing, 17(4):315–331,
1981. 1, 4

[43] David Vazquez et al. Virtual and real world adaptation for
pedestrian detection. IEEE transactions on pattern analysis
and machine intelligence, 36(4):797–809, 2013. 1

[44] Mario Viti et al. Coronary artery centerline tracking with the
morphological skeleton loss. In Proc. ICIP, pages 2741–2745,
2022. 1, 6

[45] Feng Zhao et al. Preprocessing and postprocessing for
skeleton-based fingerprint minutiae extraction. Pattern Recog-
nition, 40(4):1270–1281, 2007. 1

[46] Yong Zhou et al. Efficient skeletonization of volumetric
objects. IEEE Transactions on visualization and computer
graphics, 5(3):196–209, 1999. 1, 4, 8

21403


