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Abstract

Despite excellent average-case performance of many im-
age classifiers, their performance can substantially deteri-
orate on semantically coherent subgroups of the data that
were under-represented in the training data. These system-
atic errors can impact both fairness for demographic mi-
nority groups as well as robustness and safety under do-
main shift. A major challenge is to identify such subgroups
with subpar performance when the subgroups are not anno-
tated and their occurrence is very rare. We leverage recent
advances in text-to-image models and search in the space
of textual descriptions of subgroups (“prompts”) for sub-
groups where the target model has low performance on the
prompt-conditioned synthesized data. To tackle the expo-
nentially growing number of subgroups, we employ combi-
natorial testing. We denote this procedure as PROMPTAT-
TACK as it can be interpreted as an adversarial attack in
a prompt space. We study subgroup coverage and identi-
fiability with PROMPTATTACK in a controlled setting and
find that it identifies systematic errors with high accuracy.
Thereupon, we apply PROMPTATTACK to ImageNet classi-
fiers and identify novel systematic errors on rare subgroups.

1. Introduction
Deep learning based approaches have revolutionized

many fields of computer vision [31, 37] and are increasingly
applied in safety-critical applications such as automated
driving [20]. An important prerequisite for deployment of
learned models in such safety-critical domains is that they
need to work reasonably well for all subgroups from an op-
erational design domain [10] and strong requirements are
imposed on assuring safety of systems [8]. That is: there
must not be catastrophic but avoidable failure cases on any
subgroup, regardless of how rare the subgroup might be.
Unfortunately, spurious correlations in the training data can
often result in classifiers that utilize shortcut decision mak-
ing [18, 50, 30, 29] - a phenomenon long known from ani-
mal and human psychology [40]. Such shortcuts can work
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Figure 1. Samples along with histograms over two models’ class
prediction rates (shown in left and right inlays, based on 400 sam-
ples) for 4 different subgroups. The baseline subgroup (top left)
is classified mostly as minivan by all models, while the misclas-
sification rates to a snowplow (top right), to pickup (bottom left),
and to police van (bottom right) are significantly increased on the
shown subgroups for a VGG16, ViT-L/32, ResNet50 respectively.
We refer to Section 5 and D for more details and samples.

well on subgroups that occur frequently in-distribution, that
is: on data that follows the same distribution as the training
data. However, they can easily fail after a domain shift to
out-of-distribution data since very rare subgroups become
suddenly much more frequent [57]. For instance, Beery et
al. [6] demonstrate that a shift in background can largely af-
fect an image classifier, resulting in misclassifying, e.g., a
cow on the beach.
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Accordingly, a crucial aspect of model auditing [2] is to
separately evaluate the behaviour of a classifier on every
subgroup from a large set of subgroups. If the performance
of a classifier on certain subgroups is considerably worse
than on the totality of the domain’s data, then we denote this
subgroup as a systematic error of a classifier [13, 26, 53],
a case of hidden stratification [48]. More specifically, a
systematic error refers to a subgroup of inputs on which
a pretrained classifier has a high probability of misclassi-
fication (“error”) and at the same time a large percentage of
elements in the subgroup share a human-interpretable con-
cept: the group appears semantically coherent to a human
(“systematic”). Applying methods for identifying such sys-
tematic errors could become a prerequisite for deployment
in many domains while at the same time, systematic error
are actionable: their exemplars can be used for finetuning a
model and improving its robustness, reliability, and fairness
[17, 28].

Some prior work [13, 26] require the availability of a la-
belled hold-out set covering data from rare subgroups for
identification of systematic errors on these subgroups. Un-
fortunately, it is often expensive to acquire (labelled) data
for certain subgroups that are very rare in the domain pre-
deployment, even though subgroups could become much
more frequent after some domain shift. This is problem-
atic because systematic errors are much more likely to occur
on subgroups that are rare in the training data. Other prior
work is based on large unlabelled hold-out data but requires
a human-in-the-loop [17], which increases the costs of sys-
tematic error identification and thus limits applicability.

Another line of work (including ours) focuses on audit-
ing models on synthetically generated subgroup data. Re-
cent progress of text-to-image models [42, 43, 45, 9] in
terms of compositionality can allow synthesizing data of
rare subgroups that have not been part of the training data.
Wiles et al. [53] focused on an open-ended approach that
synthesizes data according to the distribution induced by a
fixed prompt that encodes the class but no subgroup infor-
mation. Concurrently to our work, Vendrow et al. [51] gen-
erated text-conditioned counterfactual examples to study
the robustness to single semantic shifts.

We propose PROMPTATTACK (see Figure 2), which
leverages text-to-image models for synthesizing images of
subgroups by encoding subgroup information directly in the
prompt. To deal with large operational design domains
and the resulting combinatorial explosion of subgroups,
PROMPTATTACK builds upon combinatorial testing [38, 4]
that allows a near-equable coverage of the operational de-
sign domain while keeping the number of explored sub-
groups relatively small. In contrast to the open-ended ap-
proach by Wiles et al. [53], PROMPTATTACK is targeted
and reliably explores subgroups from a prespecified oper-
ational design domain (see Section 4.1). Moreover, it does

not require any pretrained models or heuristics components
for failure case clustering and captioning. In contrast to
Vendrow et al. [51], PROMPTATTACK can identify system-
atic errors on subgroups that require the concurrence of sev-
eral semantic shifts (see Figure 7).

Overall, our main contributions are the following:
• In Section 3, we introduce PROMPTATTACK, a novel

procedure for identifying systematic errors based on
synthetic data from a text-to-image model, conditioned
on a prompt encoding subgroup and class information.
PROMPTATTACK explores a large subset of subgroups
from an operational design domain using combinato-
rial testing, achieving near-equable coverage of sub-
groups (Section 4.1).

• We propose a benchmark for testing and comparing
methods for systematic error identification (Section
4.2). In contrast to prior work [13], this benchmark
does not train multiple classifiers with training-time in-
terventions but is based purely on inference-time inter-
ventions on zero-shot classifiers such as CLIP [41].

• PROMPTATTACK identifies classifier-specific and tar-
geted systematic misclassifications on rare subgroups
of ImageNet classifiers (see Figure 1 and Section 5).

2. Related Work
We review related work in the computer vision domain

while noting that identification of systematic errors and
harmful behaviour is an important topic in other fields such
as large language models as well (“red teaming”) [39, 16].

Building upon Subgroup Annotation. Several prior
works have investigated performance on datasets where in-
formation on certain semantic dimensions is available for
each datapoint and thus direct evaluation of subgroup er-
ror is feasible. For instance, Hendrycks et al. [22] col-
lected four real-world datasets containing semantic dimen-
sions like artistic renditions (ImageNet-R), country, year,
and camera (StreetView StoreFronts), or object size, ob-
ject occlusion, camera viewpoint, and camera zoom (Deep-
Fashion Remixed). The influence of image background can
be studied based on ImageNet-9 [54] and Waterbirds [44].
WildDash [55] allows studying the impact of different vi-
sual hazards. ImageNet-X [25] adds sixteen human anno-
tations of semantic dimensions such as pose, background,
or lighting to each ImageNet-1k validation sample. Such
approaches require large efforts in data collection and sub-
group annotation and have thus limited scalability and flexi-
bility. Moreover, if there are several interacting semantic di-
mensions, then the number of datapoints required to achieve
a full coverage of the design domain grows exponentially.
One partial remedy to this combinatorial explosion is com-
binatorial t-wise testing [38, 4, 19]. Alternatively, synthetic
corruptions can be applied to existing images resulting in a
semantic corruption dimension (ImageNet-C) [23]. How-
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Figure 2. Illustration of PROMPTATTACK: domain experts define an operational design domain Z consisting of semantic dimensions Zj .
Combinatorial testing is used to generate a set of subgroups. A prompt Tp(ỹ, z) is instantiated from a prompt template Tp based on the
respective subgroup z and source class ỹ. A text-to-image model pT2I generates ns samples {xi}ns−1

i=0 for the prompt. The image classifier
f under investigation predicts class probabilities {f(y|xi)}ns−1

i=0 for the samples. An objective function provides a ranking of subgroups
based upon the source class predictions f(ỹ|xi), where low median class score for the source class indicates a potential systematic error.

ever, not all semantic dimensions can be simulated.
Failure Identification without Subgroup Annotation.

Since explicit annotation of semantic dimension is costly,
recent works have focused on automating the process of
identifying systematic errors. One line of work resorts to a
labeled hold-out set. Coherent groups of errors on the hold-
out set can be identified by error-aware soft-clustering on
the final feature space of the classifier [11]. However, this
does not provide an interpretation of the subgroup. Leverag-
ing the text-image embedding alignment in CLIP [41], both
[13] and [26] operated in the latent space of CLIP to identify
semantically coherent subgroups and generate human inter-
pretable subgroup annotation. The main disadvantage of
these works is that they require the availability of a labeled
hold-out set. Since systematic errors are more likely to oc-
cur on untypical/rare data [13], identifying them requires a
hold-out dataset containing such cases, which is unrealistic.
AdaVision [17] introduced a human-in-the-loop process to
discover systematic errors by adaptively querying real im-
ages from LAION-5B [46] (via CLIP similarity). In con-
trast to AdaVision, our procedure does not require a human-
in-the-loop, which can be preferred if model auditing needs
to be done regularly or for a large number of models.

The most similar line of work to ours is built on top of
text-to-image synthesis models [42, 43, 45, 9]. For instance,
in [27, 35, 51], counterfactual examples are generated ac-
cording to the input text, which indicates the semantic shift,
e.g., background, lighting, or style. These works considered
a single semantic shift, whereas systematic errors can re-
sult from compounding shifts in multiple semantic factors.
Wiles et al. [53] did not pre-specify the semantic shift but
iteratively synthesize samples based on a text description,

cluster the failure cases, and refine the text description. In
contrast to such an “open-ended” search, our work focuses
on finding failures within an operational design domain and
achieves high coverage of that domain (see Section 4.1).
Moreover, our approach is conceptually more simple and
does not require clustering and captioning of failure cases.
Both approaches can be seen as complementary.

3. Method
In this section, we introduce our proposed procedure

PROMPTATTACK; see Figure 2 for an illustration.

3.1. Background

We consider image classifiers f : X×Y → [0, 1] and de-
note the predicted probability of class y ∈ Y = {1, . . . , C}
for image x ∈ X by f(y|x). We assume that we operate in
a domain where x,y are governed by a distribution p(x,y).
We are interested in exploring properties of f on semanti-
cally coherent subgroups of the data manifold, which we
formalize by conditioning on some latent z: p(x,y|z). For
brevity, we also denote the subgroups themselves by z. We
note that in contrast to Wiles et al. [53], we do not build
on the conditional distribution p(z|x,y) and thus do not re-
quire an image captioning model.

3.2. Systematic Errors: Definition

We define the risk of a classifier f on a subgroup z
by Rf (z) = Ep(x,y|z)L(f(·|x),y), where Ep denotes
the expectation over p and L : [0, 1]C × Y 7→ R is
a loss function. Moreover, we set the baseline (irre-
ducible) risk on z to RB(z) = Ep(x,y|z)L(p(·|x, z),y),
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with p(y|x, z) = p(x,y|z)/p(x|z). We note Rf (z) ≥
RB(z). We assume that we are provided with a prede-
fined set of subgroups Z that we denote as the opera-
tional design domain (ODD) [10]. We are interested in
subgroups z ∈ Z on which a classifier f has high risk
Rf (z) while the baseline risk RB(z) remains low. If the
subgroups z are designed in a way to encourage seman-
tic coherence, such high risk subgroups are human inter-
pretable and actionable. More specifically, we rank sub-
groups z ∈ Z based on R(z) = Rf (z) − RB(z); top-
ranked z with sufficiently high risk are systematic errors.
Similarly, we define a systematic misclassification into class
y(t) by Rf (z,y

(t)) = Ep(x,y|z)L(f(·|x),y(t))1[y ̸=y(t)] and
RB(z,y

(t)) analogously, with 1[y ̸=y(t)] being the indica-
tor function of y ̸= y(t). The top-ranked z according to
R(z,y(t)) = Rf (z,y

(t))−RB(z,y
(t)) are systematic mis-

classifications into y(t) for sufficiently high R(z,y(t)). We
note the risk R can be made invariant to the classifier’s cali-
bration (e.g., for L being a 0-1 loss function) or sensitive to
it (for most other choices of L).

3.3. Systematic Errors: Approximations

We make several approximations and assumptions for
tractable systematic error identification; empirical evidence
in Section 4 suggests these hold reasonably well in practice.

1. Monte Carlo Approximation. In general we cannot
compute Ep(x,y|z) in the definition of Rf (z). Thus, we re-
sort to approximating the expectation based on ns samples

xi,yi ∼ p(x,y|z): Rf (z) ≈ 1
ns

ns−1∑
i=0

L(f(·|xi),yi).

2. Synthetic Data. Real-world samples x,y ∼
p(x,y|z) from semantically coherent subgroups z are typ-
ically not available for two reasons: (i) typical real-world
data x,y lacks human annotated information on z, such
as captions in a given format or subgroup annotations. (ii)
Even if z were available or could be inferred, the coverage
of Z can be very low: some rare subgroups z ∈ Z will have
low p(z|x,y) and may not be represented at all in finite
sample sets from p(x,y). However, the performance of f
on such rare subgroups can still be highly relevant in safety-
critical applications, as specifically rare corner cases may be
the ones where the generalization of a classifier f fails. Be-
cause of this, we resort to sampling x,y|z from learned ap-
proximations p̂ of the real-world data distribution. For this,
we leverage recent text-to-image models pT2I(x|t) such as
Stable Diffusion [43], which condition image generation on
a text prompt t, as detailed below.

3. Sampling Class-Conditional. We can use text-to-
image models for sampling from p̂(x|z) by representing the
subgroup z as a text prompt t. However, sampling from
p̂(x,y|z) = p̂(y|x, z)p̂(x|z) would also require an approx-
imation p̂(y|x, z), that is: the conditional probability of a
specific class y given an image x and subgroup z. Such an

approximation p̂(y|x, z) is not generally available or eas-
ily estimated (estimating p̂(y|x, z) from data would require
a large number of samples (x,y) annotated with z, which
we precluded above). Instead, we explicitly condition the
generation of x on a desired class ỹ. Effectively, this corre-
sponds to focusing on systematic errors on a specific source
class ỹ. We realize the approximate p̂(x|ỹ, z) by includ-
ing class information ỹ along with z in a text prompt t as
detailed in Section 3.4.

4. Negligible Baseline Risk. We cannot evaluate RB(z)
directly since p(y|x, z) is unavailable. Because of this, we
limit ourselves to choices of Z where by design for ev-
ery z ∈ Z, we have for x ∼ p(x|ỹ, z) that p(y|x, z) ≈
1 if y = ỹ else 0. That is: classes do not overlap on z and
images x|ỹ, z belong unambiguously to the same class ỹ.
Accordingly, the baseline risk RB(z) on p(x,y|z) is negli-
gibly small for typical loss functions (unlike on the uncon-
ditional p(x,y)) and we can approximate R(z) ≈ Rf (z)
and R(z,y(t)) ≈ Rf (z,y

(t)).
Dealing with Violations. We note that the above ap-

proximations do not hold strictly as the generative model
p̂(x|ỹ, z) will not perfectly approximate the real-data sub-
groups p(x|ỹ, z): it may generate (i) valid data from p(x|ỹ)
that is “out-of-subgroup” (OOS), that is: has very low prob-
ability under p(x|ỹ, z), (ii) data that does not belong to the
class ỹ, that is: low p(x|ỹ) (“out-of-class”, OOC), and (iii)
data that is even very unlikely under p(x) (OOD sampling
[53]). Recent progress in text-to-image models, for which
p̂(x|ỹ, z) more closely approximates p(x|ỹ, z), makes such
OOS/OOC/OOD samples occur less often. To reduce them
further, we carefully engineer text prompts for ỹ and z (see
Section 3.4). This requirement for “prompt engineering”
is a shortcoming but we are optimistic that future text-to-
image models will reduce its need.

Even with careful prompt engineering, a few
OOS/OOC/OOD samples might still dominate the Monte-
Carlo estimate for Rf (z). We thus resort to robust estima-
tors of central tendency for Rf (z), which are less affected
by outliers, such as Rf (z) ≈ medianns−1

i=0 L(f(·|xi), ỹ).

3.4. Operational Design Domain Z

In principle, our approach allows arbitrary ODDs Z. We
specifically focus on a setting where the ODD is composi-
tional: Z = Z0×· · ·×ZnZ−1, where every Zi corresponds
to a semantically meaningful dimension. Every z ∈ Z is
then a tuple containing nZ values (one for each seman-
tic dimension). As we use text-to-image models pT2I(x|t)
for sampling from a subgroup, we assume the ODD comes
with a prompt template Tp that allows mapping this nZ-
dimensional tuple along with the class ỹ to a text prompt:
t = Tp(ỹ, z). We thus set p̂(x|ỹ, z) = pT2I(x|Tp(ỹ, z)).
We note that the choice of the prompt template Tp can sig-
nificantly affect the efficacy of our procedure.
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If we specify Z as above, we have |Z| =
∏nZ−1

i=0 |Zi|.
Accordingly, the number of subgroups in the ODD grows
exponentially with the number of semantic dimensions nZ .
To deal with large nZ , we optionally employ combinatorial
testing [38, 4] to test only a subset of subgroups ZC ⊆ Z
for systematic errors (see Section A in the appendix for a
comparison to other search procedures). Specifically, for
a value nC ≤ nZ , combinatorial testing ensures that for
any i0, . . . , inC−1 ≤ nZ − 1 and for all z ∈ Z there exists a
zC ∈ ZC such that zi0 = zCi0 , ..., zinC−1

= zCinC−1
. That is,

for every combination of nC semantic dimensions Zi, ev-
ery possible combination of values from these dimensions
is covered at least once in ZC . Choosing nC < nZ reduces
the number of tested subgroups at the cost of not reaching
a full (but near-equable) coverage of Z. Combinatorial test-
ing allows evaluating different loss functions concurrently;
we use L(f(·|x), ỹ) = 1 − f(ỹ|x) for systematic errors
and L(f(·|x),y(t)) = f(y(t)|x) for systematic misclassifi-
cations for multiple choices of y(t).

4. Quantitive Evaluation

We perform quantitive evaluations in terms of coverage
properties of an operational design domain (Section 4.1)
and the ability of PROMPTATTACK to recover known sys-
tematic errors from a zero-shot classifier (Section 4.2).

4.1. Coverage Analysis of Conditional versus Un-
conditional Synthesis

Motivation. The primary motivation for PROMPTAT-
TACK is to encourage full exploration of an operational de-
sign domain Z by explicitly conditioning image generation
on subgroups z ∈ Z, that is, to sample from p̂(x|z) rather
than unconditionally from p̂(x) as done by Wiles et al. [53]
(we skip the conditioning on ỹ here for brevity). We inves-
tigate in this subsection whether this indeed results in better
coverage: p̂(z) =

∫
x
p̂(z|x)p̂(x) dx should be near uniform

over Z when p̂(x) is the empirical distribution of samples
generated by PROMPTATTACK. For this analysis (but not
for PROMPTATTACK itself), we need a mechanism to es-
timate p̂(z|x), for which we employ a zero-shot classifier
derived from the multimodal image-text model CLIP [41].

Experimental Setting. We consider the class ỹ =“car”,
and the semantic dimensions Z0 ={black, white, red,
green, blue} corresponding to color, Z1 ={forest, desert,
city, mountain, beach} corresponding to scene background,
and Z2 ={van, SUV, sedan, cabriolet} corresponding to
car type. As operational design domain we use the full
Z = Z0 × Z1 × Z2 with |Z| = 100. With z = (z0, z1, z2)

we obtain a factorized p̂(z|x) =
∏2

i=0 p̂(zi|x). For p̂(zi|x),
we use the CLIP-based zero-shot classifier with text queries
T0 = {“An image of a color car”|color ∈ Z0}, T1 = {“An
image of a car with background background”|background ∈
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Figure 3. Estimate of p̂(z) =
∫
x
p̂(z|x)p̂(x) dx (unconditional)

and p̂(z) =
∑

z̄ p(z̄)
∫
x
p̂(z|x)p̂(x|z̄) dx (conditional), obtained

using 40,000 Monte-Carlo samples x ∼ p̂(x|z̄) and z̄ ∼ p(z̄) =
U(1/|Z|). Subgroups are sorted based on p̂(z), where p̂(z|x) is
estimated with a zero-shot CLIP classifier. Error bars are 95%
confidence intervals via the Clopper-Pearson exact method assum-
ing Bernoulli experiments (success probability 1/|Z| = 0.01).

Z1}, and T2 = {“An image of a type”|type ∈ Z2}. We use
Stable Diffusion (SD) [43] using 20 steps with the DPM-
Solver++ [33, 34] as realization of pT2I(x|t) and sample x
of resolution 512 × 512. For unconditional synthesis p̂(x),
we use the prompt “An image of a car.”. For conditional
synthesis p̂(x|z̄), we use the prompt template “An image of
a color type car with a background background.” where we
insert every z̄ = (color, background, type) equally often
(round-robin). For both variants, we employ a Monte-Carlo
estimate of p̂(z) based upon 40,000 samples.

Results. Results are summarized in Figure 3: condi-
tional synthesis generates samples x such that the 95%
confidence interval lower bound on p̂(z) is greater than
0.005 for all subgroups (the uniform subgroup probabil-
ity is p = 1/|Z| = 0.01). In contrast, unconditional
synthesis has a minimum 95% confidence interval upper
bound on p̂(z) at less than 0.0001. For conditional syn-
thesis, we also estimate p̂(z⋆ = z̄) for x ∼ p̂(x|z̄) and
z⋆ = argmaxz∈Z p̂(z|x). Averaged over all subgroups
z̄ ∈ Z, this probability is approximately 89%, and for no
subgroup it is less than 85%.

4.2. Zero-Shot Systematic Error Benchmark

Motivation. One major challenge when evaluating ap-
proaches for systematic error identification empirically is
that a priori, it is unknown which (if any) systematic errors
a target classifier exhibits. Not having such a ground truth
prohibits the fully automated evaluation of systematic er-
ror identification approaches. Training time interventions to
inject systematic errors into models [13] are computation-
ally costly and not scalable. Moreover, their indirect nature
makes them brittle and not always resulting in the desired
error. To address these shortcomings, we propose zero-shot
systematic errors where we leverage zero-shot classifiers
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Figure 4. Effect of PROMPTATTACK’s hyperparameters on iden-
tification of systematic errors injected into a zero-shot classifier,
quantified in rank (log-scale) assigned to the ground-truth system-
atic error subgroup (a lower rank corresponds to a higher error).

from multimodal image-text models such as CLIP [41]1.
More specifically, let us consider a binary2 classifier for

classes ya and yb, which can be constructed based upon the
text queries tk =“an image of a yk” (k ∈ {a, b}). For
this, we compute the cosine similarities φk between the
input’s CLIP image embedding and the CLIP text embed-
dings of the tk and set the prediction logits to lk = τφk

with τ = 100 being a temperature. We now inject a
systematic error into this zero-shot classifier using addi-
tional poisonous queries like tp1

a =“An image of a red
ya”, tp2

a =“An image of a ya with forest background”,
and so on. We take the minimum of the cosine similarities
φp
a = min(φp1

a , φp2
a , . . . ) to the encoded poisonous queries,

set lpa = τφp
a, and compute the post-softmax probabilities as

ŷa, ŷb, ŷ
p
a = softmax(la, lb, l

p
a). We now classify to class

yb if ŷb + ŷp
a > ŷa and ya otherwise, that is: samples of

class ya which have high cosine similarity to all poisonous
queries are more likely misclassified as yb. This construc-
tion comes essentially for free and poisonous query can con-
trol the decision rule much more directly than training time
interventions [13], since they operate at inference time.

Experimental Setting. We define a zero-shot classifier
as described above for ya =“car” and yb =“truck”. We
consider the same class ỹ =“car”, operational design do-
main Z, and semantic dimensions Z{0,1,2} as in Section
4.1. We sample 20 combinations of color ∈ Z0, back-
ground ∈ Z1, and type ∈ Z2. For each of these combi-
nations, we employ the poisonous queries tp1

a =“An im-
age of a color car”, tp2

a =“An image of a car with back-
ground background”, and tp3

a =“An image of a type”, and
test PROMPTATTACK on the resulting zero-shot classifiers.
Per Section 3.3, we use Rf (z) ≈ medianns−1

i=0 (1−f(ỹ|xi))
for xi ∼ pT2I(x|Tp(ỹ, z)). We rank z ∈ Z on descending

1Note we are not interested in potential systematic errors of the CLIP
image or text encoder (if such exist, they are nuisances) but rather in sys-
tematic errors of the constructed zero-shot classifier.

2An extension to more than two classes would be straightforward.

Rf (z): the z with the highest Rf (z) obtains rank 1.
We evaluate the sensitivity of PROMPTATTACK with re-

spect to its free hyperparameters. We set the prompt tem-
plate3 to Tp =“An image of a color type (car:wc) with
a background background.”, where wc is a weight multi-
plied to the text encoding of the tokens of the word “car”.
For PROMPTATTACK, we generate ns samples x of size
512 × 512 with nt steps of SD/DPMSolver++. We investi-
gate the effect of the number of image samples ns, number
of inference steps nt, the custom class prompt weight wc,
as well as different versions of SD on the resulting ranking.

Results. Figure 4 summarizes the results for PROMP-
TATTACK (see Section C for samples). We observe that
the version of SD has a major impact on PROMPTATTACK’s
performance, with the v1.5 checkpoint greatly outperform-
ing the more recent v2-base and v2-1-base checkpoints. We
attribute this to v1.5 generating samples more faithful to
the prompt and with better attribute binding than the other
checkpoints (see Figure 10). In the upper right plot, we
observe that too few samples ns impair performance due
to the large variance in the MC estimate of Rf (z). For
ns ≥ 16 performance is very close to optimal. In the bot-
tom left, we see that a small number of inference steps such
as nt = 5 steps works well — this is somewhat surprising
since image quality is impaired considerably for this small
nt but PROMPTATTACK is relatively robust to image qual-
ity. Lastly, in the bottom right, the importance of a custom
class prompt weight wc is demonstrated with wc = 1.5 out-
performing the default of wc = 1.0. We attribute this to
higher weights resulting in more reliably depicting objects
of the desired class. Increasing wc further results in de-
teriorating performance due to image artefacts. Based on
these results, we use SD v1.5 with ns = 16, nt = 20, and
wc = 1.5 in subsequent experiments without further tuning.

5. Qualitative Evaluation on ImageNet

Vehicle Experiment. We evaluate 5 models trained for
image classification on ImageNet1k. We focus on a sub-
set of classes belonging to the vehicle subcategory, more
specifically on misclassifying samples of the class “mini-
van” ỹ = yminivan into other classes that have a dis-
tance of 2 in the WordNet [14] hierarchy, e.g., “police van”
and “snowplow”. We focus on an operational design do-
main Z with five semantic dimensions, corresponding to
viewpoint, object size, object color, weather, and back-
ground. We use the prompt template Tp =“{viewpoint}
view of {size} {color} (minivan:1.5) in front of {weather}
{background}”. We use combinatorial testing with nC = 3,
exploring |ZC | = 1,230 out of |Z| = 18,720 subgroups,
and generate nS = 16 image samples per subgroup using

3Note the difference of poisonous queries t
pi
a (part of the poisoned

zero-shot classifier) and prompt template Tp (part of PROMPTATTACK).
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Figure 5. Median (over 16 samples) target class confidence for strongest respective prompt found by PROMPTATTACK vs. a neutral baseline
prompt (black boundary) for four selected target classes. We refer to Figure 1 for exemplary prompts, samples, and class prediction rates.
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Figure 6. Cumulative functional ANOVA [24] of predicted prob-
ability of target classes for source class “minivan”. Rows corre-
spond to cardinality 2 and 3 subsets of semantic dimensions with
white encoding an excluded dimension and the color the groups’s
fANOVA score. Different dimensions are relevant for different tar-
get classes, e.g., the combination of background and object color
has high score for police-van but low score for snowplow. High
fANOVA scores require at least 3 dimensions.

Stable Diffusion v1.5. For a full description of experimental
setting, we refer to Section B.1.

We analyse the median predicted probability
medianpT2I(x|Tp(ỹ,z)) f(y

(t)|x) of different target classes
y(t) for the strongest prompts identified by PROMPTAT-
TACK. We compare these prompts to a neutral baseline
prompt t =“center view of (minivan:1.5) in front of
background.”. Results for 4 selected target classes y(t) are
summarized in Figure 5 (see also Table 1). It can be seen
that samples of the baseline prompt are assigned with very
high confidence to the correct class “minivan”. However,
for target classes y(t) such as “pickup”, “police van”, or
“snowplow”, PROMPTATTACK can identify prompts that
result in systematic misclassifications, that is consider-
ably increased value for the target class. We depict the

top-ranked subgroups for three target classes in Figure 1.
We note that the sensitivity of models to these subgroups
vary (in accordance with Figure 5): for t⋆snowplow =“rear
view of small orange minivan in front of snowy forest.”,
a VGG16 [47] misclassifies 25% of the samples as snow-
plows while a ConvNeXt-B [32] misclassifies only 1%.
This indirectly confirms that misclassifications are not due
to OOC samples because the same samples are classified
correctly by a ConvNeXt-B (see also Section D for an il-
lustration of misclassified samples). Moreover, we selected
16 images from LAION-5B [46] that best match t⋆snowplow

(using CLIP retrieval [5] followed by manual filtering).
The models misclassify between 6 (ConvNeXt-B) and 8
(ResNet50 [21], VGG16) of those as snowplows.

Figure 6 depicts a (cumulative) functional ANOVA anal-
ysis [24] of median predicted probability of different tar-
get classes y(t). One can see that different semantic di-
mensions are relevant for different target classes; for in-
stance, the combination of background and object color has
a high fANOVA score for police-van but a low score for
snowplow. Moreover, for target classes like snowplow, at
least 3 semantic dimensions are required for explaining the
bulk of the variance. This is also illustrated in Figure 7
where changing a single dimension does not mislead a ViT-
B/16 [12], while a specific combination of shifts such as
t⋆snowplow results in misclassifying 300 out of 1000 samples
as snowplow. A possible explanation for this increased er-
ror rate is that (i) snowy forests are more often in the back-
ground for snowplows than minivans, (ii) snowplows are
more often orange than minivans, and (iii) rear views hide
a distinctive feature of snowplows, namely their plow in the
front. In summary, our findings support the hypothesis that
studying single shifts can be insufficient as often specific
combinations of compounding shifts result in a systematic
error. PROMPTATTACK allows finding such rare subgroups.

Person Experiment. It has been observed before that
systematic errors on under-represented demographic sub-
groups can result in reduced fairness and even derogatory
behaviour such as misclassifying black people as “goril-
las” [3]. We check two models trained for image classi-
fication on ImageNet21k for similar issues using PROMP-
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Figure 7. Samples for prompt template “rear view of {size}
{color} minivan in front of {weather} {background}.”. Baseline
generations (top left) and single-dimension-shifted generations are
classified consistently as minivan by a ViT-B/16. Shifting all di-
mensions jointly as determined by PROMPTATTACK results in 300
out of 1000 samples (mis-)classified as snowplows (bottom right).
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Figure 8. Samples and prediction histograms (based on 1000 sam-
ples) for different subgroups. The baseline subgroup (left) is clas-
sified consistently as homo, while the misclassification rate to ape
is significantly increased for an MLP-Mixer-B/16 [49] on a sub-
group identified by PROMPTATTACK (right).

TATTACK: we set source class ỹ =“homo” and target class
“ape”. We use an operational design domain Z with the 5
semantic dimensions age, gender, geographic region, hair-
type, and background. We use the prompt template Tp =“A
{age} {gender} {region} (person:1.5) with {hairtype} hairs
in front of {background}”. We use combinatorial testing
with nC = 3, exploring |ZC | = 1,371 out of |Z| = 12,150
subgroups. For a full description of experimental setting
and additional results, we refer to Section B.2. The outcome
is summarized in Figure 8 and Table 2: while samples of
most subgroups are classified correctly as “homo”, samples

of specific subgroups such as t =“old male african (per-
son:1.5) with long hairs” have a misclassification rate of up
to 25% into “ape” (see Figure 16 in appendix). PROMPTAT-
TACK allows identifying such systematic errors on under-
represented demographic subgroups.

6. Limitations

False Positive Systematic Errors. While prompt en-
gineering can reduce the number of OOC samples and ro-
bust estimation can reduce their impact, there may still be
combinations of subgroups z and source classes ỹ where
the majority of samples are OOC. If the OOC sample x ∼
p̂(x|ỹ, z) is such that the true p(y|x) is not strongly peaked
at ỹ, then our procedure might identify a false positive sys-
tematic error: the classifier f might classify x correctly as
not belonging to ỹ because the generated x is no instance
of ỹ. In the absence of an oracle providing us the true
p(y|x) (such as a human in the loop [17]), there is no re-
liable way of identifying these false positives. However,
we note that moderate prompt engineering such as tuning
the class prompt weight was sufficient to prevent such false
positives for the operational design domains we have con-
sidered (see also Sections 4.2 and 5).

Language Bottleneck. Certain coherent subsets of the
data, e.g., subsets that share some geometric layout, may
be difficult to describe in natural language as a text prompt.
Increased errors on such subsets can thus not be identified
directly by our procedure. Future work on using other types
of conditioning information z such as a scene layout [56]
could address this limitation. Moreover, textual inversion
[15] can be used to distill visual concepts into tokens, e.g.,
ImageNet classes ỹ with ambiguous class names [51].

Bias Propagation. We note that biases from the text-
to-image models itself may propagate to biases in our sys-
tematic error identification procedure: if the text-to-image
model cannot generate samples for certain marginalized
subgroups of a population, we will not be able to identify
a potentially subpar performance of the downstream classi-
fier f on these subgroups. This reinforces the need to fur-
ther reduce bias in text-to-image models in the future [7].

7. Conclusion

We have proposed PROMPTATTACK, which leverages re-
cent progress on text-to-image models for identifying sys-
tematic errors that occur on rare data subgroups (combina-
tions of semantic shifts). Both quantitative results on care-
fully constructed benchmarks as well as qualitative results
on multi-class image classifiers demonstrate the efficacy of
PROMPTATTACK in identifying such systematic errors. Fu-
ture work needs to address the limitations discussed above,
for instance by leveraging more controllable, versatile, and
reliable procedures for image synthesis.
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for Generic Object Detection: A Survey. IJCV, 128(2):261–
318, Feb. 2020. 1

[32] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In CVPR, 2022. 7, 11

[33] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan
Li, and Jun Zhu. DPM-solver: A fast ODE solver for dif-
fusion probabilistic model sampling in around 10 steps. In
NeurIPS, 2022. 5, 12, 16

[34] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan
Li, and Jun Zhu. Dpm-solver++: Fast solver for guided sam-
pling of diffusion probabilistic models. arXiv:2211.01095,
2022. 5, 12, 16

[35] Aengus Lynch, Jean Kaddour, and Ricardo Silva. Evaluat-
ing the impact of geometric and statistical skews on out-of-
distribution generalization performance. In NeurIPS Work-
shops, 2022. 3

[36] TorchVision maintainers and contributors. Torchvision: Py-
torch’s computer vision library. https://github.com/
pytorch/vision. 11

[37] Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza,
Nasser Kehtarnavaz, and Demetri Terzopoulos. Image seg-
mentation using deep learning: A survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(7):3523–
3542, 2022. 1

[38] Changhai Nie and Hareton Leung. A survey of combinatorial
testing. ACM Computing Surveys, 43:11, 01 2011. 2, 5, 11

[39] Ethan Perez, Saffron Huang, H. Francis Song, Trevor
Cai, Roman Ring, John Aslanides, Amelia Glaese, Nat
McAleese, and Geoffrey Irving. Red teaming language mod-
els with language models. arXiv:2202.03286, 2022. 2

[40] Oskar. Pfungst and Carl Leo. Rahn. Clever Hans (the horse
of Mr. Von Osten) a contribution to experimental animal and
human psychology. New York, H. Holt and company, 1911.
1

[41] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In ICML, 2021.
2, 3, 5, 6

[42] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with CLIP latents. arXiv:2204.06125, 2022. 2, 3

[43] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 2, 3, 4,
5, 12, 15

[44] Shiori Sagawa*, Pang Wei Koh*, Tatsunori B. Hashimoto,
and Percy Liang. Distributionally robust neural networks. In
ICLR, 2020. 2

[45] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed

Ghasemipour, Raphael Gontijo-Lopes, Burcu Karagol Ayan,
Tim Salimans, Jonathan Ho, David J. Fleet, and Mohammad
Norouzi. Photorealistic text-to-image diffusion models with
deep language understanding. In NeurIPS, 2022. 2, 3

[46] Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade W Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Worts-
man, Patrick Schramowski, Srivatsa R Kundurthy, Katherine
Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia
Jitsev. LAION-5b: An open large-scale dataset for training
next generation image-text models. In NeurIPS Datasets and
Benchmarks Track, 2022. 3, 7

[47] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In ICLR,
2015. 7, 11

[48] Nimit Sohoni, Jared A. Dunnmon, Geoffrey Angus, Albert
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