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Abstract

The ubiquitous use of face recognition has sparked in-
creasing privacy concerns, as unauthorized access to sensi-
tive face images could compromise the information of in-
dividuals. This paper presents an in-depth study of the
privacy protection of face images’ visual information and
against recovery. Drawing on the perceptual disparity be-
tween humans and models, we propose to conceal visual
information by pruning human-perceivable low-frequency
components. For impeding recovery, we first elucidate the
seeming paradox between reducing model-exploitable in-
formation and retaining high recognition accuracy. Based
on recent theoretical insights and our observation on model
attention, we propose a solution to the dilemma, by advo-
cating for the training and inference of recognition mod-
els on randomly selected frequency components. We distill
our findings into a novel privacy-preserving face recogni-
tion method, PartialFace. Extensive experiments demon-
strate that PartialFace effectively balances privacy protec-
tion goals and recognition accuracy. Code is available at:
https://github.com/Tencent/TFace.

1. Introduction

Face recognition (FR) is a landmark biometric tech-
nique that enables a person to be identified or verified by
face. It has seen remarkable methodological breakthroughs
and rising adoptions in recent years. Currently, consider-
able applications of face recognition are carried out online
to bypass local resource constraints and to attain high ac-
curacy [19]: Face images are collected by local devices
such as cell phones or webcams, then outsourced to a
service provider, that uses large convolutional neural net-
works (CNN) to extract the faces’ identity-representative
templates and matches them with records in its database.
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†Corresponding author.
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Figure 1. Paradigm comparison among other frequency-based
methodologies and PartialFace. (a) Pruning low-frequency chan-
nels can conceal visual information but stop no recovery. (b) A
vanilla method that uses fixed channel subsets to impede recov-
ery suffers downgraded accuracy. (c) PartialFace addresses the
dilemma by training and inferring from random channels.

During the process, the original face images are of-
ten considered sensitive data under regulatory demands
that are unwise to share without privacy protection. This
fosters the studies of privacy-preserving face recognition
(PPFR), where cryptographic [7,8,14,17,21,33,44,47] and
perturbation-based [3, 12, 18, 28–30, 46, 48] measures are
taken to prevent face images from unauthorized access of,
e.g., wiretapping third parties. Face images are converted
to protective representations that their visual information is
both concealed and cannot be easily recovered [2].

This paper advocates a novel PPFR scheme, to learn
face images from random combinations of their partial fre-
quency components. Our proposed PartialFace can protect
face images’ visual information and prevent recovery while
maintaining the high distinguishability of their identities.

We start with the disparity in how humans and models
perceive images. Recent image classification studies sug-
gest that models’ predictions are determined mainly by the
images’ high-frequency components [39, 45], which carry
negligible visual information and are barely picked up by
humans. We extend the theory to face recognition from a
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privacy perspective, to train and infer the model on pruned
frequency inputs: As depicted in Fig. 1(a), we decouple
the face images’ frequency compositions via discrete cosine
transform (DCT), which breakdown every spatial domain
into a certain number of (typically 64) constituent bands,
i.e., frequency channels. We prune the human-perceivable
low-frequency channels and exploit the remaining. We find
the processed face images become almost visually indis-
cernible, and the model still works accurately.

Pruning notably conceals visual information. However,
to what degree can it impede recovery? We define recovery
as the general attempts to reveal the faces’ visual appear-
ances from shared protected features using trained attack
models. Notice we may prune very few (say, about 10)
channels, if according to human perception. At the same
time, the remaining high-frequency channels being shared,
hence exposed, are quite numerous and carry a wealth of
model-perceivable features. While the information abun-
dance can benefit a recognition model, it is also exploitable
by a model carrying out attacks, as both may share similar
perceptions. Therefore, as we later experimentally show,
the attacker can recover visual features from high-frequency
channels with ease in the absence of additional safeguards,
rendering privacy protection useless.

An intuitive tactic to reinstate protection is to reduce the
attacker’s exploitable features by training on a small portion
of fixed channels, as shown in Fig. 1(b). However, we find
the reduction also severely impairs the accuracy of trained
recognition models. Evidence on the models’ attention, as
later shown, attributes their utility downgrade to being inca-
pable of learning a complete set of facial features, as vital
channels describing some local features may be pruned.

Training on subsets of channels hence seems contradic-
tory to the privacy-accuracy equilibrium. Fortunately, we
can offer a reconciliation getting inspired by a recent time-
series study [51]. It proves under mild conditions, mod-
els trained on random frequency components can preserve
more entirety’s information than on fixed ones, plausibly
by alternately learning from complementary features. We
hence propose a novel address to the equilibrium based on
its theoretical findings and our observation on model atten-
tion: For any incoming face image, we arbitrarily pick a
small subset of its high-frequency channels. Therefore, our
recognition model is let trained and inferred from image-
wise random chosen channels, illustrated in Fig. 1(c).

We further show that randomness can be adjusted to a
moderate level, by choosing channels from pre-specified
combinations and perturbations called ranks, to keep pri-
vacy protection while reconciling technical constraints to
ease training. At first glance, our randomized approach may
seem counter-intuitive as it is common wisdom that models
require consistent forms of inputs to learn stably. However,
since DCT produces spatially correlated frequency channels

that preserve the face’s structural information, as later illus-
trated in Fig. 3, it turns out the model generalizes quite nat-
urally. Experimental analyses shows our PartialFace well
balances privacy and accuracy.

The contributions of our paper are three-fold:

1. We present an in-depth study of the privacy protection
of face images, regarding the privacy goals of conceal-
ing visual information and impeding recovery.

2. We propose two methodological advances to fulfill the
privacy goals, pruning low-frequency components and
using randomly selected channels, based on the obser-
vation of model perception and learning behavior.

3. We distill our findings into a novel PPFR method, Par-
tialFace. We demonstrate by extensive experiments
that our proposed method effectively safeguards pri-
vacy and maintains satisfactory recognition accuracy.

2. Related work
2.1. Face recognition

The current method of choice for face recognition is
CNN-based embedding. The service provider trains a CNN
with a softmax-based loss to map face images into one-
dimensional embedding features which achieve large inter-
identity and small intra-identity discrepancies. While the
state-of-the-art (SOTA) FR methods [6, 20, 38] achieve im-
pressive task utility in real-world applications, their atten-
tion to privacy protection could be deficient.

2.2. Privacy-preserving face recognition

The past decade witnessed significant advances in
privacy-preserving face recognition [24,25,41]. We roughly
categorize the related arts into two branches:
Cryptographic methods perform recognition on encrypted
images, or by executing dedicated security protocols. Many
pioneering works fall under the category of homomorphic
encryption (HE) [8,14,33] or secure multiparty computation
(MPC) [21, 44, 47], to securely carry out necessary com-
putations such as model’s feature extraction. Some meth-
ods also employ various crypto-primitives including one-
time-pad [7], matrix encryption [17], and functional encryp-
tion [1]. The major pain points of these methods are gener-
ally high latency and expensive computational costs.
Perturbation-based methods transform face images into
protected representations that are difficult for unauthorized
parties to discern or recover. Many methods leverage dif-
ferential privacy (DP) [3, 18, 22, 48], in which face images
are obfuscated by a noise mechanism. Some use autoen-
coders [28] or adversarial generative networks (GAN) [18,
29] to recreate visually distinct faces that maintain a con-
stant identity. Others compress the original images into
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Figure 2. Pipeline of PartialFace. DCT turns face images into the frequency domain, where low-frequency channels are first pruned to
remove the human perception. A small subset of channels is selected and permuted at random according to pre-specified combinations
{S,P}, or ranks. The model is trained and inferred from random subsets to address the equilibrium between accuracy and privacy.

compact representations by mapping discriminative compo-
nents into subspaces [4,16,27], or anonymize the images by
clustering their features [12]. These methods face a com-
mon bottleneck of task utility: As the techniques they em-
ploy essentially distort the original images, their protection
often impairs recognition accuracy.

2.3. Learning in the frequency domain

Converting spatial or temporal data into the frequency
domain provides a powerful way to extract interesting sig-
nals. For instance, the Fourier-based discrete cosine trans-
form [5] is used by the JPEG standard [37] to enable im-
age compression. Researches in deep learning [9, 45] sug-
gest models trained on images’ frequency components can
perform as well as trained on the original images. Ad-
vance [39] further reveals humans and models perceive low-
and high-frequency components differently. In the realm of
PPFR, three recent methods [15, 26, 42] are closely related
to ours as we all conceal visual information by exploiting
the split in human and model perceptions. However, these
methods bear inadequacy in defending recovery, according
to our previous discussion of channel redundancy and later
testified in experiments.

3. Methodology
This section discusses the motivation and technical de-

tails behind PartialFace. PartialFace is named after its key
protection mechanism, where the model only exploits face
images’ partial frequency components to reduce informa-
tion exposure. Figure 2 describes its framework.

3.1. Overview

Recall our privacy goals are to conceal the face images’
visual information and to prevent recovery attacks on them.
They respectively target the adversarial capability of hu-

mans and models. We naturally concretize them into two
technical aims, on how to eliminate human perception, and,
on how to reduce exploitable information for attack models.

To eliminate human perception, we leverage the find-
ing that models’ utility can be maintained almost in full
on the images’ high-frequency channels [39]. Contrarily,
humans mostly perceive the images’ low-frequency chan-
nels, as only they carry signals of conspicuous amplitude for
human eyes to discern. Whereby spatial-frequency trans-
forms, these channels can be easily located and pruned from
raw images. We concretely opt for DCT as our transform
as it facilitates the calculation of energy, to serve as the
quantification for human perceivable information. Exper-
imentally, we can prune a very small portion of channels to
eliminate 95% of total energy, hence satisfying our aim.

Reducing the attacker’s exploitable information requires
further pruning of high-frequency channels, as previously
discussed. However, it is equally crucial to maintain the
recognition model’s accuracy, which presents a seeming
dilemma, as the training features utilizable by recognition
and attack models are tightly interwoven in these channels.
We offer a viable way as our major contribution: We notice
different channel subsets each carrying certain local facial
features. Hence, we feed the model with a random subset
from each face image, with the hope to let the model learn
the entire face’s impression from different images’ comple-
mentary local feature partitions. This approach is proved
feasible by recent theoretical studies [51] and demonstrated
by our experiments. Therefore, information exposure is
minimized as only each image’s chosen subset is exposed,
and the model still performs surprisingly well.

Despite being well justified by theory, we find sampling
channels under complete randomness could under-perform
in actual training due to two technical limitations: the inad-
equacy in training samples and the biased sampling within
mini-batches. We propose two targeted fixes to reconcile
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Figure 3. The DCT process. The produced (d) frequency channels
keep the spatial structure to (a) the original image, though only
low-frequency channels are discernible bu humans. We use (c) 2D
grids to describe the frequency spectrum. Each cell in the grid
represents one frequency channel of H×W .

the constraints, by augmenting samples and seeking a mod-
erate level of randomness. We find the modified approach
satisfactorily addresses the privacy-accuracy equilibrium.

3.2. Conceal visual information

We first set up some basic notions: ⟨X, y⟩ denotes a data
sample of a face image and its corresponding label. x de-
notes the frequency composition of X and xi denotes its
individual frequency channels. f(·; θ) denotes the recogni-
tion model parameterized by θ. l(·, ·) denotes a generic loss
function (e.g., ArcFace). T (·) denotes the discrete cosine
transform and T −1(·) denotes its inverse transform.

To conceal visual information, recall humans and mod-
els mainly perceive low- and high-frequency components,
respectively. Therefore, we need to find a frequency de-
composition of X={xl,xh}, where xl,xh are the respec-
tive low- and high-frequency channels, then prune xl.

We presume X is with the shape of (H,W ). We employ
DCT to transform X’s spatial channels into a frequency
spectrum. While an RGB image typically has 3 spatial
channels, we pick one for simplicity. We perform an 8-
fold up-sampling ahead to turn X into (8H, 8W ). As DCT
later divides H and W by 8, this makes sure the resulting
frequency channels can be fed into the model as usual. Fig-
ure 3 illustrates the process of DCT, where x=T (X). Con-
cretely, X is divided into (8, 8)-pixel blocks. DCT turns
each block into a 1D array of 64 frequency coefficients and
reorganizes all coefficients from the same frequency across
blocks into an (H,W ) frequency channel (there are 64 of
them), that is spatially correlated to the original X . As a
result, X is turned into x of (64, H,W ).

We then decouple x into {xl,xh}. Notice that human-
perceivable low-frequency channels should meanwhile be
those with higher amplitude, as humans preferentially iden-
tify signals with conspicuous value changes. We measure a
channel’s amplitude by its channel energy e(·), which is the
mean of amplitudes of all its elements:

e(x) =
1

HW

H−1∑
i=0

W−1∑
j=0

|xi,j |. (1)

Figure 4. The visual appearance and recovery of an example image
of (a) after pruning, (b) a fixed subset, and (c) a random subset.
This shows protection is enhanced by removing human perception,
reducing the number of channels, and randomness, respectively.

We choose σ=10 highest-energy channels as xl to be
pruned and the rest as xh to be available to models. We
experimentally find

∑
x∈xl

e(x) ≥ 0.95
∑

x∈x e(x), and a
model trained with argminθ l(f(xh, θ), y) obtain close ac-
curacy to one trained with argminθ l(f(x, θ), y). For pri-
vacy, example of a channel-pruned image in Fig. 4(a) show
that most visual information is concealed. While its recov-
ery is still carried out quite successfully, we are to address
the issue in the following.

3.3. Impede easy recovery

To elucidate the seeming dilemma between reducing
model-available channels and retaining high recognition ac-
curacy, we first introduce an intuitive protection, referred to
as the vanilla method. It trains models on a fixed small sub-
set of channels straightforwardly: Concretely for every X ,
the model pick s<d channels xs=(xa1 , . . . , xas) from its
high-frequency xh=(x1, . . . , xd), where a1<a2<· · ·<as
are fixed indices. We benchmark the trained model on IJB-
B/C with s=9,18,36 and d=54, and verify its privacy.

The model indeed effectively prevents recovery, as
in Fig. 4(b) its recovered image is very blurred. However,
the benchmark in Fig. 5(a-b) suggests its accuracy dropped
by at most 9%. To find out why is the model’s performance
impaired, we inspect its attention via Grad-CAM [34]. Re-
sults are exemplified in Fig. 5(c-d), which we note show
similar patterns among different face images. We derive
two observations: (1) Unlike high-utility models that typ-
ically have attention to the full face, this model only gains
attention to certain local features, which suggests some vital
face-describing information is missing in xs; (2) By train-
ing vanilla models on different xs, we find it can acquire
distinct information from different channels, suggesting its
attention is correlated to the specific choices of xs.

The first observation suggests the cause of the accuracy
downgrade. Meanwhile, the second pursues us to consider a
viable bypass: We can gather complementary local features
from different images and initiate mixed training, to let the
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(a) IJB-B (b) IJB-C (c) vanilla on xs (d) vanilla on xs

Figure 5. The privacy and accuracy dilemma. (a-b) The vanilla
model trained on fixed channels under-performs on IJB-B/C (or-
ange), compared to the unprotected baseline (blue) and PartialFace
(green). (c-d) The model gains local attention on foreheads and
cheeks, suggesting missing face-describing information. The at-
tention varies by the specific choice of xs.

model learn a holistic impression of the entirety while keep-
ing the individual information exposure minimized. Our
idea is corroborated by [51], which proves in time-series,
training models on random frequency components can pre-
serve more information compared to training on fixed ones.

We concrete our theory into a randomized strategy, by
advocating training and inferring the recognition model on
image-wise randomly chosen channels. Formally, we con-
struct matrix S ∈ {0, 1}d×s, with sij=1 if i=aj and sij=0
if otherwise. We also construct permutation matrix P ∈
{0, 1}s×s. For each X , we draw (a1, . . . , as) (therefore S)
and P uniformly at random, and calculate

xs = xh · S · P. (2)

Here, S randomly pick s channels out of xh, then their
order is permuted by P . We introduce P to further im-
pede recovery, as later discussed in Sec. 3.5. The model
is trained in the same way as standard FR using ⟨xs, y⟩.
However, it does not require to know the sample-wise spe-
cific {S, P}, which is favorable for privacy. The approach
sounds a bit counter-intuitive since receiving random inputs
seems to mess with the model’s understanding. However,
recall that the DCT frequency channels are spatially corre-
lated to X and each other. The randomness only pertains to
the frequency spectrum while the face’s structural informa-
tion is preserved and unaltered. The model, therefore, can
associate different xs to the same X quite naturally.

3.4. Reconcile technical constraints

Equation (2) distills our core idea to sampling xs at com-
plete random. However, for practical training, there need to
further reconcile two technical constraints to achieve sat-
isfying model performance: First to note that ⟨xs, y⟩ are
more varied in feature representations than the unprotected
⟨X, y⟩, owing to the randomized frequency. It hence could
plausibly take the model with more training samples and
a longer training time to approach a well-generalized con-
vergence. Second, ideally, channels at random should be
sampled with equal probability to ensure balanced learning
of different local features. However, when the training data

is partitioned into small mini-batches, sampling is often less
unbiased batch-wise so the occurrence of different channel
combinations may vary greatly, which we find could under-
mine the training stability.

Targeting the constraints, we slightly adjust our estab-
lished approach in two ways. We first augment the train-
ing dataset by picking multiple xs each time from a face
image X: From X we sample {x1

s, . . . ,x
r
s}, where r de-

termines the degree of augmentation. Each xi
s is indepen-

dently drawn and appended to the training dataset as indi-
vidual training samples. The dataset is then fully shuffled
so that xi

s corresponding to the same face image cannot be
easily associated.

We also control the randomness to a moderate level
by specifying the possible combinations of S, P in ad-
vance. Concretely, we opt for choosing one S, P from
S={S1, . . . , Sm} and P={P1, . . . , Pn} respectively, where
S,P are determined by the service provider. We specifi-
cally require {S1, . . . , Sn} to be a non-overlapping parti-
tion of channels from xh (i.e., divide xh into equal-length
subsets) to maximize the use of xh and reduce model bias.
Therefore, each xi

s is picked from one of m×n fixed com-
binations of channels, called ranks. This allows us to facil-
itate the training and overcome sampling biases. The ser-
vice provider shares {S,P} with all local devices, so the
latter can generate their query xs accordingly. During in-
ference, the model is expected to provide consistent results
of the same query X regardless of the choice of rank, since
it learned about a mapping from local features to the face’s
entirety. We later testify to it in Sec. 4.3. Meanwhile, the
model is still unaware of the sample-wise specific choice
of {S, P} as the recognition relies on nothing else but xs

alone. Hence privacy is maintained.
To conclude, we present PartialFace that train and infer

the recognition model with argminθ l(f(x
i
s, θ), y), where

X={xl,xh} and xi
s=xh · S · P in random, parameterized

by {S,P} and (σ, s, r,m, n). Later analyses in Secs. 4.2
and 4.3 show PartialFace overcomes the drawback of the
vanilla method, plus outperforms most prior arts, to achieve
satisfactory recognition accuracy.

3.5. Enhance privacy with randomness

The benefit of randomness is multi-fold. We have dis-
cussed it for now on helping address the accuracy and pri-
vacy balance and enhance recognition performance. In ret-
rospect, we briefly elaborate on how randomness further
safeguards privacy to a large extent.

Recall we remove visual information by pruning xl and
impede recovery by choosing a subset of xs. After that,
randomness further obstructs recovery: To impose recov-
ery, the attacker exploits not only the channels’ information
but also their relative orders and positions in the frequency
spectrum. We introduce P to distort the order of channels to

19677



this end. As the recognition model does not require sample-
wise {S, P}, they won’t be exposed to the attacker. Fig-
ure 4(c) shows the improvement against recovery if the at-
tacker doesn’t know the specific choice of subsets.

4. Experiments
4.1. Experimental settings

We compare PartialFace with the unprotected baseline
and prior PPFR methods on three criteria: recognition per-
formance, privacy protection of visual information, and that
against recovery attack. We further study the computa-
tion and cost of PartialFace. We mainly employ an IR-
50 [11] trained on the MS1Mv2 [10] dataset as our FR
model, while also using a smaller combination of IR-18 and
the BUPT [40] dataset on some resource-consuming exper-
iments. We set (σ, s, r,m, n)=(10, 9, 18, 6, 6) and use fixed
{S,P}, if not else specified. Benchmarks are carried out
on 5 widely used, regular-size datasets, LFW [13], CFP-
FP [35], AgeDB [31], CPLFW [49] and CALFW [50], and
2 large-scale datasets, IJB-B [43] and IJB-C [23].

4.2. Benchmarks on recognition accuracy

Compared methods. We compare PartialFace with 2 un-
protected baselines, 4 perturbation-based PPFR methods,
and 3 methods base on the frequency domain that share
close relation to us. Results are summarized in Tab. 1. Here,
(1) ArcFace [6] denotes the unprotected SOTA trained di-
rectly on RGB images; (2) ArcFace-FD [45] is the ArcFace
trained on the image’s all frequency channels; (3) PEEP [3]
is a differential-privacy-based method with a privacy bud-
get ϵ=5; (4) Cloak [27] perturbs and compresses its input
feature space. Its accuracy-privacy trade-off parameter is
set to 100; (5) InstaHide [14] mixes up k=2 images and
performs a distributed encryption; (6) CPGAN [36] gener-
ates compressed protected representation by a joint effort of
GAN and differential privacy; (7) PPFR-FD1 [42] adopts a
channel-wise shuffle-and-mix strategy in the frequency do-
main; (8) DCTDP [15] perturbs the frequency components
by a noise disturbance mask with learnable privacy budget,
where we set ϵ=1; (9) DuetFace [26] is a two-party frame-
work that employs channel splitting and attention transfer.
Performance. Results are reported on LFW, CFP-FP,
AgeDB, CPLFW, and CALFW by accuracy, and on IJB-
B and IJB-C by TPR@FPR(1e-4). Table 1 shows Partial-
Face achieves close performance to the unprotected base-
line, with a small accuracy gap of ≤ 0.8%. In compari-
son, perturbation-based methods all generalize unsatisfac-
torily on large-scale benchmarks. PartialFace outperforms
all PPFR prior arts but DuetFace. While DuetFace achieves

1The results of PPFR-FD on IJB-B is unattainable due its non-
disclosure of source code. The rest is quoted from its paper [42]. Please
note its experimental condition may have slight inconsistency with ours.
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(a)

all ranks

(b)

Figure 6. Visualization of model attention via Grad-CAM. (a) Par-
tialFace (1st row) compared with vanilla models (2nd row) on each
of 6 different ranks. (b) Integrated attention of all ranks.

slightly higher accuracy, its protection is inferior to ours as
it only covers the inference phase and can be easily nullified
by recovery attacks, later see Secs. 4.4 and 4.5.

4.3. Comparison with the vanilla method

We elaborate that randomized PartialFace outperforms
the vanilla method that fixes channels in not only recog-
nition accuracy but also robustness. As PartialFace em-
ploys data augmentation, for a fair comparison regarding
the volume of training data, we consider two experimental
settings: the standard PartialFace and one without augmen-
tation (r=1). We also set n=1 to rule out permutation: P is
introduced for privacy and is out of our interest here. There
are therefore m×n=6 combinations of channels, or ranks.
As channels from different ranks carry distinct information
that may affect the performance, we train one vanilla model
on each rank and average their test accuracy, with the range
marked in parentheses. Though PartialFace is able to infer
from arbitrary rank, we evaluate its robustness by inferring
from each fixed rank separately. The model is robust if it
performs on different ranks consistently (small range). Re-
sults are reported on IJB-B/C by TPR@FPR(1e-4) in Tab. 2.
Performance. PartialFace achieves an average accuracy
gain of 7.53% and 7.75% on IJB-B/C, respectively, com-
pared to the vanilla. The performance is close to the unpro-
tected baseline, showing that the privacy-accuracy trade-off
of PartialFace is highly efficient. Even PartialFace with-
out augmentation outperforms the vanilla for about 3%. We
further note: (1) The range shows PartialFace is more robust
than the vanilla under different Si. (2) PartialFace outper-
forms the vanilla for all individual Si. This suggests that
randomness empowers PartialFace with the knowledge of
the entirety instead of that of certain informative ranks.
Visualization. We visualize the rank-wise attention of Par-
tialFace and the vanilla via Grad-CAM [34], see Fig. 6(a).
The attention of each vanilla model is restrained to local fa-
cial features, which indicates the inadequate learning of the
entirety features. PartialFace generate accurate attention on
the entire face regardless the rank. We integrated the at-
tention across all ranks in Fig. 6(b). All vanilla models’
attention combined gains attention on the entire face, which
testifies to our “learn-entirety-from-local” theory. Also to
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Method PPFR LFW CFP-FP AgeDB CPLFW CALFW IJB-B IJB-C

ArcFace [6] No 99.77 98.30 97.88 92.77 96.05 94.13 95.60
ArcFace-FD [45] No 99.78 98.04 98.10 92.48 96.03 94.08 95.64

PEEP [3] Yes 98.41 74.47 87.47 79.58 90.06 5.82 6.02
Cloak [27] Yes 98.91 87.97 92.60 83.43 92.18 33.58 33.82
InstaHide [14] Yes 96.53 83.20 79.58 81.03 86.24 61.88 69.02
CPGAN [36] Yes 98.87 94.61 96.98 90.43 94.79 92.67 94.31

PPFR-FD [42] Yes 99.68 95.04 97.37 90.78 95.72 / 94.10
DCTDP [15] Yes 99.77 96.97 97.72 91.37 96.05 93.29 94.43
DuetFace [26] Yes 99.82 97.79 97.93 92.35 96.10 93.66 95.30
PartialFace (ours) Yes 99.80 97.63 97.79 92.03 96.07 93.64 94.93

Table 1. Benchmarks on recognition accuracy. PartialFace is compared with the unprotected baselines and PPFR SOTAs.

Method IJB-B (range) IJB-C (range)

ArcFace 86.83 90.35
Vanilla 78.24 (-14.49/7.36) 80.73 (-16.37/7.45)
PF w/o aug. 81.43 (-4.19/2.88) 82.81 (-4.29/2.79)
PartialFace 85.77 (-1.95/1.25) 88.48 (-1.71/1.18)

Table 2. Comparison with the vanilla method by accuracy and ro-
bustness. Experiments are conducted on IR-18 + BUPT. “PF w/o
aug.” indicates PartialFace without augmentation.

note that PartialFace has similar attention across all ranks.
This allows it to recognize X using arbitrary rank, as they
produce aligned outcomes.

4.4. Protection of visual information

We investigate PartialFace’s protection of privacy. We
reiterate that the first privacy goal is to conceal the vi-
sual information of face images. We compare ParitalFace
with 3 PPFR SOTAs using the frequency domain: PPFR-
FD [42], DCTDP [15], and DuetFace [26]. These prior arts
are closely related to ours since we all leverage the percep-
tual difference between humans and models as means of
protection. However, they differ in the processing of fre-
quency components: Both PPFR-FD and DCTDP remove
the component with the highest energy (the DC compo-
nent). To obfuscate the remaining components, PPFR-FD
employs mix-and-shuffle and DCTDP applies a noise mech-
anism. DuetFace is the most related method in the prun-
ing of low-frequency components. We note in special that
they retain 36, 63, and 54 high-frequency channels, respec-
tively, while PartialFace retains 9. We now demonstrate the
methodological differences and varied number of channels
result in contrasting privacy protection capacities.

Figure 7 exemplifies face images processed (therefore
are supposed to be protective) by each compared method.
As all methods carry out protection in the frequency do-
main, we convert images back by padding any removed
frequency components with zero and applying an inverse

(a) ArcFace (b) PPFR-FD (c) DCTDP (d) DuetFace (e) ours

tr
ai

ni
ng

in
fe

re
nc

e

Figure 7. Example face images of (a) unprotected ArcFace, (b-d)
compared SOTAs, and (e) PartialFace, during both training and
inference phase. PartialFace best conceals visual information.

transform. PartialFace, e.g., has X ′=T −1({0,xh}). We vi-
sualize the training and inference phases separately, as the
compared methods’ processing on them may vary: During
inference, we argue PPFR-FD and DuetFace (Fig. 7(b)(d))
provide inadequate protection, as one can still discern the
face quite clearly in their processed images. DCTDP ef-
fectively conceals visual information after obfuscating the
channels with its proposed noise mask (Fig. 7(c)). How-
ever, its protection during training is impaired, as it requires
access to abundant non-obfuscated components to learn the
mask. DuetFace manifests a similar weakness as it relies on
original images to rectify the model’s attention (Fig. 7(d)).

PartialFace first discards most visual information by
pruning xl. The rest is further partitioned when sampling
xs from xh. By energy, each xs carries less than 1% of
visual information compared to the original X . As a re-
sult, Fig. 7(e) shows PartialFace provides better protection
on visual information than related SOTAs in both phases.

4.5. Protection against recovery

We here provide an in-depth analysis of how Partial-
Face impedes recovery. Our primary aiming is to show how
the removal of model-exploitable information and the ran-
domness of channels contribute to the defense. Assume
the recovery attacker possesses a collection of face im-
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(a) black-box (b) white-box (c) enhanced white-box

Figure 8. Examples of recovered face images of PartialFace under
attackers with varied capabilities: (a) a black-box, (b) a white-box,
and (c) an enhanced white-box attacker. PartialFace effectively
prevents recovery as all images are blurry and hardly identifiable.

(a) PPFR-FD (b) DCTDP (c) DuetFace (d) ours

Figure 9. Recovered images from (a-c) compared SOTAs and (d)
PartialFace. PartialFace impedes recovery better than the rest.

ages {X} and is aware of the protection mechanism. It
can locally generate protected representations X ′ (xh in
our case) from X , then train a malicious model g(·) with
argminδ l

′(g(X ′, δ), X), with the aiming to inversely fit X
from X ′. Having intercepted a recognition query, the at-
tacker leverages g(·) to recover the concealed visual infor-
mation. Upon the knowledge it possesses, a black-box at-
tacker is one unknowing of necessary parameters ({S,P}
in our case), whilst a white-box attacker possesses such
knowledge. We also study the capability of PPFR-FD,
DCTDP, and DuetFace against the white-box attacker. We
further investigate an enhanced white-box attacker, who im-
poses threats dedicated to the randomness of PartialFace.
Black-box attacker. It is concretized as a malicious third
party, uninvolved in the recognition yet eager to wiretap the
transmission. For each attacker, We employ a full-scale U-
Net [32] as the recovery model and train it on BUPT. Un-
knowing of {S,P}, it must produce X ′ based on its own
conjectured {S′,P′}, which is believably inconsistent with
that applied to the recognition model. Thus produced X ′

are invalid samples and training g(·) on them will nullify
the recovery, as shown in Fig. 8(a).
White-box attacker. The candidate combinations {S,P}
is known by any party participates in the recognition, e.g.,
an honest-but-curious server. Such an attacker can generate
X ′ correctly. However, receiving a query xs, the attacker
is unknowing of its channels’ position and order, since the
specific {S, P} doesn’t come with xs. The missing infor-
mation is vital to recovery. Consequently, the attack is ob-
structed by xs’s randomness in Fig. 8(b): The recovered
image is blurry and hardly identifiable.

We plus compare with PPFR-FD, DCTDP and Duet-
Face under the white-box settings. Among them, Duet-

Method SSIM (↓) PSNR (↓) Accuracy (↓)

PPFR-FD 0.713 15.66 83.73
DCTDP 0.687 15.42 79.60
DuetFace 0.866 19.88 96.52
PartialFace 0.591 13.70 65.35

Table 3. Quantitative analyses of the recovery quality. Lower
SSIM, PSNR and accuracy suggest better protection. Here, we
remind the accuracy of verification is lower bounded by 50.00.

Figure 10. Recovered images from extracted identity templates,
that are blurry and can hardly be inferred by humans or models.

Face shows almost no resistance to recovery (Fig. 9(c)).
PPFR-FD and DCTDP provide inadequate protection, as
images recovered from them (Fig. 9(a-b)) are blurred yet
still clearly identifiable. The protection is impaired as their
processed images retain most high-frequency components,
and the excessive perceivable information is learned by the
recovery model. In comparison, PartialFace (Fig. 9(d)) of-
fers significantly outperformed protection.
Enhanced white-box attacker. A resource-unbounded at-
tacker may brute-forcibly break the randomness of Partial-
Face leveraging a more sophisticated attack: it trains a se-
ries of attack models, one for each candidate {S, P}. Re-
ceiving xs, the attacker feeds it into every model to try every
combination of {S, P}, until one produces the best recov-
ery. The vague face images in Fig. 8(c) imply the attempted
recovery is unsuccessful, even if the attacker finds the cor-
rect {S, P}. This is attributed to the reduction of model-
exploitable channels.
Quantitative comparison. To quantitatively assess the re-
covery quality, we measure the average structural similarity
index (SSIM) and peak signal-to-noise ratio (PSNR) of the
recovered images. Additionally, to study if the attacker can
exploit its outcome for recognition proposes, we feed the
images into a pre-trained model and measure verification
accuracy. Lower SSIM, PSNR, and recognition accuracy
suggest deficient recovery, thus indicating a higher level of
protection. The results in Tab. 3 suggest PartialFace outper-
forms its competitors in all three evaluated metrics.

4.6. Protection against recovery from templates

By the principle of FR, all xs of face image X are later
extracted to very similar identity templates, so the recog-
nition on them produces aligned results. Here, one would
arise concern that recovery can also be carried out on the
extracted templates, which theoretically contain the faces’
full identity information, to realize better inversion of im-
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Settings LFW CFP-FP AgeDB CPLFW CALFW

ArcFace 99.38 92.31 94.65 89.41 94.78

r
36 99.51 91.27 94.44 88.93 94.81
6 98.69 86.79 90.65 84.50 92.67

m
3 99.42 91.68 93.95 88.70 94.69
9 99.32 90.74 93.56 87.30 94.36

n
1 99.37 91.55 94.25 88.73 94.70

12 99.35 89.21 93.17 87.19 94.26

Default 99.38 91.20 93.72 88.11 94.42
Table 4. Ablation study on combinations of hyperparameters. Ex-
periments are carried out on IR-18 + BUPT. When changing one of
them, we keep the rest to default values, i.e., (r,m, n)=(18, 6, 6).

Settings LFW CFP-FP AgeDB CPLFW

CosFace 99.53 92.89 95.15 89.52
PartialFace 99.35 89.54 93.97 87.90

Table 5. Compatibility of PartialFace. FR models are trained using
CosFace on IR-18 + BUPT. Combining PartialFace with CosFace
also demonstrates high utility, compared to its baseline.

ages. We demonstrate that such a proposed attack is also
ineffective to PartialFace.

Although there could be dedicated attacks on templates,
in practice, high-quality recovery from them is difficult as
templates are far more compact representations than images
and channel subsets. In Fig. 10, the recovered images are
highly blurred, and can hardly be inferred by humans or
models, hence won’t impose an effective threat.

4.7. Ablation study

PartialFace is parameterized by (σ, s, r,m, n). Among
them, we note σ is chosen according to channel energy,
and s is determined by (σ,m). Table 4 analyzes the choice
of the remaining parameters. Results show augmentation
(r) enhances the model’s performance, at the cost of taking
longer time to train. m affects the performance mainly by
its influence on s, as larger m leading to fewer channels in
each xs. We introduce P solely for privacy purposes. Re-
sults on n indicate a trade-off between accuracy and privacy.
Generally, PartialFace is robust to the choice of parameters.

4.8. Complexity and compatibility

Though PartialFace is proposed by studying the model’s
behavior, privacy protection is solely realized by processing
the face images. The decoupling with model architecture
and training tactics benefits resources and compatibility.
PartialFace is resource-efficient. Compared to the unpro-
tected baseline, PartialFace doesn’t increment model size as
they share identical model architectures. Training does take
more (r) time and storage due to augmentation, while we

argue it is acceptable for the service provider. The crucial
inference time remains the same as the baseline, as DCT and
sampling xs only increase negligible computation costs.
PartialFace is well compatible. The decoupling of pre-
processing and training also allows PartialFace to serve as
a convenient plug-in: PartialFace can be integrated with
SOTA FR methods to enjoy enhanced privacy protection.
Specifically, we demonstrate the recognition accuracy on
CosFace [38], a major competitor of ArcFace, in Tab. 5.
Combining PartialFace with CosFace also results in high
utility, as compared to its baseline.

5. Conclusion
This paper presents an in-depth study of the privacy pro-

tection of face images. Based on the observations on model
perception and training behavior, we present two method-
ological advances, pruning low-frequency components and
using randomly selected channels, to address the privacy
goal of concealing visual information and impeding recov-
ery. We distill our findings into a novel privacy-preserving
face recognition method, PartialFace. Extensive experi-
ments demonstrate that PartialFace effectively balances pri-
vacy protection goals and recognition accuracy.
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