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Abstract

Semi-supervised learning (SSL) has recently demon-
strated great success in medical image segmentation, sig-
nificantly enhancing data efficiency with limited annota-
tions. However, despite its empirical benefits, there are
still concerns in the literature about the theoretical foun-
dation and explanation of semi-supervised segmentation.
To explore this problem, this study first proposes a novel
causal diagram to provide a theoretical foundation for the
mainstream semi-supervised segmentation methods. Our
causal diagram takes two additional intermediate variables
into account, which are neglected in previous work. Draw-
ing from this proposed causal diagram, we then introduce
a causality-inspired SSL approach on top of co-training
frameworks called CauSSL, to improve SSL for medical im-
age segmentation. Specifically, we first point out the impor-
tance of algorithmic independence between two networks
or branches in SSL, which is often overlooked in the lit-
erature. We then propose a novel statistical quantification
of the uncomputable algorithmic independence and further
enhance the independence via a min-max optimization pro-
cess. Our method can be flexibly incorporated into different
existing SSL methods to improve their performance. Our
method has been evaluated on three challenging medical
image segmentation tasks using both 2D and 3D network
architectures and has shown consistent improvements over
state-of-the-art methods. Our code is publicly available at:
https://github.com/JuzhengMiao/CauSSL.

1. Introduction

Data-driven deep learning methods have shown remark-
able performance in medical image segmentation [18, 38].

*Corresponding author.

Figure 1. Previous causal diagram for medical image segmenta-
tion. The cause is the input image (X), based on which experts
give the corresponding effect, i.e. segmentation mask (Y ). The
green arrow represents the prediction direction for the segmenta-
tion network. ⊥ indicates algorithmic independence defined on
two functions or distributions. According to ICM, unlabeled data
can help improve the estimation of P (X) but fail to improve the
network P (Y |X) since they are algorithmically independent.

However, they typically require a large number of high-
quality labeled data, which is extremely costly and diffi-
cult to obtain for the pixel-wise annotations of medical im-
ages requiring domain expertise. To solve this problem,
semi-supervised learning (SSL) has become more and more
popular and achieved remarkable success in medical image
segmentation with limited annotations and large amounts
of unlabeled data [1, 14, 25, 55]. Current semi-supervised
segmentation methods can be mainly divided into two cat-
egories. The first one is self-training or pseudo-labeling
methods [1, 14], which utilize pseudo-labels as supervision
for unlabeled images. The other mainstream SSL methods
are based on consistency regularization. These methods ap-
ply consistency regularization on the predictions between
different models or branches based on the popular Mean
Teacher (MT) [25, 55] or co-training [36, 52] frameworks.

Although many works have demonstrated the success
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of SSL methods on medical image segmentation tasks,
Kügelgen et al. [23] argue that semi-supervised segmen-
tation should be expected ineffective based on the princi-
ple of independent causal mechanisms (ICM) [13, 35, 42].
ICM claims that the causal generative process consists of in-
dependent mechanisms that do not share information with
each other. Fig. 1 depicts the causal diagram of the an-
notation generation process for medical image segmenta-
tion following [9]. In this process, experts manually de-
lineate the corresponding segmentation mask for a given
medical image based on visual inspection of the image con-
tent and intensity contrast. As a result, the image X is the
cause, while the annotation Y is the effect [9]. According to
ICM, for a causal prediction task, i.e., X → Y , the image
generation process P (X) should be algorithmically inde-
pendent with respect to the annotation generation process
P (Y |X). In this regard, adding unlabeled data can pro-
vide more knowledge about the data generation mechanism
P (X), but brings no helpful information about P (Y |X),
parameterized by the segmentation network since there is
no link between them. This challenges the theoretical ex-
planation of the success in SSL segmentation.

To address this issue, we propose a new causal dia-
gram (see Fig. 2) by introducing two intermediate nodes
which can provide a better explanation for the mainstream
semi-supervised segmentation methods. These intermedi-
ate nodes denote pseudo-labels or predictions of another
network/branch to assist the network learning on unlabeled
data which are common in current SSL methods but are ne-
glected in Fig. 1. The detailed analysis can be found in Sec-
tion 3. Based on the new diagram, we further demonstrate
that the algorithmic independence in a co-training frame-
work can be even beneficial to the segmentation perfor-
mance. However, the formalized measurement of the algo-
rithmic independence, i.e., Kolmogorov complexity, is not
computable, and proxies are often used in specific appli-
cations, such as the minimum description length for NLP
tasks [19]. Nonetheless, a proxy for segmentation networks
has not yet been explored. In this work, we propose a
novel statistical quantification of the algorithmic indepen-
dence specialized for deep convolutional networks, based
on which, we design a min-max optimization process to fur-
ther enhance the independence in co-training frameworks.

In summary, our main contributions are four-folds:

• This study proposes a novel causal diagram which is
in compatibility with mainstream SSL methods in seg-
mentation. The diagram sheds light on the effective-
ness of semi-supervised segmentation from a causal
perspective, and thus provides a theoretical founda-
tion for understanding and further improving the per-
formance of SSL in medical image segmentation.

• Based on our proposed causal diagram and ICM, we

give comprehensive explanations of the limitations of
the vanilla self-training and MT-based methods com-
pared to co-training frameworks. This deepens the re-
searchers’ understanding of the SSL framework from
the viewpoint of algorithmic information and provides
justifications for the significance of considering algo-
rithmic independence for model learning.

• We propose a novel statistical quantification of the un-
computable algorithmic independence, specialized for
deep convolutional networks, named as network inde-
pendence. This defines the algorithmic independence
on the preservation of matrix ranks, treating the con-
volution kernels as matrices. A min-max optimization
framework is then utilized to enable end-to-end met-
ric learning and validated on both co-training and MT-
based learning scenarios.

• We evaluate our method with extensive experiments on
three public medical image segmentation tasks by us-
ing both 2D and 3D network architectures. The supe-
rior performance of our method provides empirical ev-
idence for the claim that semi-supervised medical im-
age segmentation can be improved by causal-diagram-
induced algorithmic independence.

2. Related Work

SSL for Medical Image Segmentation. In recent years,
SSL has made significant progress in leveraging unlabeled
data to improve the segmentation performance under lim-
ited annotations. Previous methods can be broadly catego-
rized into self-training methods [1, 14], and consistency-
regularization methods [25, 55]. Bai et al. [1] developed a
representative self-training framework for cardiac MR im-
age segmentation. It includes the network predictions for
unlabeled data as pseudo-labels and updates the training
network iteratively. Under the framework of consistency
regularization, Li et al. [25] proposed to enhance the con-
sistency between predictions of inputs under different data
augmentations on top of the MT framework [46]. On the
other hand, Xia et al. [52] demonstrated the effectiveness of
the co-training strategy by training a segmentation network
on each view of volume data and encouraging the multi-
view consistency among these networks.

Causality in Medical Image Analysis. Improving the
models’ performance on medical image analysis from the
view of causality has received significant attention recently.
Causality-inspired learning models have been applied to
discover causal links of various neural processes [41], pro-
vide explanations for network performances [6, 20], and
improve fairness [43]. Another interesting direction is to
generate images of the potential appearance if a patient was
healthy using counterfactual techniques [15]. Moreover, a
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lot of works focus on improving the robustness and gen-
eralization abilities of their networks using causal reason-
ing, such as domain adaptation and Out-of-Distribution de-
tection [48]. For example, Kouw et al. [22] introduced a
causal Bayesian prior to enhance the cross-center segmenta-
tion performance on MRI data. Ouyang et al. [32] proposed
a causality-inspired data augmentation approach and lever-
aged causal intervention to improve the model robustness
on the single-source domain generalization problem.

Causality in Semi-supervised Learning. Most
causality-related works on SSL focus on how the causal
direction can affect the learning performance. Schölkopf
et al. [42] first pointed out that SSL works better when
predicting the cause variables from its effects (anticausal
learning) or from confounded inputs (confounded learning)
and should be impossible when predicting the target labels
from the causes (causal learning). Based on this conclusion,
Kügelgen et al. [23] further proposed a new framework for
semi-supervised classification by conducting the prediction
using both cause and effect features simultaneously, creat-
ing an anti-causal learning setting. However, the pessimistic
conclusion cannot explain the promising achievements of
SSL in segmentation tasks which is a classic causal learn-
ing setting [9]. In our work, we aim to investigate the causal
diagram of SSL segmentation and demonstrate that the prin-
ciple of independent causal mechanisms is not always detri-
mental to causal learning settings like segmentation tasks.
Instead, we show proper statistical quantification and fur-
ther enhancement of the algorithmic independence property
is helpful for improving the segmentation performance.

3. Causal Modeling of SSL Segmentation
In this section, we propose a novel causal diagram that is

compatible with the current SSL frameworks. Based on the
theoretical foundation, plausible explanations for the effec-
tiveness of SSL segmentation methods are presented, and
some key factors of SSL segmentation performance are nat-
urally highlighted with the lens of causality.

3.1. Causal Diagram for SSL Segmentation

In Fig. 1, only the label annotation process in the SSL
segmentation tasks is considered. However, actual imple-
mentations of SSL methods tend to introduce some inter-
mediate variables such as pseudo-labels or predictions of
another network/branch to assist the network learning on
unlabeled data. The incomplete causal diagram in previ-
ous works [23, 35, 42] results in the pessimistic conclusion
on SSL segmentation. Therefore, we introduce intermedi-
ate variables into our proposed causal diagram to better de-
scribe the general learning process in most SSL methods.
As shown in Fig. 2, the input image X , the mask of the
target organ Y , and the original predictions of segmenta-
tion networks P̂ and P̂

′
are observable variables. Following

Figure 2. The causal diagram for semi-supervised medical image
segmentation, where the variables with solid line boundaries are
observable variables while those with dotted line boundaries are
unobservable variables. The green arrow presents the loss depen-
dence on unlabeled data. P̂ and P̂

′
mean the network predictions.

Castro et al. [9], we consider X as the cause of Y . P̂ and
P̂

′
are the approximations of the target mask generated by

the segmentation networks f and f
′
, respectively, and thus

determined by both the image and the mask.

3.2. Consistency with Mainstream Methods

In the SSL setting, the training dataset D consists
of ML labeled data and MU unlabeled data, denoted as
L = {(xi,yi)}ML

i=1 and U = {(xi)}ML+MU
i=ML+1, where xi ∈

RHin×Win denotes an image and yi ∈ {0, 1}Hin×Win×C

represents the corresponding ground-truth label for labeled
data, with C meaning the number of semantic classes. For
the labeled data, Y can be directly observed in Fig. 2 and a
supervised loss Ls is utilized to help P̂ and P̂

′
approximate

the mask directly. On the other hand, since the ground-truth
labels are not available for unlabeled data, P̂

′
is usually

adopted as a proxy of Y and used to guide the learning of
P̂ , as indicated by the green arrow in Fig. 2.

In self-training methods, P̂ is the prediction generated
by the segmentation network, while P̂

′
is the output for

the same unlabeled image by the same network predicted
in previous iterations and functions as a pseudo label to su-
pervise P̂ with supervised loss Ls. By contrast, P̂

′
can be

predicted by another network or branch and guide the learn-
ing of P̂ via a consistency regulation loss in the MT/co-
training framework. For instance, methods based on the MT
framework usually adopt the teacher model as f

′
to gen-

erate P̂
′

and enforce the consistency between the teacher
and student using a mean squared error (MSE) loss. In the
co-training framework, the CPS method [10] uses another
independent segmentation network with the same architec-
ture but different weight initializations to generate P̂

′
. P̂

and P̂
′

then function as the pseudo-labels for each other via
a cross-entropy loss.
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3.3. Effectiveness Explanation and Key Compo-
nents for SSL Segmentation

We conjecture the remarkable progress of the SSL seg-
mentation methods can be largely attributed to the green
arrow in Fig. 2. More unlabeled data help us obtain more
information about P (X). This helps provide more infor-
mation about P̂

′
through f

′
, which is a noisy estimation of

P (Y ). Naturally, if the approximation is precise enough,
the SSL problem becomes a supervised one, where a good
performance can be ensured. Therefore, with more pairs of
input images and segmentation masks, the network predic-
tions P̂ can be improved if the quality of the approximation
is good enough. Also, from the causal perspective, the loss
between P̂ and P̂

′
introduces a learning direction from P̂

to P̂
′
, which is a confounded learning setting and should

help information sharing among different mechanisms and
improve the segmentation performance [23, 42].

With the help of the proposed causal diagram, it’s also
easier for us to identify the key components that have sig-
nificant influences on the medical image segmentation per-
formance in an SSL framework. As presented in Fig. 2, the
learning of P̂ is directly affected by ground-truth labels and
P̂

′
for labeled and unlabeled data, respectively. Therefore,

the quality of P̂
′
, as well as the learning constraint between

P̂ and P̂
′

are of great importance. The former has been no-
ticed in [44, 47, 54]. In addition, how to design an appropri-
ate loss to ensure a thorough consistency between P̂ and P̂

′

such as shape-aware constraints rather than using the pixel-
wise MSE can be a promising direction. Moreover, uncer-
tainty estimation can be integrated into the constraint loss
to reweight the contribution from different regions of unla-
beled data and avoid the harmful guidance from P̂

′
when

the quality of P̂
′

is not good enough [31, 45, 49, 52, 55].
In the following section, we will further demonstrate that

the algorithmic independence between f and f
′

also signif-
icantly affects the segmentation performance.

4. Method
4.1. Structural Causal Model for SSL Segmentation

The structural causal model (SCM) framework [33] is
adopted to describe our proposed causal diagram for causal
analysis. The observed variables Xi ∈ O = {X, P̂ , P̂

′
, Y }

are determined by their parents PAi and noise variables
Ni, using a deterministic function fi: Xi := fi(PAi, Ni).
Also, an independent assumption is often made over the un-
observed noise variables following [23], indicating there are
no hidden confounders. Then, the joint distribution over the
observed variables can be factorized as:

P (X, P̂ , P̂
′
, Y ) =

∏
Xi∈O

P (Xi | PAi)

= P (X)P (P̂ |X,Y )P (P̂
′
|X,Y )P (Y |X)

(1)

Figure 3. An illustration of the 2D convolution process.

According to ICM [13, 35, 42], mechanisms P (P̂ |X,Y )
and P (P̂

′ |X,Y ) should be algorithmically independent and
do not inform or influence each other. Since they are highly
related to the segmentation models, the two models should
be algorithmically independent to some extent as well. This
also aligns with our intuition that two different networks
should provide complementary help for each other.

The importance and the effectiveness of the algorith-
mic independence between the two networks align with the
practical observations in SSL segmentation tasks. For self-
training and MT-based methods, the high dependence be-
tween the assistant network f

′
and the training network f

leads to the performance bottleneck [10, 17, 21]. In an ex-
treme case when f

′
is the same as f , the P̂

′
in our pro-

posed causal diagram (Fig. 2) disappears. This degenerates
into the causal learning setting as shown in Fig. 1, mak-
ing SSL segmentation models not so useful since unlabeled
data P (X) don’t contain helpful information for network
f . This explains the performance bottleneck of vanilla self-
training and MT-based frameworks from a causal view. By
contrast, the co-training framework breaks such limits and
obtains a better performance by using two independent net-
works with different initial parameters [10], introducing dif-
ferent decoders with different upsampling strategies on top
of the same encoder [50, 51], constructing different net-
work architectures [27], and even adopting adversarial sam-
ples [34]. Despite the efficacy, these methods are intuitive
improvements on the algorithmic independence and fail to
propose metrics to directly measure the independence.

4.2. Network Independence

Our work focuses on finding a reasonable and com-
putable proxy for the algorithmic independence metric
(Kolmogorov complexity) in the scenery of convolutional
networks. For simplicity, we only consider the case of dif-
ferent networks/branches with the same convolutional ar-
chitecture. As mentioned in Section 1, Kolmogorov com-
plexity K(x) describes the compression length of x. There-
fore, we design our proxy metric based on the Minimum
Description Length (MDL) principle [16, 37] from the as-
pect of compression similar to [8, 19].
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Figure 4. The pipeline of our CauSSL framework. Two networks are optimized by minimizing the combination of the supervised loss Ls

on labeled data, the unsupervised loss Lu on unlabeled data, and the network independence loss Lin between network parameters.

Fig. 3 illustrates how a 2D convolutional kernel is ap-
plied to the input features and generates a filtered result.
For a k × k convolutional kernel, the actual number of the
kernel weights is k×k×Cin, where Cin means the channel
number of input features. Then, such an extended 3D kernel
calculates the dot product with part of features, and slides
over the whole feature map, generating the result of an out-
put channel. With Cout different kernels similar to this, we
can generate a total of Cout output channels. From the view
of signal processing, each kernel can be seen as a template
pattern to find specific patterns. Features with patterns sim-
ilar to the kernel will generate a high activation value by the
dot product. Thus, the flattened kernel can be considered
as a base vector in linear algebra to detect the similarity of
input features on this pattern. Then, a convolutional layer
with Cout × (k × k × Cin) parameters can be viewed as a
Cout × d matrix (d = k × k × Cin), and each row in this
matrix is a d-dimensional base vector for a certain pattern.

With the view of vectors and matrices, the compress-
ibility of a neural network is thus transferred to the com-
pressibility of matrices and the latter can be naturally re-
lated to the matrix rank. According to the MDL princi-
ple, the algorithmic independence between two matrices
indicates that the length of describing matrix A and B
together equals the sum of the separate description, i.e.
rank([A,B]) = rank(A) + rank(B). [A,B] is the ex-
tended (Cout,A + Cout,B) × d matrix by concatenating a
Cout,A × d matrix A and a Cout,B × d matrix B along the
row dimension. This holds if any row vector in A and B
cannot be represented by the linear combination of the row
vectors in the other matrix. Based on this linear indepen-
dence condition, we propose a novel statistical quantifica-
tion proxy for Kolmogorov complexity to measure the net-
work dependence (the opposite of independence).

We first define the dependence between the same convo-
lutional layers from two networks, denoting the matrix ver-

sion of kernel weights as A and B with a size of Cout × d:

Lin(A,B;GB) =
1

Cout

Cout∑
i=1

(
vA,i · qB,i

|vA,i| × |qB,i|

)2

qB,i = (GB ×B)i

(2)

where vA,i is the i-th row vector in matrix A, and qB,i is the
optimal linear combination vector using the vector group of
B that can approximate vA,i as close as possible. GB is the
optimal coefficient matrix whose elements are the optimal
linear combination coefficients, with a size of Cout ×Cout.
In this way, the lower the Lin is, the higher the network
independence it indicates.

We then define the network dependence between two
neural networks or branches with the same architecture by
taking the average over all the convolutional layers:

Lin (θ1, θ2;G2) =
1

# layers

#layers∑
i=1

Lin (θ1,i, θ2,i;G2,i)

(3)
where θ1,i, θ2,i, and G2,i are the weight parameters in the
format of matrices and the optimal coefficient matrix of the
i-th convolutional layer, respectively. Only convolutional
layers are considered in this work.

4.3. Causality-inspired SSL

Based on the network dependence, we propose a
causality-inspired SSL framework to further enhance the
algorithmic independence on top of the co-training frame-
work called CauSSL (Fig. 4), via a min-max optimization
framework to improve the SSL segmentation performance:

min
θ1,θ2

max
G1,G2

Lin

(
θ1, θ̄2;G2

)
+ Lin

(
θ2, θ̄1;G1

)
(4)

where G1 and G2 are the set of linear coefficient matrices
which are only used in training and will be discarded during
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Algorithm 1 Pseudocode of CauSSL
Input: labeled data L, unlabeled data U and hyperparam-

eters λ1 and λ2.
Output: Two independent segmentation networks or

branches parameterized by θ1 and θ2, respectively.
1: Randomly initialize the network weights θ1, θ2 and lin-

ear coefficients G1, G2. // initialization
2: i = 0 // iteration number
3: while i ≤maximum iterations do // training
4: for j=1:smax do // maximize
5: Fix θ1, θ2. Update G1, G2 by maximizing
6: Lin(θ2, θ̄1;G1) and Lin(θ1, θ̄2;G2).
7: for j=1:smin do // minimize
8: Fix G1, G2. Update θ1, θ2 by minimizing
9: Ltotal,1 and Ltotal,2 using Equation 5.

10: i = i+ 1.
11: Return θ1 and θ2.

inference. θ̄1 and θ̄2 represent weights copy without gradi-
ent flows. In this standard bilevel optimization problem, we
want to find the best linear combination coefficients that can
maximize Lin to provide an accurate estimation of the net-
work dependence on one hand, and enhance the algorithmic
independence between two networks by minimizing Lin on
the other hand. To this end, we update the linear combina-
tion coefficients and network weights in an alternative way
as shown in Algorithm 1. In each round, we first fix the pa-
rameters of networks and update the linear combination co-
efficients to maximize Lin for smax steps. Then, we fix the
linear coefficients and update the network by minimizing
Ltotal for smin steps, which is a combination of the super-
vised loss Ls on the labeled data, the unsupervised loss Lu

on the unlabeled data, and the network independence loss
Lin between different networks or branches:

Ltotal,1 = Ls,1 + λ1Lu,1 + λ2Lin(θ1, θ̄2;G2)

Ltotal,2 = Ls,2 + λ1Lu,2 + λ2Lin(θ2, θ̄1;G1)
(5)

Ls,i (ŷL,i,y) =
1

2
[Ldice (ŷL,i,y) + Lce (ŷL,i,y)] (6)

where i ∈ [1, 2]. λ1 and λ2 are balancing coefficients.

λ1 (t) = 0.1∗ e−5(1− t
tmax

)
2

is adopted following [55] con-
sidering the quality of predictions from the assistant net-
work might not be good enough in the initial training stage.
Ldice and Lce indicate the Dice loss and the cross-entropy
loss, respectively. ŷL,i represents the predicted probability
maps of the i-th network for labeled data. The unsuper-
vised loss Lu can be either cross-entropy loss between the
network prediction and pseudo-labels generated by another
network/branch or MSE loss between two probability maps:

Lu,1 = Lce(ŷU,1, ỹU,2) or Lu,1 = MSE (ŷU,1, ŷU,2) (7)

where ŷU,i is the predicted probability maps on the unla-
beled data generated by the two networks, and ỹU,i means
the corresponding one-hot pseudo-labels. Details of how to
extend our method to a framework with 3 branches can be
found in Appendix Section 1.

5. Experiments
5.1. Datasets and Evaluation Metrics

Our proposed method is validated on three public
datasets with different imaging modalities and segmenta-
tion tasks, i.e., the Automatic Cardiac Diagnosis Challenge
dataset (ACDC) [7], Pancreas-CT dataset [12, 39, 40] and
Multimodal Brain Tumor Segmentation Challenge 2019
(BraTS’19) dataset [3, 4, 5, 29]. The details of these
datasets and the preprocessing steps are described in Ap-
pendix Section 2. Four metrics were used for evaluation, in-
cluding the Dice similarity coefficient (DSC), Jaccard (JC),
95% Hausdor Distance (95HD), and the average surface
distance (ASD). We have highlighted the results in bold
when our proposed CauSSL outperforms the original coun-
terparts and underlined the best results. Also, standard de-
viations are reported in parentheses.

5.2. Implementation Details and Baselines

We applied our proposed CauSSL on top of two pop-
ular co-training methods, CPS [10] and MC-Net+ [50],
and denote the modified methods as CPSCauSSL and MC-
CauSSL, respectively. Both of them are trained using Al-
gorithm 1 but the CPS method utilizes cross-entropy loss as
the unsupervised loss whereas MC-Net+ uses the MSE loss
(Equation 7). We applied these two independence-enhanced
methods for various network architectures to demonstrate
the efficacy of our method, including 2D U-Net [38], 3D
V-Net [30], and 3D U-Net [11]. Specific settings on each
dataset are described in Appendix Section 2.

In all experiments of our proposed method, we empiri-
cally updated the network weights and linear coefficient ma-
trices alternatively, with 60 steps for each. In addition, the
linear coefficient matrices were optimized using an Adam
optimizer with a fixed learning rate of 0.02. Moreover,
our method was compared with fully supervised learning
only (SL), MT [46], uncertainty-aware Mean Teacher (UA-
MT) [55], SASSNet [24], DTC[26], URPC [28], CPS [10],
and MC-Net+ [50], which were re-implemented in the iden-
tical environment and used the same training configurations
for a fair comparison. Also, we compared our method
with BCP (CVPR’23) [2] on the ACDC dataset and FUSS-
Net (MICCAI’22) [53] on the Pancreas-CT dataset, which
are the state-of-the-art (SOTA) methods in their respective
datasets. If the same training setting (dataset and data split)
is used, we directly reported the results from their original
paper. Otherwise, we re-ran their publicly available code
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Table 1. Comparisons with other methods on the ACDC dataset
with 10% and 20% labeled data.

Labeled% Method DSC (%) ↑ JC (%) ↑ 95HD (voxel) ↓ ASD (voxel) ↓

100% SL (upper bound) 91.53(2.89) 84.76(4.62) 2.41(5.28) 0.59(1.08)

10%

SL 77.66(13.10) 66.40(14.53) 11.68(12.30) 3.31(3.65)
MT 81.11(9.65) 69.99(11.72) 8.99(10.25) 2.70(3.14)

UA-MT 80.71(9.69) 69.58(12.02) 13.69(16.54) 4.50(6.00)
SASSNet 82.56(8.94) 71.90(11.42) 9.13(9.99) 2.64(2.71)

DTC 84.32(6.92) 74.04(9.29) 9.47(11.61) 2.63(3.00)
URPC 82.41(10.15) 71.69(12.91) 5.83(9.09) 1.65(2.87)
CPS 84.24(6.85) 73.91(9.37) 8.26(9.68) 2.45(2.90)

CPSCauSSL 85.25(6.43) 75.31(8.98) 6.05(8.87) 1.97(2.64)

MC-Net+ 86.14(6.13) 76.61(8.32) 6.04(9.02) 1.85(2.50)
MCCauSSL 86.80(5.34) 77.48(7.62) 5.73(9.26) 1.83(2.56)

BCP 88.84(/) 80.62(/) 3.98(/) 1.17(/)
BCPCauSSL 89.66(3.82) 81.79(5.93) 3.67(8.16) 0.93(1.27)

20%

SL 84.62(8.74) 74.85(11.13) 6.32(9.20) 1.79(2.58)
MT 85.46(7.28) 75.89(9.97) 8.02(10.55) 2.39(3.20)

UA-MT 85.16(7.41) 75.49(9.93) 5.91(8.95) 1.79(2.71)
SASSnet 86.45(6.77) 77.20(9.53) 6.63(8.52) 1.98(2.40)

DTC 87.10(6.18) 78.15(8.76) 6.76(10.83) 1.99(3.10)
URPC 85.44(9.29) 76.36(11.27) 5.93(9.04) 1.70(2.87)
CPS 86.85(7.05) 77.96(9.41) 5.48(9.13) 1.64(2.70)

CPSCauSSL 87.24(6.18) 78.44(8.55) 5.57(9.13) 1.73(2.65)
MC-Net+ 87.10(6.45) 78.21(9.03) 5.04(8.49) 1.56(2.43)

MCCauSSL 87.84(6.31) 79.32(8.84) 4.37(8.04) 1.28(2.30)

BCP 89.52(4.20) 81.62(6.44) 3.69(7.02) 1.03(1.89)
BCPCauSSL 89.99(3.65) 82.34(5.77) 3.60(8.62) 0.88(1.73)

Table 2. Comparisons with other methods on the Pancreas-CT
dataset with 6 and 12 volumes having annotations.

#Labeled Method DSC (%) ↑ JC (%) ↑ 95HD (voxel) ↓ ASD (voxel) ↓

62/62 SL (upper bound) 82.80(6.32) 71.10(8.87) 5.58(4.18) 1.26(0.98)

6/62

SL 56.59(21.31) 42.24(19.99) 23.79(16.35) 7.18(5.45)
MT 68.61(13.86) 53.71(15.07) 18.64(16.45) 5.28(4.12)

UA-MT 66.96(14.43) 51.89(15.32) 21.65(14.12) 6.25(3.25)
SASSNet 66.69(14.86) 51.66(15.51) 18.88(11.55) 5.76(2.70)

DTC 67.28(17.37) 52.86(17.63) 17.74(18.58) 1.97(0.89)
URPC 64.73(15.36) 49.62(16.57) 21.90(9.83) 7.73(3.02)

FUSSNet 72.55(10.66) 57.95(13.03) 18.45(19.22) 5.23(5.96)
CPS 66.97(13.94) 51.93(15.17) 14.73(8.90) 4.49(2.25)

CPSCauSSL 67.33(13.59) 52.28(14.65) 16.16(8.38) 5.212.27)
MC-Net+ 68.18(12.49) 52.94(13.67) 16.35(11.05) 4.13(2.80)

MCCauSSL 72.89(8.90) 58.06(10.84) 14.19(11.20) 4.37(2.88)

12/62

SL 72.72(11.32) 58.25(13.33) 19.23(14.83) 5.77(3.99)
MT 76.39(9.80) 62.73(12.44) 9.91(9.54) 2.56(2.57)

UA-MT 77.42(8.68) 63.91(11.16) 7.96(5.44) 1.87(1.00)
SASSNet 78.06(7.40) 64.59(9.89) 12.76(15.78) 3.15(3.51)

DTC 76.82(12.53) 63.70(13.95) 8.69(10.38) 1.28(0.42)
URPC 79.09(7.39) 65.99(9.86) 11.68(13.80) 3.31(2.62)

FUSSNet 80.37(5.93) 67.57(8.16) 13.75(20.92) 3.46(3.87)
CPS 78.16(7.33) 64.74(9.83) 9.54(9.11) 2.63(2.14)

CPSCauSSL 78.58(7.52) 65.32(9.97) 8.30(6.22) 2.34(1.57)

MC-Net+ 79.36(6.54) 66.23(8.87) 10.22(9.59) 2.66(2.21)
MCCauSSL 80.92(5.20) 68.26(7.30) 8.11(9.24) 1.53(1.30)

using the default hyperparameters.

5.3. Comparison on Organ Segmentation Tasks

Table 1 and Table 2 tabulate the quantitative compar-
ison results on the ACDC and Pancreas-CT datasets, re-
spectively, from which several observations can be found.
First, methods with a co-training framework (CPS and MC-
Net+) generally outperform the vanilla MT framework (MT
and UA-MT). For example, CPS surpasses MT and UA-
MT with a margin of 3.13% and 3.53% DSC, respectively
on the ACDC dataset. This is consistent with findings
in [10, 17, 21] and demonstrates the importance of algorith-
mic independence in the SSL framework. Nonetheless, it is
worth noting that incorporating other intricate modules into
the MT-based method can also yield outstanding results, as
demonstrated by approaches like BCP [2].

Second, by introducing a causality-inspired indepen-

Figure 5. Visualization of segmentation results on the ACDC test-
ing dataset trained with 10% labeled images.

Figure 6. Visualization of segmentation results on the Pancreas-CT
testing dataset trained with 6 labeled volumes.

dence constraint into the co-training framework, we can
further achieve a performance improvement (highlighted
in bold) and outperform other SOTA methods. Almost
all the metrics are improved under different ratios of la-
beled data on both datasets and our proposed CauSSL ob-
tains the best results across various settings. On the ACDC
dataset, the performance gain using our proposed CauSSL
is 1.01% DSC and 1.40% JC for the CPS method with
10% labeled data. MCCauSSL also outperforms the orig-
inal version by about 0.7% DSC and 0.9% JC. When 20%
annotations are used, the performance improvement for the
CPS method is narrowed (0.39% DSC), whereas the gain is
still stable (0.74% DSC and 1.11% JC) for MC-Net+. On
the Pancreas-CT dataset, the gap between MC-Net+ and
MCCauSSL is even larger, with a margin of 4.71% and
1.56% DSC using 6 and 12 annotated volumes, respectively.
Trained by only about 20% labeled data, MCCauSSL even
closely approaches the upper bound (80.92 vs 82.80 DSC).
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Figure 7. Network dependence of different methods during train-
ing on the ACDC dataset using 10% labeled training data.

The effectiveness of our proposed method can also be
shown in some hard examples (See Fig. 5 and Fig. 6). Two
cases are presented here on each dataset. The first and third
rows are the predictions for a certain slice while the second
and fourth rows show 3D visualizations for each case. In
these examples, CPS and MC-Net+ tend to generate false
predictions (Fig. 5, row (a),(b)) or incomplete structures
(Fig. 6), whereas the introduction of independence con-
straint can mitigate these problems and obtain a more plau-
sible segmentation result.

More comparisons with other SOTA methods further
demonstrate the efficacy of our proposed method. For
example, on the Pancreas-CT dataset, our proposed MC-
CauSSL is superior to the FUSSNet [53] under various ra-
tios of labeled data, with an improvement of 0.55% DSC
trained with 12 labeled volumes (See Table 2). By contrast,
although the MCCauSSL obtains a lower DSC compared to
BCP [2] on the ACDC dataset as shown in Table 1, applying
our proposed CauSSL on top of the BCP method can further
improve the performance by 0.82% DSC when 10% labeled
data are used. It also approaches the upper bound with all
the labels (91.53%) only with a margin of 1.87%. In spite
of the performance improvement for BCP by introducing
another 10% annotations, the DSC result (89.52%) is even
lower than our BCPCauSSL with half labels (89.66%).

5.4. Comparison on a Tumor Segmentation Task

To validate the generalizability of our method, we also
tried our method with the challenging brain tumor segmen-
tation on the BraTS’19 dataset using a 3D U-Net backbone.
Table 3 shows results with 10% labeled data for different
methods. Similar to the results on organ segmentation tasks,
semi-supervised learning methods are superior to the base-
line using labeled data alone, with a DSC improvement of
over 10% for both CPS and MC-Net+. In the meanwhile,
our proposed CauSSL can further improve the performance
of the SSL methods, as shown in bold in Table 3. For ex-

Table 3. Comparisons with other methods on the BraTS’19 dataset
with 10% annotations.

Method DSC (%) ↑ JC (%) ↑ 95HD (voxel) ↓ ASD (voxel) ↓
SL 72.84(17.53) 60.05(20.52) 41.64(36.39) 2.56(1.45)

CPS 82.56(12.90) 72.18(17.11) 14.41(16.36) 2.31(2.01)
CPSCauSSL 83.56(12.84) 73.60(16.82) 11.91(14.17) 2.06(1.70)

MC-Net+ 81.84(15.21) 71.65(18.99) 13.82(17.04) 2.43(2.17)
MCCauSSL 83.54(12.41) 73.46(16.61) 12.53(15.94) 1.98(1.53)

Table 4. DSC results of applying our CauSSL to the vanilla MT.
Dataset #Labeled MT MTCauSSL

ACDC
7/70 81.11% 82.89%
14/70 85.46% 86.35%

Pancreas-CT
6/62 68.61% 71.36%
12/62 76.39% 77.63%

ample, our CauSSL scheme obtains 1% and 1.7% DSC im-
provements over CPS and MC-Net+, respectively, demon-
strating the efficacy of our proposed method on another
more challenging setting and network architecture.

5.5. Application to MT-based Methods

Although our proposed CauSSL is originally designed
on top of co-training methods to further improve the net-
work independence, it can also be applied to MT-based
methods (named as MTCauSSL) thanks to its plug-and-play
nature by adding the network independence loss to the stu-
dent training. In other words, we only keep one item in
Equation 4 for MTCauSSL. As shown in Table 4, our MT-
CauSSL can obtain a stable and significant improvement
over the vanilla MT method on both the ACDC and the
Pancreas-CT datasets. Especially, the DSC improvement is
2.75% when only 6 labeled data are used on the Pancreas-
CT dataset. Moreover, by applying our proposed method to
the SOTA method BCP, we can further improve its perfor-
mance from DSC 88.84% to 89.66% on the ACDC dataset
with 10% labeled data as shown in Table 1.

5.6. Analysis of Network Dependence

To demonstrate the efficacy of our proposed min-max
framework in enhancing the algorithmic independence, we
further measure the dependence using the metric defined in
Equation 3. We take the average of all the networks or
branches in a method as the final measurement. Fig. 7 il-
lustrates the network dependence of different methods on
the ACDC dataset during the training process.

First of all, the network dependence of the MT method
is extremely high, approaching 1 at last. This is due to the
use of the exponential moving average strategy. Using the
limit theory, Ke et al. [21] have proved that the weights of
the teacher network and the student model will converge to
the same target given infinite iteration steps. Such a de-
pendence explains the performance bottleneck of MT-based
methods. By contrast, CPS and MC-Net+ have a much
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Figure 8. DSC performances on the ACDC dataset with different hyperparameters under the setting of 10% labeled data.

lower dependence and also achieve a superior result on this
dataset, proving the necessity of independence constraint.

Moreover, the proposed min-max framework can further
reduce the algorithmic dependence and improve the seg-
mentation performance. The original dependence score for
CPS and MC-Net+ are 0.24 and 0.20, respectively. Af-
ter integrating the independence constraint into the training
process, the dependence of CPS is significantly reduced to
0.04, whereas the metric for MC-Net+ becomes 4e-4. The
improvement of the algorithmic dependence is consistent
with the performance gain of the two co-training methods.

5.7. Impacts of Hyperparameters

We first compare the mean DSC of different indepen-
dence constraint coefficients using 10% labeled data on the
ACDC dataset. As shown in Fig. 8 (a), no matter which
coefficient is taken, both CPSCauSSL and MCCauSSL sur-
pass their counterparts without the independence constraint
in most cases, indicated by the horizontal dotted lines,
demonstrating the efficacy of our proposed CauSSL frame-
work. Second, the number of minimizing or maximizing
iterations is observed to have a similar effect on both meth-
ods. 60 steps for minimizing obtains the highest DSC,
whereas too many iterations might introduce over enhance-
ment of the network independence and weak enforcement
of the independence might not fulfill the potential of the co-
training framework if the number of minimizing iterations
is not big enough (See Fig. 8 (b)). Moreover, according
to Fig. 8 (c), when the number of maximizing steps is too
small (such as 15 and 30), the linear coefficients might fail
to match well, leading to an underestimated network de-
pendence and possibly wrong independence optimization.
On the other hand, although more maximizing steps don’t
bring higher segmentation performance, it is better than in-
sufficient dependence measurement.

5.8. Analysis of Training Efficiency

As shown in Equation 2 and 3, compared to the orig-
inal SSL methods, the additional computation introduced

by our method mainly includes matrix multiplication, nor-
malization, MSE, and average calculation over all the con-
volutional layers. All of these can be implemented in Py-
torch with high efficiency and just slightly increase the over-
all training time. For example, on the ACDC dataset with
10% labeled data using an NVIDIA RTX 3090 GPU, the
training duration of our CPSCauSSL was 4.71 hours, which
is comparable to CPS taking 4.40 hours. Likewise, MC-
CauSSL requires just an additional 0.34 hours compared to
MC-Net+ (4.61 vs. 4.27 hours).

6. Conclusion
This paper proposes a novel causal diagram to provide

plausible explanations for the effectiveness of SSL medi-
cal image segmentation. Based on the diagram, the im-
portance of the algorithmic independence is noticed and a
novel statistical quantification is designed for convolutional
networks to approximate the uncomputable algorithmic in-
dependence. Then, we propose a causality-inspired SSL
framework to further enhance the algorithmic independence
and thus improve the SSL segmentation performance. Com-
parisons on three datasets and three network architectures
demonstrate the effectiveness of our proposed method.
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