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Abstract

Diffusion models have recently received a surge of inter-
est due to their impressive performance for image restora-
tion, especially in terms of noise robustness. However, exist-
ing diffusion-based methods are trained on a large amount
of training data and perform very well in-distribution, but
can be quite susceptible to distribution shift. This is es-
pecially inappropriate for data-starved hyperspectral im-
age (HSI) restoration. To tackle this problem, this work
puts forth a self-supervised diffusion model for HSI restora-
tion, namely Denoising Diffusion Spatio-Spectral Model
(DDS2M), which works by inferring the parameters of the
proposed Variational Spatio-Spectral Module (VS2M) dur-
ing the reverse diffusion process, solely using the degraded
HSI without any extra training data. In VS2M, a varia-
tional inference-based loss function is customized to en-
able the untrained spatial and spectral networks to learn
the posterior distribution, which serves as the transitions
of the sampling chain to help reverse the diffusion process.
Benefiting from its self-supervised nature and the diffusion
process, DDS2M enjoys stronger generalization ability to
various HSIs compared to existing diffusion-based methods
and superior robustness to noise compared to existing HSI
restoration methods. Extensive experiments on HSI denois-
ing, noisy HSI completion and super-resolution on a vari-
ety of HSIs demonstrate DDS2M’s superiority over the ex-
isting task-specific state-of-the-arts. Code is available at:
https://github.com/miaoyuchun/DDS2M .

1. Introduction
As a new trendy generative model, diffusion models [37,

13, 28, 38] have attracted significant attention in the com-
munity owing to their state-of-the-art performance in im-
age synthesis [7]. In essence, diffusion model is a param-
eterized sampling chain trained using a variational bound
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Figure 1. Comparison between DDRM and our self-supervised
DDS2M. (a) DDRM utilizes a denoising network pre-trained on a
large number of extra training data to reverse the diffusion process.
(b) Our DDS2M works by inferring the untrained neural networks’
parameters {θ, ζ} during the reverse diffusion process, only us-
ing the degraded HSI y without any extra training data. The un-
trained neural networks and the variational inference-based loss
function constitute the proposed Variational Spatio-Spectral Mod-
ule (VS2M).

objective, which is equivalent to that of score-based mod-
els [39, 40, 41]. After training, samples are generated by
the sampling chain, starting from white noise and gradually
denoising to a clean image.

Remarkably, diffusion models can go beyond image syn-
thesis [11, 32, 20], and have been widely utilized in image
restoration tasks, such as super-resolution [16, 46, 34, 6], in-
painting [16, 46, 33, 21, 39, 41], denoising [16], and so on.
Among these methods, DDRM [16], a diffusion-based im-
age restoration framework, has achieved powerful robust-
ness to noise, which is also noteworthy for hyperspectral
images (HSIs). HSIs often suffer from noise corruption due
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to the limited light, photon effects, and atmospheric inter-
ference [19]. This motivates us to inherit the powerful noise
robustness of DDRM [16] to HSI restoration by capitalizing
on the power of diffusion model for HSI restoration.

However, harnessing the power of the diffusion model
for HSI restoration is challenging. The bottleneck lies in
the poor generalization ability to HSIs in various scenar-
ios. Existing diffusion-based methods are excessively de-
pendent on the adversity and quantity of the training data,
and often focus on a specific domain, such as the face. As a
result, these methods may perform very well in-distribution,
but can be quite susceptible to distribution shifts, resulting
in degraded performance. This is particularly inappropriate
for data-poor applications such as HSI restoration, where
very limited HSIs are available for training [27]. This is
because HSIs are much more expensive to acquire in real-
world scenarios, compared to natural RGB images. In ad-
dition, different sensors often admit large different speci-
fications, such as the frequency band used, the spatial and
spectral resolution. Therefore, a diffusion model trained on
HSIs captured by one sensor may not be useful for HSIs
captured by other sensors. In addition to the generalization
ability issues mentioned above, how to leverage the intrinsic
structure of HSIs is also critical for harnessing the power of
the diffusion model for HSI restoration. Bearing the above
concerns in mind, an effective diffusion model tailored for
HSI restoration, which is able to generalize to HSIs in var-
ious practical scenarios and leverage the intrinsic structure
of HSIs, is highly desired.

To address the generalization ability problem mentioned
above, one remedy is to use the emerging untrained neu-
ral networks, such as those in [42, 36, 9]. These methods
learn a generative neural network directly from a single de-
graded image, rather than from a large volume of external
training data. The rationale is that an appropriate neural
network architecture, without training data, could already
encode much critical low-level image statistical prior infor-
mation. Owing to their training data-independent nature,
untrained networks can usually generalize well to the wild
data. Meanwhile, due to our need to flexibly cope with vari-
ous HSIs in real scenarios, untrained networks are rendered
as a natural choice. In addition, their powerful expressive-
ness allows the deployment of such untrained networks in
the diffusion models for HSI restoration.

In this work, we put force a self-supervised Denoising
Diffusion Spatio-Spectral Model (DDS2M), which can clev-
erly alleviate the generalization ability problem, while ex-
ploiting the intrinsic structure information of the underly-
ing HSIs. DDS2M is a denoising diffusion generative model
that progressively and stochastically denoises samples into
restored results conditioned on the degraded HSI and the
degradation model after a finite time. Unlike existing diffu-
sion models [37, 13, 38, 16, 46], which use a neural network

pre-trained a large number of training data, DDS2M reverses
the diffusion process by virtue of the proposed Variational
Spatio-Spectral Module (VS2M), solely using the degraded
HSI without any extra training data; see Figure 1 for visual
comparison with DDRM [16].

Specifically, the proposed VS2M consists of two types of
untrained networks (i.e., untrained spatial and spectral net-
works) and a customized variational inference-based loss
function. The untrained spatial and spectral networks lever-
age the intrinsic structure of HSIs by modeling the abun-
dance maps and endmembers derived from the linear mix-
ture model [3], respectively. The variational inference-
based loss function is customized to enable these untrained
networks to learn the posterior distribution of the task at
hand. The specific contributions of this work are summa-
rized as follows:
• We propose a self-supervised Deep Diffusion Spatio-
Spectral Model (DDS2M). Benefiting from its diffusion pro-
cess and self-supervised nature, DDS2M enjoys stronger ro-
bustness to noise relative to existing HSI restoration meth-
ods and superior generalization ability to various HSIs rel-
ative to existing diffusion-based methods. To the best of
our knowledge, DDS2M is the first self-supervised diffusion
model that can restore HSI only using the degraded HSI
without any additional training data.
• We design a variational spatio-spectral module (VS2M)
to help reverse the diffusion process, which serves as the
transitions of the sampling chain. VS2M is capable of ap-
proximating the posterior distribution of the task at hand by
leveraging the intrinsic structure of the underlying HSI.
• Extensive experiments on HSI denoising, noisy HSI com-
pletion and super-resolution illustrate the superiority of
DDS2M over the existing task-specific state-of-the-arts, es-
pecially in terms of the robustness to noise, and the gener-
alization ability to HSIs in diverse scenarios.

2. Related Works
2.1. HSI Restoration Methods

HSI restoration is a long-standing problem with a wide
range of applications, with model-based approaches domi-
nating the early years [55, 50, 53]. Recently, triggered by
the expressive power of deep neural networks, a plethora of
supervised [4, 10, 44] and self-supervised methods [36, 27]
were developed.

The supervised methods mainly concentrate on explor-
ing different neural network architectures to learn a map-
ping from a degraded HSI to the ground truth, such as
convolution neural network [25, 54], recurrent neural net-
work [8], and transformer [5, 19]. The main bottleneck of
these supervised methods is that their performance is lim-
ited by the adversity and amount of training data, and is
often susceptible to distribution outliers. In contrast, our
DDS2M is not affected by such distribution outliers, since
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Figure 2. An overview of the proposed self-supervised DDS2M. In DDS2M, the diffusion process is reversed with the help of the proposed
VS2M, solely using the degraded HSI without any extra training data. VS2M consists of the untrained spatial and spectral networks (aiming
at leveraging the intrinsic structure of HSIs) and the variational inference-based loss function (aiming at enabling the untrained networks
to learn the posterior distribution).

no extra training data is required in DDS2M.
Among the self-supervised methods, a representative

family is the untrained neural network-based methods [36,
27]. As a promising tool for image restoration, untrained
neural networks enjoy the expressive power of neural net-
works yet do not require additional training data [42].
Ulyanov et al. [42] first extended untrained neural network
from RGB images to HSIs, putting forth a self-supervised
HSI restoration framework. Then, Luo et al. [24] further
proposed a spatio-spectral constrained untrained neural net-
work. Inspired by these methods, Meng et al. [26] in-
tegrated untrained neural network into the plug-and-play
regime [56]. In general, these methods learn a genera-
tor network directly from the degraded HSI in an iterative
scheme. The critical drawback of these methods is that they
easily accumulate errors inevitable in the iterative process,
being quite fragile to degraded HSI with significant noise.
Although our proposed DDS2M is also a multi-step gener-
ation process, it does not suffer from such accumulated er-
rors. This is because diffusion-based methods have system-
atic mathematical formulation, and the errors in the inter-
mediate step can be regarded as noise, which could be re-
fined during the diffusion process [43]. Therefore, as com-
pared with the above untrained network-based methods, our
DDS2M is able to decently restore high-quality HSIs from
the degraded HSI corrupted by noise.

2.2. Diffusion Models for Image Restoration
Recent emerged diffusion models have been widely uti-

lized in image restoration. One branch of these works
mainly focuses on tailoring a diffusion model suitable
for a specific task, often leading to remarkable perfor-

mance at the expense of flexibility across different tasks;
see [34, 21, 47]. Another branch is concerned with tailor-
ing a diffusion model that can be flexibly applied to differ-
ent tasks; see [16, 46, 33]. To achieve this, these methods
leave the training procedure intact, and only modify the in-
ference procedure so that one can sample the restored image
from a conditional distribution related to the task at hand.
Among them, a representative method is DDRM [16], which
achieves promising performance in multiple useful scenar-
ios, including denoising, noisy super-resolution, and noisy
completion, especially in terms of the robustness to noise.

However, the main shortcoming of these diffusion-based
methods is their generalization ability to the wild data.
These methods excessively depend on the adversity and
amount of training data, and may perform very well in-
distribution, but can be quite susceptible to distribution
shifts, sometimes resulting in severely degraded perfor-
mance. This becomes more problematic for data-poor ap-
plications such as HSI restoration. In this work, we aim to
inherit the advantage of diffusion model (i.e., noise robust-
ness) to HSI restoration, and boost its generalization ability
to HSIs in practical scenarios.

3. Notations and Preliminaries
3.1. Notations

A scalar, a vector, a matrix, and a tensor are de-
noted as x, x, X, and X , respectively. x(i), X(i,j),
and X (i,j,k) denote the i-th, (i, j)-th, and (i, j, k)-th el-
ement of x ∈ RI , X ∈ RI×J , and X ∈ RI×J×K ,
respectively. The Frobenius norms of x are denoted as

‖x‖F =
√∑

i x
(i)x(i). Given y ∈ RN and a ma-

trix X ∈ RI×J , the outer product is defined as X ◦ y.
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In particular, X ◦ y ∈ RI×J×N and (X ◦ y)(i,j,n) =
X(i,j)y(n). The vec(X) operator represents vec(X) =
[X(:,1); . . . ; X(:,J)] ∈ RIJ , and vec(X ) is further defined
as vec(X ) = [vec(X (:,:,1)); . . . ; vec(X (:,:,K))] ∈ RIJK .

3.2. Degradation Model
The goal of HSI restoration is to recover a HSI from po-

tentially noisy degraded HSI given through a known linear
degradation model. In general, HSI restoration can be for-
mulated as

y = Hx + z, (1)

where x ∈ Rn is the vector version of the original HSI X
defined as x = vec(X ), y ∈ Rm is corresponding to the
degraded HSI Y defined as y = vec(Y), H is the degra-
dation matrix that depends on the restoration task at hand,
and z ∼ N

(
0, σ2

yI
)

represents an i.i.d. additive Gaus-
sian noise with standard deviation σy. It is worth noting
that in this work, following previous diffusion-based meth-
ods [16, 13, 38, 21, 34, 47], x and y in Eqn. (1) are all
scaled linearly to the range of [−1, 1], which ensures the
neural network to operate on consistently scaled inputs dur-
ing the reverse diffusion process. Therefore, when they are
linearly scaled back to the range of [0, 1], the standard devi-
ation of the Gaussian noise becomes σ = 0.5σy .

4. Denoising Diffusion Spatio-Spectral Models
In this section, we introduce the proposed DDS2M. The

key idea behind DDS2M is to reverse the diffusion process
solely using the degraded HSI without extra training data,
with the help of the proposed VS2M. We first give an intro-
duction to the diffusion process for image restoration, then
describe our design in VS2M, and finally elaborate on the
VS2M-aided reverse diffusion process.

4.1. Diffusion Process for Image Restoration
Diffusion models for image restoration are generative

models with Markov chain xT → xT−1 → . . . → x1 →
x0 conditioned on y [16], which has the following marginal
distribution equivalent to that in [13, 38]:

q (xt|x0) = N
(
xt;
√
ᾱtx0, (1− ᾱt) I

)
(2)

with

αt = 1− βt, ᾱt =

t∏
i=0

αi, (3)

where x0 and y are the vector version of high-quality HSIX
and degraded HSI Y , and βt is a hyperparameter. The for-
ward process (i.e., diffusion process ) progressively injects
Gaussian noise to the original data x0 and obtains xT that
looks indistinguishable from pure Gaussian noise, while the
reverse diffusion process samples a slightly less noisy image
xt from xt+1 by leveraging the forward process posterior
distribution q (xt|xt+1,x0,y). More details can be found
in the supplementary materials.

In DDRM, denoising is performed using a network pre-
trained on a large number of additional training data like
other diffusion models [16, 13, 38, 21, 34, 47], which per-
form well in-distribution, and can be susceptible to distribu-
tion shift. This is especially inappropriate with data-starved
HSI restoration. In this work we break this routine and pro-
pose to reverse the diffusion process utilizing the VS2M
that can perform denoising solely using the degraded image
without any extra training data.

4.2. Variational Spatio-Spectral Module (VS2M)
The VS2M utilized in DDS2M consists of untrained spa-

tial and spectral networks, and a variational inference-
based loss function. The untrained spatial and spectral net-
works are capable of leveraging the intrinsic structure of
HSIs using designated network structures. The variational
inference-based loss function is customized to enable these
untrained networks to learn the posterior distribution. In
this way, the untrained networks and the diffusion model
can be incorporated to achieve promising performance.

Under VS2M, HSI X ∈ RI×J×K is represented as:

X =
∑R

r=1
Sr ◦ cr, (4)

where cr ∈ RK and Sr ∈ RI×J represent the r-th end-
member and the r-th endmember’s abundance map, respec-
tively, and R is the number of endmembers contained in the
HSI. More details about the decomposition in Eqn. (4) can
be found in the supplementary materials. Here we intro-
duce the untrained network architecture and the variational
inference-based loss function individually.
Untrained Network Architecture. The physical interpre-
tation of Sr and cr makes it possible to utilize certain un-
trained networks to model these factors. Specifically, un-
trained U-Net-like “hourglass“ architecture in [42] and un-
trained full-connected networks (FCNs) are employed for
abundance map modeling and endmember modeling, since
abundance maps reveal similar qualities of the nature im-
ages [31] and the endmembers can be regarded as relatively
simple 1D signals, as was done in [27]. Following this per-
spective, we model the HSI x ∈ RIJK as follows:1

x = vec(X ) = vec(
∑R

r=1
Sθ(zr) ◦ Cζ(wr)), (5)

where Sθ(·) : RNa → RI×J is the untrained U-Net-
like network for abundance map generation, and θ collects
all the corresponding network weights; similarly, Cζ(·) :
RNs → RK and ζ denote the untrained FCN for endmem-
ber generation and the corresponding network weights, re-
spectively; the vectors zr ∈ RNa and wr ∈ RNs are low-
dimensional random vectors that are responsible for gener-
ating the r-th abundance map and endmember respectively.

1Actually, The parameters of the r U-Nets are independent of each
other, as are the parameters of the r FCNs. In order to simplify notations,
here we use θ and ζ to represent {θr}Rr=1 and {ζr}Rr=1, respectively.
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zr and wr are randomly initialized but fixed during the opti-
mization process. It is worth noting that, instead of directly
using the vanilla U-Net structure for abundance map model-
ing, we propose to introduce the attention mechanism [48]
into the U-Net, which aims to enhance the self-supervised
expression ability of the VS2M. The concrete structure of
the untrained spatial and spectral networks is illustrated in
the supplementary materials.
Variational Inference-based Loss Function. We aim to
estimate high-quality HSI x0 using the aforementioned un-
trained spatial and spectral networks, and update their pa-
rameters at every reverse process step. Denoting {θt, ζt}
as the parameters at step t, we first define a learnable gen-
erative process pθt,ζt

(xt|xt+1,y) by replacing the x0 in
q (xt|xt+1,x0,x) with xθt,ζt

, i.e.,

pθt,ζt
(xt|xt+1,y) , q (xt|xt+1,xθt,ζt

,y) , (6)

where xθt,ζt
denotes the vector version of the estimated

HSI at reverse process step t, i.e.,

xθt,ζt = vec(
∑R

r=1
Sθt(zr) ◦ Cζt(wr)) (7)

The goal of DDS2M is to find a set of parameters {θt, ζt}
to make pθt,ζt

(xt|xt+1,y) as close to q (xt|xt+1,x0,y) as
possible, by maximizing the variational lower bound of the
log likelihood objective:

Eq(x0),q(y|x0) [log pθ,ζ (x0|y)]

≥Eq(x0:T ),q(y|x0) [log pθ,ζ (x0:T |y)− log q (x1:T |x0,y)] .
(8)

Notably, the objective in Eqn. (8) can be reduced into a
denoising objective, i.e., estimating the underlying high-
quality HSI x0 from the noisy xt (please refer to the sup-
plementary materials for derivation). By reparameterizing
Eqn. (2) as

xt (x0, ε) =
√
ᾱtx0 +

√
1− ᾱtε for ε ∼ N (0, I), (9)

our variation inference-based loss function can be designed
as follows:

arg min
{θ,ζ}

∥∥∥∥xt − vec(
√
ᾱt
∑R

r=1
Sθ(zr) ◦ Cζ(wr))

∥∥∥∥2

F

.

(10)
Intuitively, given a noisy observation xt+1, after optimiz-
ing {θt, ζt} from xt+1 via Eqn. (10) using the Adam [18],
xθt,ζt

can be derived via Eqn. (7), and then xt could be
sampled from pθt,ζt

(xt|xt+1,y) defined in Eqn. (6). In
this way, the diffusion process could be reversed in a self-
supervised manner with no need for extra training data.

4.3. VS2M-Aided Reverse Diffusion Process
Given a degradation matric H ∈ Rm×n, its singular

value decomposition is posed as:

H = UΣVT, (11)

where U ∈ Rm×m, V ∈ Rn×n are orthogonal matrices,
and Σ ∈ Rm×n is the rectangular diagonal matrix consist-
ing of the singular values denoted as s1 ≥ s2 ≥ . . . ≥ sn.
The idea behind this is to tie the noise in the degraded signal
y with the diffusion noise in x1:T , ensuring that the diffu-
sion result x0 is faithful to the degraded signal y [17].

Before illustrating the reverse diffusion process in detail,
we first rethink the difference between our DDS2M and other
diffusion-based methods [13, 16] to guide the design of the
reverse diffusion process. The main difference is how x0 is
predicted from xt at each reverse step. In [13, 16], a de-
noising network is trained on a large amount of additional
training data to predict x0. By exploiting the external prior
knowledge, this network could produce satisfactory x0 even
if xt looks like pure Gaussian noise. Because of this, such
a denoising network could work during the whole reverse
diffusion process. However, it is difficult for untrained net-
works to produce a satisfactory image by denoising an im-
age that is almost pure Gaussian noise. Therefore, starting
inference from pure Gaussian is unsuitable for our DDS2M.

Following the above argument, we propose to start in-
ference from a single forward diffusion with better initial-
ization, instead of starting from pure Gaussian noise [13,
16, 28, 38]. Specifically, we first perturb the degraded HSI
y via the forward diffusion process up to t0 < T , where
t0 denotes the step that the reverse diffusion process starts
from. Denoting x̄(i) as the i-th index of vector x̄t = VTxt,
ȳ(i) as the i-th index of ȳ = Σ†UTy, and x̄

(i)
θt,ζt

as the i-th
index of x̄θt,ζt = VTxθt,ζt , for all t < t0, the variational
distribution is defined as:

pθt0 ,ζt0

(
x̄

(i)
t0 |y

)
=

{
N (ȳ(i), σ2

t0 −
σ2
y

s2i
) if si > 0

N (0, σ2
t0) if si = 0

(12)
pθt,ζt

(x̄
(i)
t |xt+1,y) =

N (x̄
(i)
θt,ζt

+
√

1− η2σt
x̄
(i)
t+1−x̄

(i)
θt,ζt

σt+1
, η2σ2

t ) if si = 0

N (x̄
(i)
θt,ζt

+
√

1− η2σt
ȳ(i)−x̄(i)

θt,ζt

σy/si
, η2σ2

t ) if σt <
σy

si

N ((1− ηb) x̄
(i)
θt,ζt

+ ηbȳ
(i), σ2

t −
σ2
y

s2i
η2
b ) if σt ≥ σy

si

(13)
where σt depending on the hyperparameter β1:T denotes the
variance of diffusion noise in xt, and η, ηb are the hyperpa-
rameters, which control the level of noise injected at each
timestep. Once x̄θt,ζt is sampled from Eqn. (13), it is easy
to obtain xθt,ζt exactly by left multiplying V. And the val-
ues of the parameters {θt0 , ζt0} are randomly initialized.

However, solving a denoising problem in each diffusion
step via the proposed self-supervised loss Eqn. (10) would
be time-consuming. To alleviate this issue, we propose the
following measures to enhance the efficiency of our method.
First, we only update the untrained network for very limited
iterations ({1, 3, 5} in our experiments) within each diffu-
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sion step, which is motivated by the fact that the difference
between consecutive diffusion intermediate results is mini-
mal. Second, the initial parameter values of each diffusion
step are inherited from the previous step, which provides a
good guide to their optimal values. In this way, the effi-
ciency of our DDS2M can be significantly improved and it
will not take a long time for restoration. This reverse diffu-
sion process is summarized in Algorithm 1.
Algorithm 1 Reverse Diffusion Process of DDS2M.
Input: The degraded HSI y, the hyperparameter R, t0, T ,

β1:t0 , σ1:t0 , σy , η and ηb.
1: Randomly initialize θt0 , ζt0 ,zr, and wr ;
2: Obtain xt0 via reparameterizing Eqn. (12);
3: for t = t0 − 1 to 1 do
4: Update {θt, ζt} via Eqn. (10);
5: Obtain xθt,ζt via Eqn. (7);
6: Obtain xt−1 via reparameterizing Eqn. (13);
7: end for

Output: The restored HSI x0.

5. Experiments
5.1. Comparisons with State-of-the-Arts

In this paper, our interest lies in inheriting the DDRM’s
powerful robustness to noise (which is unavoidable in the
hyperspectral imaging process) to HSI restoration. Herein
we mainly consider noisy HSI completion, HSI denois-
ing, and noisy HSI super-resolution, and compare the pro-
posed DDS2M with the existing task-specific state-of-the-
arts. Two frequently used evaluation metrics, namely,
peak signal-to-noise ratio (PSNR) and structure similarity
(SSIM), are adopted to evaluate the results [27]. In gen-
eral, better performance is reflected by higher PSNR and
SSIM values. In DDS2M, the total diffusion steps T is se-
lected from the candidate {1000, 3000}, and the step t0 to
start reverse the diffusion process is set as T/2. We use
η = 0.95, ηb = 1, and linearly increase β1:T in which
β1 = 10−4 and βT = {2 × 10−3, 5 × 10−3}. The vari-
ance σt is set as a constant σt = 1−ᾱt−1

1−ᾱt
βt for all exper-

iments. The number of endmembers R is selected from
the candidate {5, 10}. As for diffusion-based restoration
methods DDNM [46] and DDRM [16], the diffusion models
in them are trained on the AID datasets [49]2 with different
noise levels, in which batch size is set as 2, learning rate
is set as 2e-4, the total diffusion steps is set as 1000, and
the steps involved in the reverse process is set as 100. All
of the compared methods’ parameters are set as suggested
by the authors, with parameter fine-tuning efforts to uplift
their performance, and all experiments are conducted on the
PyTorch and MATLAB 2021a platform with an i7-11700
CPU, an RTX 3090 GPU, and 32GB RAM.

2AID dataset is a large-scale aerial image dataset, made up of a num-
ber of 10000 images within 30 aerial scenes.

5.1.1 Datasets and Compared Methods
Noisy HSI Completion. The noisy HSI completion aims at
recovering the underlying HSI from the noisy incompleted
observation. We adopt a wide range of HSIs to conduct
the experiments, including 32 natural HSIs3 (i.e., CAVE
dataset [51]), and 3 remote sensing HSIs4 (i.e., WDC Mall,
Pavia Centre, and Pavia University datasets). The sampling
rates are set as {0.1, 0.2, 0.3}, and the standard deviation
σ of Gaussian noise in the range of [0,1] is set as 0.1. The
compared methods consist of seven model-based methods
(i.e., TMac-TT [2], TNN [57], TRLRF [53], FTNN [15],
TCTF [58], SN2TNN [23], and HLRTF [22]), two unsu-
pervised deep learning-based methods (i.e., DIP2D [36]
and DIP3D [36]), and two diffusion-based methods (i.e.,
DDRM [16] and DDNM [46]).
HSI Denoising. The HSI denoising aims at recover-
ing the clean HSI from its noisy observation. The data
adopted in this experiment is the same as that in HSI com-
pletion, including 32 natural HSIs and 3 remote sensing
HSIs. Herein we mainly consider Gaussian noise, and
the standard deviation of Gaussian noise σ in the range
of [0, 1] is set as {0.1, 0.2, 0.3}. The compared meth-
ods consist of six model-based methods (i.e., LRMR [55],
LRTDTV [45], LRTFL0 [50], E3DTV [29], HLRTF [22],
and NGMeet [12]), two unsupervised deep learning-based
methods (i.e., DIP2D [36] and DIP3D [36]), and a super-
vised deep learning-based method (i.e., SST [19]). Since
the purpose of the comparison with supervised methods in
this work is to highlight the generalization ability of our
methods, we directly use the models of SST trained on
ICVL [1] with Gaussian noise provided by the authors.
Noisy HSI Super-Resolution. The noisy HSI super-
resolution aims at recovering high-resolution HSI from
its noisy low-resolution counterpart. We adopt CAVE
dataset [51] to conduct the experiments. The scale fac-
tor is set as ×2, ×4, and ×8, and the standard de-
viation of Gaussian noise σ in the range of [0, 1] is
set as 0.1. The compared methods include three su-
pervised deep learning-based methods (i.e., SFCSR [30],
RFSR [44], and SSPSR [14]), a model-based method (i.e.,
LRTV [35]), two unsupervised deep learning-based meth-
ods (i.e., DIP2D [36] and DIP3D [36]), and a diffusion-
based method (i.e., DDRM [16]). In order to comprehen-
sively compare with supervised methods in terms of gen-
eralization ability to other datasets and other noise stan-
dard deviations, we train each supervised model under
five different settings, i.e., CAVE without noise denoted
as xxx(0), CAVE with 0.1 Gaussian noise denoted as
xxx(0.1), CAVE with 0.05 Gaussian noise denoted as

3https://www.cs.columbia.edu/CAVE/databases/
multispectral/

4http://lesun.weebly.com/
hyperspectral-data-set.html
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xxx(0.05), CAVE with 0.03 Gaussian noise denoted as
xxx(0.03), and Chikusei dataset [52] with 0.1 Gaus-
sian noise denoted as xxx(0.1)*. Here xxx denotes the
method name, i.e., SFCSR, RFSR, and SSPSR.

5.1.2 Experimental Results

Table 1. The average quantitative results for noisy HSI completion.
The best and second-best values are highlighted.

Sampling Rate 0.1 0.2 0.3

Dataset Method PSNR SSIM PSNR SSIM PSNR SSIM

TNN 23.841 0.334 24.241 0.333 24.361 0.333
TMac-TT 21.516 0.473 21.104 0.439 21.501 0.407
TRLRF 26.745 0.548 27.968 0.626 28.427 0.655
DIP2D 28.621 0.676 29.412 0.693 29.971 0.704

Natural HSI DIP3D 24.938 0.592 25.273 0.603 25.342 0.606
CAVE Dataset FTNN 25.071 0.459 26.293 0.495 26.923 0.515

consists of 32 HSIs FCTN 26.778 0.578 27.547 0.631 27.812 0.649
each with a size of SN2TNN 25.883 0.532 27.236 0.585 28.101 0.617
256× 256× 32 HLRTF 29.514 0.700 30.076 0.725 30.728 0.748

DDNM 16.718 0.260 27.847 0.607 32.222 0.818
DDRM 24.474 0.655 28.151 0.785 29.868 0.827
DDS2M 32.507 0.871 34.156 0.896 35.098 0.909
TNN 23.031 0.478 23.030 0.488 22.721 0.479
TMac-TT 21.859 0.411 22.026 0.417 21.640 0.390
TRLRF 25.402 0.644 25.772 0.666 25.901 0.675

Remote Sensing HSI DIP2D 28.392 0.786 30.600 0.857 31.608 0.882
WDC Mall DIP3D 22.204 0.399 22.169 0.402 22.512 0.405

256× 256× 191 FTNN 23.956 0.523 25.575 0.619 26.457 0.666
Pavia Centre FCTN 24.352 0.586 24.523 0.599 24.591 0.604

256× 256× 87 SN2TNN 28.567 0.797 30.513 0.848 31.507 0.873
Pavia University HLRTF 29.272 0.825 31.001 0.869 31.938 0.891

192× 192× 80 DDNM 21.002 0.343 23.445 0.534 25.758 0.657
DDRM 21.423 0.371 23.467 0.495 24.771 0.587
DDS2M 30.277 0.857 32.179 0.900 33.208 0.918

The quantitative results of noisy HSI completion, HSI
denoising, and noisy HSI super-resolution are reported in
Tables 1, 2, and 3. We can observe that the proposed
DDS2M outperforms existing model-based, unsupervised
deep learning-based, and diffusion-based methods in all
three tasks, while yielding competitive results with respect
to the state-of-the-art supervised deep learning-based meth-
ods. Specifically, as compared with the diffusion-based
method DDRM, our method offers average PSNR improve-
ment of 5.878 dB, 5.909 dB, and 3.998 dB in comple-
tion, denoising, and super-resolution, respectively. This
observation validates that DDS2M can more flexibly adapt
to diverse HSIs in real scenarios. Additionally, in HSI
super-resolution experiments, the supervised methods (i.e.,
SFCSR, RFSR, and SSPSR) all perform best when trained
with CAVE dataset with 0.1 Gaussian noise among the
five different training settings, and their performance de-
grades significantly when trained with other noise levels or
datasets. It is worth noting that, our DDS2M achieves com-
parable performance with the best version of these super-
vised methods, and outperforms the models trained with
other settings. This demonstrates the superiority of our
DDS2M against these supervised methods.

Table 2. The average quantitative results for HSI denoising. The
best and second-best values are highlighted.

standard deviation 0.1 0.2 0.3

Dataset Method PSNR SSIM PSNR SSIM PSNR SSIM

LRMR 30.948 0.754 27.718 0.600 25.698 0.496
LRTDTV 37.354 0.937 33.598 0.863 30.098 0.725
LRTFL0 34.205 0.872 29.551 0.722 26.155 0.641
DIP2D 30.498 0.742 24.663 0.605 20.808 0.513

Natural HSI DIP3D 27.965 0.677 23.759 0.559 20.407 0.485
CAVE Dataset NGMeet 31.698 0.772 24.964 0.621 20.657 0.517

consists of 32 HSIs E3DTV 33.652 0.922 30.752 0.876 29.044 0.836
each with a size of HLRTF 37.095 0.935 33.623 0.881 31.661 0.836
256× 256× 32 SST 29.803 0.757 24.519 0.627 20.866 0.542

DDNM 29.223 0.615 24.148 0.353 21.104 0.226
DDRM 33.391 0.895 29.987 0.831 27.935 0.782
DDS2M 38.021 0.944 34.879 0.902 32.951 0.871
LRMR 28.223 0.838 26.950 0.776 25.677 0.708
LRTDTV 32.793 0.906 30.017 0.835 28.252 0.771
LRTFL0 35.392 0.953 31.907 0.888 29.485 0.821

Remote Sensing HSI DIP2D 30.991 0.872 27.195 0.801 23.067 0.731
WDC Mall DIP3D 25.973 0.625 24.087 0.559 21.730 0.505

256× 256× 191 NGMeet 36.149 0.956 28.308 0.857 23.313 0.718
Pavia Centre E3DTV 33.837 0.929 30.167 0.850 28.098 0.785

256× 256× 87 HLRTF 34.987 0.932 31.359 0.870 29.431 0.780
Pavia University SST 34.625 0.932 27.487 0.820 22.821 0.709

192× 192× 80 DDNM 26.855 0.687 22.433 0.439 19.661 0.287
DDRM 29.043 0.806 26.037 0.661 24.341 0.551
DDS2M 36.548 0.959 32.925 0.911 30.863 0.867

Table 3. The average quantitative results for noisy HSI super-
resolution on CAVE dataset. The best and second-best values are
highlighted.

Scale ×2 ×4 ×8

Method Trained PSNR SSIM PSNR SSIM PSNR SSIM

SFCSR(0) 4 16.615 0.198 16.829 0.155 17.070 0.148
SFCSR(0.03) 4 24.193 0.508 23.859 0.508 22.277 0.472
SFCSR(0.05) 4 27.620 0.688 25.142 0.625 22.953 0.587
SFCSR(0.1) 4 30.350 0.856 26.302 0.744 23.342 0.609
SFCSR(0.1)* 4 28.015 0.821 24.153 0.661 22.011 0.569

RFSR(0) 4 18.570 0.252 18.412 0.206 18.045 0.181
RFSR(0.03) 4 26.904 0.660 24.639 0.619 23.023 0.576
RFSR(0.05) 4 29.591 0.814 26.187 0.732 23.248 0.602
RFSR(0.1) 4 30.570 0.868 26.479 0.748 23.386 0.614
RFSR(0.1)* 4 27.994 0.804 24.082 0.658 21.033 0.541

SSPSR(0) 4 18.916 0.261 19.465 0.223 18.636 0.204
SSPSR(0.03) 4 28.371 0.729 25.351 0.654 22.899 0.573
SSPSR(0.05) 4 29.799 0.830 26.101 0.715 23.195 0.623
SSPSR(0.1) 4 30.294 0.868 26.824 0.748 23.338 0.627
SSPSR(0.1)* 4 27.636 0.828 24.748 0.705 21.465 0.585

Bicubic 8 21.554 0.245 20.893 0.228 20.021 0.238
LRTV 8 20.867 0.321 19.690 0.291 18.490 0.280
DIP2D 8 28.344 0.745 25.238 0.602 22.613 0.482
DIP3D 8 27.458 0.756 24.776 0.635 21.935 0.506
DDRM 8 27.330 0.741 23.244 0.552 18.883 0.418
DDS2M 8 30.997 0.859 26.835 0.748 23.621 0.626

Some visual results for different tasks are shown in Fig-
ures 3, 4, and 55. As observed, the proposed DDS2M is capa-

5In Figure 5, the best results of the supervised methods are shown.
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Observed DIP2D DIP3D FTNN FCTN S2NTNN HLRTF DDRM DDS2M Original

PSNR 14.582 PSNR 33.604 PSNR 28.707 PSNR 27.877 PSNR 30.393 PSNR 28.829 PSNR 32.778 PSNR 32.285 PSNR 37.886 PSNR Inf

PSNR 14.757 PSNR 31.712 PSNR 24.292 PSNR 26.695 PSNR 24.664 PSNR 31.156 PSNR 32.004 PSNR 26.261 PSNR 33.326 PSNR Inf
Figure 3. The results of noisy HSI completion by different methods on HSI Balloons and Pavia Centre(sampling rate=0.3, σ=0.1).

Observed NGMeet DIP2D DIP3D LRTFL0 E3DTV HLRTF DDRM DDS2M Original

PSNR 16.423 PSNR 23.626 PSNR 23.855 PSNR 23.087 PSNR 30.383 PSNR 32.585 PSNR 33.658 PSNR 30.609 PSNR 34.721 PSNR Inf

PSNR 15.652 PSNR 26.708 PSNR 25.440 PSNR 22.415 PSNR 32.064 PSNR 30.022 PSNR 32.585 PSNR 25.207 PSNR 33.378 PSNR Inf
Figure 4. The results of HSI denoising by different methods on HSI Fruits and WDC Mall (σ=0.2).

Bicubic LRTV DIP2D DIP3D SSPSR SFCSR RFSR DDRM DDS2M Original

PSNR 17.875 PSNR 21.446 PSNR 24.175 PSNR 22.991 PSNR 24.355 PSNR 24.328 PSNR 24.575 PSNR 22.461 PSNR 25.485 PSNR Inf

PSNR 19.504 PSNR 20.215 PSNR 29.809 PSNR 29.377 PSNR 32.058 PSNR 31.557 PSNR 32.046 PSNR 28.724 PSNR 32.313 PSNR Inf
Figure 5. The results of noisy HSI super-resolution by different methods on HSI Cloth and Flowers (scale factor=×2, σ=0.1).

ble of preserving the most detailed information and demon-
strating the best visual performance among the compared
methods, which is consistent with its satisfactory perfor-
mance in PSNR and SSIM. In addition, there is the least
residual noise remaining in the results produced by DDS2M,
which demonstrates the superiority of DDS2M in terms of
noise robustness.

We conjecture that such promising results can be at-
tributed to the organic cooperation of untrained spatial and

spectral networks and diffusion model, which is beneficial
to the generalization ability to various HSIs and the robust-
ness to noise.

5.2. Ablation Study
We test the impact of untrained spatial and spectral net-

works, and diffusion process in DDS2M. The compared
methods are listed as follows:
• DDS2M without untrained spatial and spectral net-
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works (dubbed DDS2M w/o untra.): To evaluate the impact
of the untrained spatial and spectral networks, we remove
the untrained spatial and spectral networks, and use an un-
trained U-Net to directly generate the whole HSI.
• DDS2M without diffusion process (dubbed DDS2M w/o
diffu.): To clarify the influence of the diffusion process, we
remove the diffusion process and make the untrained spa-
tial and spectral networks directly fit the degraded HSI in
an iterative scheme.

We consider HSI denoising (σ=0.3), noisy HSI com-
pletion (sampling rate=0.1, σ=0.1), and noisy HSI super-
resolutin (scale factor=2, σ=0.1). HSI Fruits from the
CAVE dataset is selected as an example. The results are
shown in Table 4. We can observe that the untrained spa-
tial and spectral networks, and the diffusion process could
indeed significantly boost the restoration performance.

Table 4. The quantitative ablation results on HSI completion, de-
noising, and super-resolution. The best values are highlighted.

Task Denoising Completion Super-Resolution

Methods PSNR SSIM PSNR SSIM PSNR SSIM

DDS2M w/o diffu. 31.983 0.738 31.562 0.739 31.172 0.730
DDS2M w/o untra. 29.682 0.643 28.565 0.593 32.588 0.808

DDS2M 33.045 0.841 33.217 0.845 34.066 0.876

5.3. Sensitivity Analysis of Hyperparameters

R and t0. In this part, we study the parameter sensitivity
of the number of endmembers R and the step t0 to start
reverse the diffusion process. The results are displayed in
Figure 6, and the noisy HSI completion on HSI Balloons
with sampling rate=0.3 and σ=0.1 is selected as an exam-
ple. As observed, the results by DDS2M are relatively stable
in terms of PSNR with R changing from 10 to 15 and t0
changing from T/6 to T/2. Therefore, we suggest to set R
as 10 and set t0 as T/2.
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40
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N

R

1 T/6 T/3 T/2 2T/3 5T/6
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28
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32

34
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Figure 6. The sensitivity analysis of R and t0 in noisy HSI com-
pletion on Ballons with sampling rate=0.3 and σ=0.1.

η and ηb. Apart from R and t0, DDS2M also have two hy-
perparameters η and ηb, which control the level of noise
injected at each timestep. To identify an ideal combina-
tion, we perform a hyperparameter search over η, ηb ∈ {0.7,
0.75, 0.8, 0.85, 0.9, 0.95, 1} for the noisy HSI completion
on HSI Balloons (sampling rate=0.3, σ=0.1). The PSNR
results are listed in Table 5. We can observe that when
η = 0.95, ηb = 1.0, the best results are obtained. Therefore,
we set η = 0.95, ηb = 1.0 for the noisy HSI completion on
HSI Balloons.

Table 5. Sensitivity analysis of hyperparameters η and ηb on HSI
Fruits for noisy HSI completion. The best result is highlighted.

ηb

η
0.7 0.75 0.8 0.85 0.9 0.95 1.0

0.7 37.684 37.576 37.461 37.151 37.501 37.541 37.372

0.75 37.484 37.554 37.435 37.773 37.551 37.662 37.353

0.8 37.966 37.901 37.791 37.863 37.745 37.484 37.853

0.85 37.728 38.091 37.798 38.023 37.966 38.100 37.962

0.9 38.064 38.001 37.962 37.598 37.745 38.036 38.059

0.95 37.943 37.882 38.036 37.871 37.913 38.109 37.991

1.0 38.091 37.937 38.073 38.012 37.998 38.135 38.005

5.4. Inference Time and Model Scale Anaiysis
In order to thoroughly compare our DDS2M with DDRM,

we list the parameter scale, average PSNR, average SSIM,
and inference time (in minutes) per HSI in Table 6, in which
noisy HSI completion (sampling rate=0.3, σ=0.1) on CAVE
dataset is selected as an example. The number of steps in-
volved in the diffusion process in DDRM is set as 20 and 100
utilizing the “skipping” trick, following the authors’ sug-
gestion. Our DDS2M can outperform DDRM with competi-
tive inference time. In addition, it is worth noting that the
number of parameters in our method is only about 5% of
that of DDRM, which means lower requirements for hard-
ware devices (especially GPU).

Table 6. The relevant indicators of DDRM and DDS2M on CAVE
dataset for noisy HSI completion. The best values are highlighted.

Data Methods Param. PSNR SSIM Time

DDRM(20) 35.713M 27.432 0.716 1.675
CAVE DDRM(100) 35.713M 29.868 0.827 8.157

DDS2M 2.713M 35.098 0.909 9.188

6. Conclusion
This work reveals a new insight on how to synergis-

tically integrate existing diffusion models with untrained
neural networks, and puts forth a self-supervised diffu-
sion model for HSI restoration, namely Denoising Diffu-
sion Spatio-Spectral Model (DDS2M). By virtue of our pro-
posed Variational Spatio-Spectral Module (VS2M), the dif-
fusion process can be reversed solely using the degraded
HSI without any extra training data. Benefiting from its
self-supervised nature and diffusion process, DDS2M ad-
mits stronger generalization ability to various HSIs relative
to existing diffusion-based methods and superior robustness
to noise relative to existing HSI restoration methods.
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