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Abstract

Current referring video object segmentation (R-VOS)
techniques extract conditional kernels from encoded (low-
resolution) vision-language features to segment the decoded
high-resolution features. We discovered that this causes sig-
nificant feature drift, which the segmentation kernels strug-
gle to perceive during the forward computation. This nega-
tively affects the ability of segmentation kernels. To address
the drift problem, we propose a Spectrum-guided Multi-
granularity (SgMg) approach, which performs direct seg-
mentation on the encoded features and employs visual de-
tails to further optimize the masks. In addition, we pro-
pose Spectrum-guided Cross-modal Fusion (SCF) to per-
form intra-frame global interactions in the spectral domain
for effective multimodal representation. Finally, we ex-
tend SgMg to perform multi-object R-VOS, a new paradigm
that enables simultaneous segmentation of multiple referred
objects in a video. This not only makes R-VOS faster,
but also more practical. Extensive experiments show that
SgMg achieves state-of-the-art performance on four video
benchmark datasets, outperforming the nearest competitor
by 2.8% points on Ref-YouTube-VOS. Our extended SgMg
enables multi-object R-VOS, runs about 3× faster while
maintaining satisfactory performance. Code is available at
https://github.com/bo-miao/SgMg.

1. Introduction
Referring video object segmentation (R-VOS) aims at

segmenting objects in a video, referred to by linguistic de-

scriptions. R-VOS is an emerging task for multimodal rea-

soning and promotes a wide range of applications, including

language-guided video editing and human-machine inter-

action. Different from conventional semi-supervised video

object segmentation [44, 7, 41], where the mask annotation

for the first frame is provided for reference, R-VOS is more

challenging due to the need for cross-modal understanding

between vision and free-form language expressions.

Early R-VOS techniques [2, 21, 61] perform feature en-

coding, cross-modal interaction, and language grounding
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Figure 1. (a) Previous methods [4, 57] apply segmentation ker-

nels Kc [50], extracted from encoded features Fvl, to segment the

decoded high-resolution features Fd
vl. (b) We use segmentation

kernels Kcp, extracted from encoded features Fvl, to segment the

encoded features Fvl directly, and propose multi-granularity opti-

mization to recover visual details and produce fine-grained masks.

using convolutional neural networks (CNNs). However,

the limited ability of CNNs to capture long-range depen-

dencies and handle free-form features constrains the model

performance. With the advancement of attention mecha-

nisms [52, 43, 15, 16, 58], recent methods achieved signifi-

cant improvement on R-VOS using cross-attention [49, 23,

27] for multimodal understanding and transformers [6, 56]

for spatio-temporal representation. Based on transformers,

conditional kernel [50] is then introduced to separate fore-

ground from semantic features given its high adaptability

to different instances [4, 57]. As illustrated in Fig. 1(a),

these methods attend to encoded vision-language features

Fvl using instance queries Q to predict conditional kernels

Kc, and employ Kc as the segmentation head to segment

decoded features Fd
vl. Despite the promising performance,
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this paradigm still has some limitations. Firstly, as shown

in the t-SNE [51] visualization in Fig. 1(a), although the

nonlinear decoding process introduces visual details, this is

accompanied by a significant feature drift, which increases

the difficulty of segmentation since Kc is predicted before

feature decoding. Secondly, bilinear upsampling of the pre-

dicted masks MQ to increase resolution impedes the seg-

mentation performance. Thirdly, these methods only sup-

port single expression-based segmentation, making R-VOS

inefficient when multiple referred objects exist in a video.

In this work, we propose a Spectrum-guided Multi-

granularity (SgMg) approach that follows a segment-and-

optimize pipeline to address the above problems. As de-

picted in Fig. 1(b), SgMg introduces Conditional Patch Ker-

nel (CPK) Kcp to directly segment its fully perceived en-

coded features Fvl, avoiding the feature drift and its adverse

effects. The segmentation is then refined using our pro-

posed Multi-granularity Segmentation Optimizer (MSO),

which employs low-level visual details to produce full-

resolution masks. Within the SgMg framework, we further

develop Spectrum-guided Cross-modal Fusion (SCF) that

performs intra-frame global interactions in the spectral do-

main to facilitate multimodal understanding. Finally, we

introduce a new paradigm called multi-object R-VOS to si-

multaneously segment multiple referred objects in a video.

To achieve this, we extend SgMg by devising multi-instance

fusion and decoupling. Our main contributions are summa-

rized as follows:

• We explain how existing R-VOS methods suffer from

the feature drift problem. To address this problem,

we propose SgMg that follows a segment-and-optimize
pipeline and achieves top-ranked overall performance

on multiple benchmark datasets.

• We propose Spectrum-guided Cross-modal Fusion to

encourage intra-frame global interactions in the spec-

tral domain.

• We extend SgMg to perform multi-object R-VOS, a

new paradigm that enables simultaneous segmentation

of multiple referred objects in a video. Our multi-

object variant is more practical and runs 3× faster.

We conduct extensive experiments on multiple bench-

mark datasets, including Ref-YouTube-VOS [49], Ref-

DAVIS17 [21], A2D-Sentences [17], and JHMDB-

Sentences [20], and achieve state-of-the-art performance on

all four. On the largest validation set Ref-YouTube-VOS,

SgMg achieves 65.7 J&F which is 2.8% points higher than

that of the closest competitor ReferFormer [57]. On the

A2D-Sentences, SgMg achieves 58.5 mAP which is 3.5%

points higher than that of ReferFormer.

2. Related Works
Video Object Segmentation techniques fall into two cat-

egories: unsupervised and semi-supervised. Unsupervised

approaches segment the most salient instances in each video

without user interactions [38, 47]. They often employ two-

stream networks to fuse motion and appearance cues for

segmentation. Semi-supervised approaches track the given

first frame object mask by performing online learning [5] or

spatial-temporal association [44, 7, 66, 42, 53]. Unlike con-

ventional semi-supervised video object segmentation, R-

VOS takes a free-form linguistic expression as guidance to

detect and segment referred objects in videos.

Referring Video Object Segmentation. R-VOS methods

mainly use deep neural networks with vision-and-language

interaction to empower visual features with corresponding

linguistic information for pixel-level segmentation. For ex-

ample, [49] employs a unified R-VOS framework that per-

forms iterative segmentation guided by both language and

temporal features. [32, 29] adopt progressive segmenta-

tion by perceiving potential objects and discriminating the

best match. [70] fuses visual and motion features for seg-

mentation under the guidance of linguistic cues. [30] mod-

els object relations to form tracklets and performs tracklet-

language grounding. To enhance multi-modal interactions,

[61, 14, 11, 10] perform hierarchical vision-language fusion

on multiple feature layers.

Despite their promising performance, the complex multi-

stage pipelines and use of multiple networks make R-VOS

burdensome. To address these problems, MTTR [4] pro-

poses an end-to-end transformer-based network with con-

ditional kernels [50] to segment target objects. Refer-

Former [57] further introduces language-guided instance

queries to predict instance-aware conditional kernels and an

auxiliary detection task to aid localization. These methods

follow a decode-and-segment pipeline, which adopts condi-

tional kernels to segment decoded high-resolution features

to achieve promising performance. However, the nonlinear

decoding process leads to significant feature drift that neg-

atively affects the conditional kernels. In contrast to pre-

vious works, our approach follows a segment-and-optimize

pipeline to avoid the adverse drift effects and to predict full-

resolution masks in an efficient manner.

Vision and Language Representation Learning aims to

learn vision-language semantics and alignment for multi-

modal reasoning tasks. It has achieved significant suc-

cess in various tasks [37, 67, 68], including video ques-

tion answering [71], video captioning [1], video-text re-

trieval [12, 69], zero-shot classification [46], referring im-

age/video segmentation [49], etc. Some approaches [46, 24]

rely on contrastive pre-training using large-scale datasets to

project different modalities into unified embedding space.

Others [36, 13] develop cross-modal interaction layers for

multimodal feature fusion and understanding. Recent deep
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Figure 2. The overall framework of SgMg. Taking a video sequence V = {Ii}Ti=1 and a language expression L = {Si}Ni=1 as input, SgMg

predicts the masks of referred object OL in each frame. SCF projects visual features Fv to vision-language features Fvl, instance-aware

CPK predicts patch masks by segmenting encoded Fvl, and MSO optimizes patch masks to get fine-grained results.

learning methods in spectral domain [18, 40, 8, 34] have

raised widespread awareness because of their ability to per-

form global interactions. We take inspiration from these

spectral-based methods and employ spectrum guidance in

the field of vision-language representation to encourage

multimodal global interactions.

3. SgMg: Spectrum-guided Multi-granularity
Referring Video Object Segmentation

Given a video sequence V = {Ii}Ti=1 with T frames and

a language query L = {Si}Ni=1 with N words. The goal of

R-VOS is to segment the referred object OL in V at pixel-

level. To this end, we introduce a new approach termed

SgMg. Different from previous R-VOS methods [4, 57],

our approach follows a segment-and-optimize pipeline.

An overview of SgMg is shown in Fig. 2. Video Swin

Transformer [35] is adopted to extract visual feature Fv and

RoBERTa [33] is adopted to extract sentence Fs and word

Fw features. The channel dimension of all features is pro-

jected to 256. Spectrum-guided Cross-modal Fusion (SCF)

cross attends Fv with Fw to compute vision-language fea-

tures Fvl. Deformable Transformer [72] encoder is used

to encode Fvl and the decoder associates instance queries

created based on Fs to predict instance embeddings and

the corresponding Conditional Patch Kernels (CPKs). Fi-

nally, the CPKs are employed to segment Fvl and predict

patch masks that are further optimized with visual details

through Multi-granularity Segmentation Optimizer (MSO).

The choice of the encoder and transformer follows previous

works to avoid distractions [4, 57].

3.1. Feature Drift Analysis

Existing R-VOS methods [57, 4] follow a decode-and-

segment pipeline where conditional kernels Kc [50] are ex-

tracted from encoded features Fvl and used to segment the

decoded features Fd
vl. However, the decoding process leads

to feature drift, which is evident in the t-SNE visualization

depicted in Fig. 1(a). This drift is difficult for the kernels

Kc to perceive during the forward computation since Kc is

predicted before the feature decoding. Therefore, we argue

that even though the feature decoding enhances visual de-
tails, it also causes the drift problem that negatively affects
the segmentation kernels. This makes the existing decode-

and-segment pipeline sub-optimal.

To overcome the adverse effects of feature drift while re-

covering visual details, we present SgMg, a novel approach

that follows a segment-and-optimize pipeline. In a nutshell,

SgMg performs Spectrum-guided Cross-modal Fusion to

compute Fvl, leverages Conditional Patch Kernels to seg-

ment encoded features Fvl to avoid the drift effects, and

recovers visual details with Multi-granularity Segmentation

Optimizer to generate fine-grained masks.

3.2. Spectrum-guided Cross-modal Fusion

The two-dimensional discrete Fourier transform converts

spatial data into the spectral domain. Based on the spec-

tral convolution theorem [3], point-wise update of signals in

the spectral domain globally affects all inputs in the spatial

domain, which gives the insight to design spectrum-based

modules so as to efficiently facilitate global interactions,

which is critical for multimodal understanding. In addition,

Low-frequency components in the spectral domain usually
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Figure 3. Spectrum-guided Cross-modal Fusion. Imag.: Imagi-

nary. Pre-spectrum augmentation and post-spectrum augmenta-

tion share an identical structure.

correspond to the general semantic information according

to previous theoretical studies [59, 60, 64].
Inspired by the above observations, we conjecture that

low-frequency components can benefit higher dimensional
semantic features and propose Spectrum-guided Cross-
modal Fusion (SCF). As shown in Fig. 3, SCF performs
pre-spectrum augmentation to enhance visual features be-
fore cross-modal fusion and post-spectrum augmentation to
facilitate global vision-language interactions after the fu-
sion process. Let F ∈ R

C×H×W denotes the input features,
the spectrum augmentation (SA) is computed as:

SA(F ,K) = F +ΘIFFT (Conv(σ(K,F)�ΘFFT (F))) (1)

where � denotes low-pass filtering with adaptive Gaussian
smoothed filters σ(K,F), which has the same spatial size as
F , and K is the bandwidth. To make σ(K,F) input-aware,
we create an initial 2D Gaussian map based on K, and apply
pooling and linear layers on F to predict a scale parameter
to update the Gaussian map. Thanks to the spectral convo-
lution theorem, the efficient point-wise spectral convolution
globally updates F . We treat the spectral-operated features
as residuals and add them to the original input features for
enhancement. Overall, SCF, which takes visual features Fv

and word-level text features Fw as input, is computed as:

SCF(Fw,Fv) = SA(SA(Fv)⊗Att(SA(Fv),Fw)) (2)

3.3. Conditional Patch Segmentation

We devise Conditional Patch Kernel (CPK) as the seg-

mentation head to predict patch masks from the encoded

vision-language features Fvl that are fully perceived by

CPK. Unlike previous works [4, 57], CPK predicts a se-

quence of labels for each token rather than a single label, ef-

ficiently improving segmentation resolution along the chan-

nel dimension.
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C

Co
nv

Co
nv ×2

flatten

…

… … ……
…

C

Co
nv

Co
nv

Figure 4. Multi-granularity Segmentation Optimizer, which pre-

dicts residual maps to optimize patch masks MP progressively.
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i
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Hp
i

×Wp
i for visual-

ization. ×2: upsampling operation.

Specifically, we first use sentence-level text features Fs

and multiple learnable embeddings to generate instance

queries Q ∈ R
N×C . Next, Q is projected into instance

embeddings E ∈ R
N×C using the transformer decoder and

E is leveraged to predict CPK for each instance query:

CPK(Q,Fvl) = Θ(FC(Att(Q,Fvl))) (3)

where Θ denotes the parameterization operation that re-

shapes CPK to form two point-wise convolutions with the

output channel number of 16, which is similar to [50]. Since

Q changes dynamically according to different linguistic ex-

pressions, CPK becomes instance-aware and can separate

objects of interest from Fvl. Finally, we apply the param-

eterized CPK (dynamic point-wise convolutions) on Fvl to

predict patch masks MP ∈ R
H
i ×W

i ×p2

, where H
i × W

i
denotes the spatial resolution of Fvl and p2 denotes the in-

creased segmentation resolution on the channel dimension.

During inference, we can reshape patch masks to MP ∈
R

Hp
i ×Wp

i to efficiently generate fine-grained segmentation

from low-resolution Fvl. The resolution of prediction will

be consistent with the input when p equals to i. We found

that this efficient CPK can achieve competitive performance

compared to methods that use heavy decoders.

3.4. Multi-granularity Segmentation Optimizer

Segmenting encoded features Fvl with CPK avoids the

detrimental drift effect on the segmentation head. However,

visual details are required to produce accurate fine-grained

masks. We propose Multi-granularity Segmentation Opti-

mizer (MSO) to achieve this goal.

An overview of MSO is shown in Fig. 4. It takes the pre-

dicted patch masks MP as object priors and reuses visual

features Fv with spatial strides of {4,8} to gradually recover

visual details and refine the priors. Specifically, MSO first

concatenates MP and Fv and projects them to low dimen-

sional bases. Next, residual masks predicted by perform-

ing another convolution on these bases are used to correct

MP . Finally, the optimized patch masks achieve the input

resolution by reshaping from R
H
4 ×W

4 ×42 to R
H×W . Since
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Methods Single-frame Multi-frames Multi-objects

[49, 63, 11] et al. �
[4, 57, 56, 23] et al. � �

Fast SgMg (Ours) � � �
Table 1. Comparing different methods for their ability to segment

single or multiple frames or multiple objects simultaneously.

MSO does not include heavy computations, the segment-

and-optimize pipeline makes our approach perform better

with efficient inference time.

3.5. Multi-Object R-VOS

Existing R-VOS methods perform single-frame (frame-

wise) segmentation [49, 63, 11] or multi-frame (clip-wise)

segmentation [4, 57, 56] for an individual referred object at

a time. However, to the best of our knowledge, no exist-

ing work explores the simultaneous segmentation of multi-
ple referred objects in video using a common GPU, which

is important for real-world scenarios. To fill this gap, we

present a new paradigm called multi-object R-VOS.

The key to multi-object R-VOS is designing a network

that shares computationally intensive features for multiple

objects, and enables different instance features to be decou-

pled before segmentation. To achieve this, we extend SgMg

for multi-object R-VOS by introducing multi-instance fu-

sion and decoupling. As shown in Table 1, our method,

dubbed Fast SgMg, can simultaneously segment multiple

objects (in multiple frames) using a single 24GB GPU.
Fast SgMg shares visual features as well as vision-

language features for all referred objects to make the
network efficient, and decouples the shared features to
make them instance-specific before the segmentation stage.
Firstly, visual features (Fv) and language features (Fw and
Fs) are extracted. Next, we associate Fv and Fw using
multi-instance fusion rather than the previous SCF. Multi-
instance fusion is built on the foundation of SCF, which is
depicted in Fig. 3. The difference is that multi-instance fu-
sion includes semantic fusion, which performs an element-
wise add operation, after cross-attention to merge vision-
language features of different expressions. The features af-
ter semantic fusion perform Hadamard product with Fv to
generate the vision-language features Fvl for all objects:

SF(Fw,Fv) =
N∑

i=1

Att(F i
w,Fv) (4)

MIF(Fw,Fv) = SA(SA(Fv)⊗ SF(Fw, SA(Fv))) (5)

where ⊗ denotes Hadamard product and N denotes the

number of expressions. After vision-language fusion, we

encode Fvl using the transformer encoder to enrich its se-

mantic information, and plug multi-instance decoupling to

decouple features for each instance. Multi-instance decou-

pling employs Fw and cross-attention to decouple Fvl to

predict instance embeddings E for different referred objects.

These embeddings are then projected to CPKs to predict the

patch masks. Thus, FAST SgMg shares features, which ac-

count for most of the computational overhead, for different

expressions, making it efficient for referring segmentation.

3.6. Instance Matching and Loss Functions

Following [4, 57], we perform instance matching with

N = 5 learnable instance queries to improve fault toler-

ance. These queries are projected to CPKs to predict N po-

tential patch masks MP for each expression. The Hungar-

ian algorithm [22] is then adopted to select the best match

based on the matching loss for training. During inference,

we directly employ the predicted confidence scores S to

measure the instance queries and select the results.
We adopt the same training losses and weights as used

in [57, 72] for a fair comparison. Specifically, we use Dice
loss [26] and Focal loss [31] for patch mask MP and opti-
mized mask MO, Focal loss [31] for confidence scores S ,
and L1 and GIoU [48] loss for bounding boxes B. The final
training loss functions are:

Ltrain = λMP LMP + λMOLMO + λBLB + λSLS (6)

where L and λ are the loss term and weight, respectively.

4. Experiments
4.1. Datasets and Metrics

Datasets. We evaluate SgMg on four video bench-

marks: Ref-YouTube-VOS [49], Ref-DAVIS17 [21], A2D-

Sentences [17], and JHMDB-Sentences [20]. Ref-

YouTube-VOS is currently the largest dataset for R-VOS,

containing 3,978 videos with about 13K expressions. Ref-

DAVIS17 is an extension of DAVIS17 [45] by including the

language expressions of different objects and contains 90

videos. A2D-Sentences is a general actor and action seg-

mentation dataset with over 3.7K videos and 6.6K action

descriptions. JHMDB-Sentences includes 928 videos and

928 descriptions covering 21 different action classes.

Evaluation Metrics. We adopt the standard metrics to eval-

uate our models: region similarity J (average IoU), contour

accuracy F (average boundary similarity), and their mean

value J&F . All results are evaluated using the official code

or server. On A2D-Sentences and JHMDB-Sentences, we

adopt mAP, overall IoU, and mean IoU for evaluation.

4.2. Implementation Details

Following [4, 6, 57], we train our models on the train-

ing set of Ref-YouTube-VOS, and directly evaluate them on

the validation split of Ref-YouTube-VOS and Ref-DAVIS17

without any additional techniques, e.g., model ensemble,

joint training, and mask propagation, since they are not the

focus of this paper. Additionally, we present results for our
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Method Year Backbone
Ref-YouTube-VOS Ref-DAVIS17

J&F J F FPS J&F J F
CMSA [63] 2019 ResNet-50 36.4 34.8 38.1 - 40.2 36.9 43.5

URVOS [49] 2020 ResNet-50 47.2 45.3 49.2 - 51.5 47.3 56.0

CMPC-V [32] 2021 I3D 47.5 45.6 49.3 - - - -

PMINet [11] 2021 ResNeSt-101 53.0 51.5 54.5 - - - -

YOFO [23] 2022 ResNet-50 48.6 47.5 49.7 10 53.3 48.8 57.8

LBDT [10] 2022 ResNet-50 49.4 48.2 50.6 - 54.3 - -

MLRL [56] 2022 ResNet-50 49.7 48.4 51.0 - 52.8 50.0 55.4

MTTR [4] 2022 Video-Swin-T 55.3 54.0 56.6 - - - -

MANet [6] 2022 Video-Swin-T 55.6 54.8 56.5 - - - -

ReferFormer [57] 2022 Video-Swin-T 56.0 54.8 57.3 50 - - -

SgMg (Ours) 2023 Video-Swin-T 58.9 57.7 60.0 65 56.7 53.3 60.0

Pre-training with RefCOCO/+/g & larger backbone

ReferFormer [57] 2022 Video-Swin-T 59.4 58.0 60.9 50 59.6 56.5 62.7

SgMg (Ours) 2023 Video-Swin-T 62.0 60.4 63.5 65 61.9 59.0 64.8
ReferFormer [57] 2022 Video-Swin-B 62.9 61.3 64.6 33 61.1 58.1 64.1

SgMg (Ours) 2023 Video-Swin-B 65.7 63.9 67.4 40 63.3 60.6 66.0
Table 2. Quantitative comparison to state-of-the-art methods on the validation split of Ref-YouTube-VOS and Ref-DAVIS17.

Method Backbone
A2D-Sentences JHMDB-Sentences

mAP Overall IoU Mean IoU mAP Overall IoU Mean IoU

Hu et al. [19] VGG-16 13.2 47.4 35.0 17.8 54.6 52.8

Gavrilyuk et al. [17] I3D 19.8 53.6 42.1 23.3 54.1 54.2

ACAN [54] I3D 27.4 60.1 49.0 28.9 57.6 58.4

CMPC-V [32] I3D 40.4 65.3 57.3 34.2 61.6 61.7

ClawCraneNet [29] ResNet-50/101 - 63.1 59.9 - 64.4 65.6

MTTR [4] Video-Swin-T 46.1 72.0 64.0 39.2 70.1 69.8

ReferFormer [57] Video-Swin-T 52.8 77.6 69.6 42.2 71.9 71.0

SgMg (Ours) Video-Swin-T 56.1 78.0 70.4 44.4 72.8 71.7
ReferFormer [57] Video-Swin-B 55.0 78.6 70.3 43.7 73.0 71.8

SgMg (Ours) Video-Swin-B 58.5 79.9 72.0 45.0 73.7 72.5
Table 3. Quantitative comparison to state-of-the-art R-VOS methods on A2D-Sentences and JHMDB-Sentences.

models first pre-trained on RefCOCO/+/g [39, 65] and then

fine-tuned on Ref-YouTube-VOS. Similar to [57, 72], we

set the coefficients for different losses λdice, λfocal, λL1,

λgiou to 5, 2, 5, 2, respectively. The models are trained us-

ing 2 RTX 3090 GPUs with 5 frames per clip for 9 epochs.

All frames are resized to have the longest side of 640 pix-

els. Further implementation details are in the supplemen-

tary material.

4.3. Quantitative Results

Ref-YouTube-VOS and Ref-DAVIS17. We compare

SgMg with recently published works in Table 2. Our

approach surpasses present solutions on the two datasets

across all metrics. On Ref-YouTube-VOS, SgMg with the

Video Swin Tiny backbone achieves 58.9 J&F at 65 FPS,

which is 2.9% higher and 1.3× faster than the previous

state-of-the-art ReferFormer [57]. Our approach runs faster

due to the use of the segment-and-optimize pipeline, which

avoids the need for heavy feature decoders. When pre-

training with RefCOCO/+/g and using a larger backbone,

i.e., Video Swin Base, the performance of SgMg further

boosts to 65.7 J&F , consistently leading all other solutions

by more than 2.8%. On Ref-DAVIS17, SgMg achieves 63.3

J&F , outperforming state-of-the-art by 2.2% and demon-

strating the generality of our approach.

A2D-Sentences and JHMDB-Sentences. We further eval-

uate SgMg on A2D-Sentences and JHMDB-Sentences in

Table 3. Following [57], the models are first pre-trained

on RefCOCO/+/g and then fine-tuned on A2D-Sentences.

JHMDB-Sentences is used only for evaluation. As shown

in Table 3, SgMg achieves superior performance compared

to other state-of-the-art R-VOS methods and surpasses the

nearest competitor Referformer [57] by 3.5/1.3% mAP on

A2D-Sentences and JHMDB-Sentences, respectively.

Multi-object R-VOS. We extend SgMg to perform multi-

object R-VOS, which is more practical and efficient for

deployment. Fast SgMg is trained on Ref-YouTube-VOS

without pre-training or postprocessing techniques. We
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Method Ref-DAVIS17 Ref-YouTube-VOS

J&F J F J&F J F FPS

ReferFormer [57] 54.5 51.0 58.0 56.0 54.8 57.3 50

Fast SgMg (Ours) 54.2 51.1 57.3 54.2 53.1 55.3 185
Table 4. Evaluation of Fast SgMg on Ref-DAVIS17 and Ref-

YouTube-VOS. Video-Swin-T is adopted as the backbone.

Components Performance

CPK MSO SCF J&F J F FPS

54.4 52.7 56.2 70

� 55.8 54.5 57.1 70

� 57.7 56.3 59.1 69

� 55.8 54.3 57.4 66

� � 57.9 56.7 59.1 69

� � � 58.9 57.7 60.0 65

Table 5. Ablation of different components on Ref-YouTube-VOS.

benchmark Fast SgMg on Ref-YouTube-VOS and Ref-

DAVIS17 using the commonly used Video Swin Tiny,

and compare the results with the state-of-the-art R-VOS

method, which performs single-object segmentation.

As shown in Table 4, Fast SgMg achieves reasonable

performance and runs about 3.7× faster (185 vs 50 FPS)

compared to ReferFormer [57]. It should be noted that each

object in the above datasets contains multiple expressions.

On Ref-DAVIS17, we group expressions to have only one

expression per object within each group and segment all

expressions in each group simultaneously since the object

identity is given. On Ref-YouTube-VOS, all expressions in

a video are segmented simultaneously due to the lack of ob-

ject identity, making it more challenging.

4.4. Ablation Study for Different Components

We conduct ablation experiments to evaluate the effec-

tiveness of different components in SgMg. The components

are added to the baseline model step-by-step.

Conditional Patch Kernel. As shown in Table 5, CPK

boosts the performance by 1.4% compared with the recent

instance-aware conditional kernels [57]. The sequential la-

bels of each token predicted by CPK contain more fine-

grained information, making the prediction more accurate.

Multi-granularity Segmentation Optimizer. We devise

MSO to optimize the predicted patch masks. As shown in

Table 5, MSO improves the performance by 3.3%, indicat-

ing the importance of fine-grained visual details in R-VOS.

Spectrum-guided Cross-modal Fusion. We present SCF

to perform global interactions by operating in the spectral

domain. In Table 5, using SCF to replace the traditional

cross-attention in [57, 52] improves the J&F by 1.4%. We

consider SCF extracts important low-frequency features and

facilitates multimodal understanding globally, which is suit-

able for R-VOS since locating referred objects requires un-

derstanding the global context and token relations.

Settings Drift Pipeline J&F FPS

Baseline + Decoder � decode-and-segment 56.0 50

Baseline + Decoder + MSO � decode-and-segment 56.4 49

Baseline + MSO × segment-and-optimize 57.7 69
Table 6. Feature drift analysis using ReferFormer [57] (Baseline

+ Decoder) and SgMg w/o CPK & SCF (Baseline + MSO). Sig-

nificant improvement is achieved by addressing the drift issue (last

row). Adding MSO on top of ReferFormer to recover visual details

(for a second time) still performs worse than our basic pipeline.

Method RefCOCO RefCOCO+ RefCOCOg

MaIL [28] 70.1 62.2 62.5

CRIS [55] 70.5 62.3 59.9

RefTR [25] 70.6 - -

LAVT [62] 72.7 62.1 61.2

VLT [9] 73.0 63.5 63.5

SgMg (Ours) 76.3 66.4 70.0
Table 7. Quantitative evaluation on the validation split of Ref-

COCO/+/g. Overall IoU is adopted as the evaluation metric.

4.5. Ablation Study for Feature Drift

We conduct ablation study in Table 6 to demonstrate the

feature drift problem. Our segment-and-optimize pipeline

addresses the adverse drift effect discussed in Section 3.1 to

significantly outperform ReferFormer [57] by 1.7% points

and runs 1.4× faster. Furthermore, adding MSO on top of

ReferFormer still performs worse due to the negative drift

impact caused by the decode-and-segment pipeline. These

results demonstrate the efficacy of our proposed segment-

and-optimize pipeline.

4.6. Referring Image Segmentation Results

We apply SgMg to referring image (expression) segmen-

tation without any architectural modifications, and com-

pare against the current state-of-the-art methods on Ref-

COCO/+/g [39, 65]. A single SgMg model is trained on

RefCOCO/+/g without large-scale pre-training. As shown

in Table 7, SgMg achieves advanced performance on all

three benchmarks. These results demonstrate the efficacy

of SgMg in referring image segmentation.

4.7. Inference Time Analysis of Multi-Object RVOS

We analyze the efficiency of the proposed multi-object

R-VOS paradigm by comparing the FPS of Fast SgMg and

SgMg on videos with different numbers of expressions. As

illustrated in Fig. 6, Fast SgMg performs about 2× faster

than SgMg when there are two expressions per video on av-

erage. As the number of expressions increases, Fast SgMg

achieves faster reasoning time per object per frame due to

its utilization of the multi-object R-VOS paradigm. When

there are ten expressions in each video, Fast SgMg performs

at nearly 300 FPS, which is about 5× faster than SgMg.
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Expression: a turtle to the bottom left.

Expression: a person wearing a red tank top is playing tennis.

Figure 5. Qualitative comparison of our method with others.
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Figure 6. Efficiency analysis of SgMg and Fast SgMg for videos

with different numbers of expressions on Ref-YouTube-VOS.

4.8. Qualitative Results

In Fig. 5, we show qualitative comparison with Refer-

Former [57] and MTTR [4]. SgMg can handle different ob-

jects of the same category or with the same behavior.

4.9. Feature Visualization of SCF

In Fig. 7, we visualize the vision-language features ex-

tracted by our SCF in comparison to the cross-attention used

in [57]. The features extracted by SCF exhibit superior

grounding ability in locating target objects, resulting in bet-

ter performance for SgMg.

5. Conclusion
We discovered the feature drift issue in current refer-

ring video object segmentation (R-VOS) methods, which

negatively affects the segmentation kernels. We presented

SgMg, a novel segment-and-optimize approach for R-VOS

that avoids the drift issue and optimizes masks with visual

Image w/o SCF w/ SCF
Expression: a man in a red sweatshirt performing breakdance

Expression: a girl on the left holding two cell phones

Expression: a man on the left with a beard wearing jeans

Figure 7. Visualization of the vision-language features extracted

w/o and w/ our SCF.

details. We also provided a new perspective to encourage

vision-language global interactions in the spectral domain

with Spectrum-guided Cross-modal Fusion. Additionally,

we proposed the multi-object R-VOS paradigm by extend-

ing SgMg with multi-instance fusion and decoupling. Fi-

nally, we evaluated our models on four video benchmarks

and demonstrated that our approach achieves state-of-the-

art performance on all four datasets.
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