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Abstract

The scene graph generation (SGG) task is designed to
identify the predicates based on the subject-object pairs.
However, existing datasets generally include two imbalance
cases: one is the class imbalance from the predicted pred-
icates and another is the context imbalance from the given
subject-object pairs, which presents significant challenges
for SGG. Most existing methods focus on the imbalance of
the predicted predicate while ignoring the imbalance of the
subject-object pairs, which could not achieve satisfactory
results. To address the two imbalance cases, we propose a
novel Environment Invariant Curriculum Relation learning
(EICR) method, which can be applied in a plug-and-play
fashion to existing SGG methods. Concretely, to remove the
imbalance of the subject-object pairs, we first construct dif-
ferent distribution environments for the subject-object pairs
and learn a model invariant to the environment changes.
Then, we construct a class-balanced curriculum learning
strategy to balance the different environments to remove
the predicate imbalance. Comprehensive experiments con-
ducted on VG and GQA datasets demonstrate that our EICR
framework can be taken as a general strategy for various
SGG models, and achieve significant improvements.

1. Introduction
Scene graph generation [39] (SGG) aims to predict the

corresponding predicate (e.g., riding) based on the given
subject-object pairs (e.g., (man, bike)). As an intermedi-
ate visual understanding task, it can serve as a fundamen-
tal tool for high-level vision and language tasks, such as
visual question answering [33, 1, 20], image captioning
[4, 13, 49], and cross-model retrieval [11, 30], which pro-
motes the development of visual intelligence.

Though many advances have been achieved [45, 33],
SGG is still far from satisfactory for practical applications
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Figure 1. For SGG datasets, besides the class imbalance from pred-
icates, there exists another imbalance phenomenon, i.e., context
imbalance from subject-object pairs, which is easily ignored. To
this end, this paper delves into class and context imbalance. And
a method of Environment-Invariant Curriculum Relation Learning
is proposed to generate fine-grained scene graphs effectively.

due to the imbalance phenomenon in the given datasets [32].
To this end, most existing methods focus on addressing the
class imbalance from the predicted predicates to generate
accurate relation words. Particularly, some works propose
resampling [10, 19] and reweighting [38] strategies to bal-
ance the head and tail predicate classes, which alleviates the
imbalance and improves the performance of SGG.

Besides the class imbalance from the predicted predi-
cate, there exists another context imbalance from the given
subject-object pairs, which is prone to be ignored. As
shown in Fig. 1, since the predicate prediction relies on the
given subject-object context, the number imbalance of the
given subject-object pairs easily incorrectly predicts the re-
lation between subjects and objects. For example, there ex-
ist a large number of relations between ‘(man, shirt)’ and
‘wearing’ in the dataset. When giving a rare subject-object
pair, e.g., ‘(man, boots)’, the model is prone to generate an
incorrect prediction. In Fig. 2 (a), we make an analysis of
a popular SGG dataset VG [17]. We observe that the num-
ber of context subject-object types will change significantly
with the number of predicate categories. Moreover, Fig. 2
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Figure 2. (a) The number of context subject-object types in all
predicate classes. (b) The Recall@100 performance for different
context subject-object in the predicate class ‘carrying’.

(b) further shows that performance can be severely affected
by the context subject-object. These phenomena show that
the current SGG dataset does have the context imbalance
problem, and resolving this problem will help produce fine-
grained scene graphs and improve the performance.

To address the problems of the two imbalances men-
tioned above, we propose a novel framework named En-
vironment Invariant Curriculum Relation learning (EICR),
which can be equipped with different baseline models in
a plug-and-play applied in a fashion. We construct differ-
ent distribution environments for the context subject-object
and propose a curriculum learning strategy to balance the
environments. Specifically, to solve the context imbalance
of various subject-object pairs, we construct three differ-
ent distribution environments: normal, balanced, and over-
balanced for the context subject-object pairs, and then apply
Invariant Risk Minimization (IRM) [2] to learn a context-
unbiased relation classifier that is invariant to these envi-
ronments. To solve the class imbalance, we utilize a class-
balanced curriculum learning strategy to first explore the
general patterns from the head predicates in the normal
environment and then gradually focus on learning the tail
predicates in the over-balanced environment.

Our contributions can be summarized as follows:

(1) Except for the existing class imbalance, we explore
and address the under-explored context imbalance problem
in the current SGG dataset.

(2) We construct an environment-invariant relation clas-
sifier to solve the context imbalance of the subject-object
pairs and present a new curriculum learning strategy to con-
solidate the relation classifier from head to tail predicates
and solve the class imbalance of the predicates.

(3) Our EICR can be applied in a plug-and-play fash-
ion for the SGG baselines and get competitive results
among various SOTA methods. By applying our proposed
method, a VCTree [33] model is improved over 14% on
mR@50/100 and over 12% on the metric F@50/100.

2. Related Work

Scene Graph Generation. SGG provides an efficient
way for connecting vision and language [35, 48], and has
drawn widespread attention from the community. Early ap-
proaches focus on visual relation detection [26, 9, 22, 21]
and are mainly dedicated to incorporating more features
from various modalities. To further enhance the relations,
considering that relations are highly dependent on their con-
text, different methods [24, 45, 33, 16] are further pro-
posed to refine the object and relation representations in the
scene graph. Motifs [45] chose the Bi-LSTM framework
for the object and predicate context encoding and VCTree
[33] constructs a tree structure to encode the hierarchical
and parallel relationships between objects. Moreover, other
works also refine the message-passing strategy [24].
Unbiased Scene Graph Generation. Although making
steady progress on improving recall on SGG tasks, further
research has shown that SGG models are easy to collapse
to several general predicate classes because of the long-
tail effect in the SGG dataset [5, 14]. For example, from
the causal view [42], TDE [32] employs a causal inference
framework to eliminate predicate class bias during the infer-
ence process. BGNN [19] constructs a bi-level resampling
strategy during the training process. Inspired by the appli-
cation of noisy label learning [36, 37], NICE [18] formulate
SGG as an out-of-distribution detection [40, 41] problem
and propose a noisy label correction strategy for unbiased
SGG. Different from existing SGG works, we are the first
to explicitly define and address the context imbalance of the
subject-object pairs on SGG datasets.

3. EICR for Class and Context Imbalances

For SGG, this paper aims to address the two different
kinds of distribution imbalance, i.e., class imbalance of
predicates and context imbalance of subject-object pairs.

3.1. Preliminary

The scene graph generation task aims to generate a sum-
mary graph G for the given image I . Specifically, a scene
graph G = {(O,E)} corresponding to I contains a set of
target entities O = {(oi)}No

i=1 and a set of relational triplets
E =

{(
oi, p(oi,oj), oj

)}Ne

i,j=1
, where oi ∈ O and oj ∈ O,

p(oi,oj) is defined as the relation between them and belongs
to the predefined predicate class set P .

Classifying a relation p as the predicate class c can be
preliminarily defined as predicting P (r = c | p) based
on the dataset of the relations and its label pairs {(p, r)}
[45]. Using Bayes theorem [3], the predictive model could
be decomposed as P (r = c | p) = P (p|r=c)·P (r=c)

P (p) ,
where P (r = c) is the class distribution, and P (p) is the
marginal distribution of the relations. Previous SGG meth-
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Figure 3. Illustration of our method for alleviating the context and class imbalances in SGG. Firstly, an environment-invariant learning
module to build multiple different distribution environments of subject-object pairs, which is beneficial for obtaining an invariant relation
classifier and alleviating the context imbalance. Next, a class-balanced curriculum learning strategy is designed to balance the built multiple
environments, alleviating the class imbalance.

ods [32, 19] only consider class imbalance P (r = c) while
ignoring the context imbalance from the different marginal
distribution P (p) based on subject-object pairs.

To explicitly define the relation classification P (r = c |
p), we assume that a relation p is generated by a set of
hidden attributes z = {z1, z2, z3, . . .}. Since there exists
predicate class imbalance and context imbalance in the ex-
isting SGG dataset, we defined two disjoint subsets for the
hidden attributes: class-specific attributes zc (e.g., the fre-
quency of the predicate classes [32]) and context-specific
attributes ze (e.g., the various context subject-object pairs
{oi, oj}). Thus we can further decompose the relation pre-
diction model P (r = c | zc, ze) as follows:

P (r = c | zc, ze) =
P (zc | r = c)

P (zc, ze)

·P (ze | r = c, zc)︸ ︷︷ ︸
context imbalance

· P (r = c)︸ ︷︷ ︸
class imbalance

.
(1)

From Eq. 1, the relation classifier P (r = c | zc, ze) is af-
fected by two imbalances:

Class Imbalance: in previous SGG works [19, 32, 38],
the distribution of P (r = c) is considered as the main cause
of the performance degradation. As P (r = c) can be ex-
plicitly calculated from the training data, the majority of
previous methods directly alleviate its effect by class-wise
adjustment [38] or re-sampling [19, 12].

Context Imbalance: we argue that the context imbal-
ance suffers the relation classifier in two ways. First, as
shown in Fig. 2 (a), the different diversity for the context
makes imbalanced influences for the predicate classes. Sec-

ond, Fig. 2 (b) shows that the predicate is high-related to
certain context subject-object pairs. These phenomenons
will create spurious correlations between the subject-object
pairs and the predicates, which will weaken the relation
classification performance, especially in the tail predicates
whose context subject-object pairs are rare due to sampling
scarcity. Since we have concluded that the context subject-
object pair is highly related to the predicate class, we for-
mulate the context imbalance as P (ze | r = c, zc).

To solve these two imbalances and obtain unbiased re-
lations for the scene graphs, we propose the following En-
vironment Invariant Curriculum Relation learning (EICR)
framework to learn an unbiased relation classifier invariant
to the change of the various predicate classes and context
subject-object pairs.

3.2. Environment Invariant Learning

To alleviate the context imbalance, we need to elimi-
nate the impact of the contexts for the relation classification
P (ze | r = c, zc). To this end, based on the theory of In-
variant Risk Minimization (IRM) [2], we can first construct
a set of environments E = {e1, e2, . . .} with diverse con-
text distribution. Then, by regularizing the relation classi-
fier g(·) to be equally optimal across the environments with
different context distributions, we can alleviate the influ-
ence of the context. Thus objective function can be defined
as follows:

min
g

∑
e∈E

Re(I, r; f(·), g(·)),

subject to g ∈ argmin
g

Re for all e ∈ E ,
(2)

13298



where Re(I, r; f(·), g(·)) is the risk under environment e
(i.e., the loss for training), f(·) is the relation feature ex-
tractor, g ∈ argming R

e(I, r; f(·), g(·)) for all e ∈ E
means that the invariant identifier g should minimize the
risk under all environments simultaneously. Following IRM
[2], we use a gradient norm penalty term to minimize g
at each environment, i.e., minΦ:X→Y

∑
e∈E R

e(Φ) + λ ·∥∥∇w|w=1.0R
e(w · Φ)

∥∥2,where Φ is the invariant model,
R(·) denotes the training loss under different environments
e ∈ E and we set λ = 1. The detailed process of the envi-
ronment construction is introduced below:

The set of diverse environments should ensure the vari-
ance of the context influence and ideally are orthogonal dis-
tributions [34, 43]. However, considering the computation
consumption and feasibility of the strategy, to construct dif-
ferent P (ze | r = c, zc), it is hard to change the r = c
since the relation labels are predefined. Thus we construct
three learning environments with different zc, i.e., the fre-
quency of the predicate classes. As illustrated in Fig. 3,
each learning environment constructs different frequencies
of the predicate classes:

• The normal environment maintains the raw distribution
of the predicate classes in the dataset.

• The class-balanced environment constructs the resam-
pling strategy [12] to sampling in all predicate categories
at balanced frequencies. Specifically, we first calculate the
median amount of the samples over all predicate classes
Median(r). Then, for each predicate class ri with ni sam-
ples, we calculate the sampling rate si as follows:

si =

{
Median(r)

ni
if Median(r) ≤ ni,

1 if Median(r) > ni.
(3)

• The over-balanced environment is constructed to over-
correct the imbalanced predicate class distribution P (r).
Thus we first construct a resampling strategy for the bal-
anced sampling as in the class-balanced environment. Then
we adopt an extra reweighting strategy for over-balanced
weighting, the loss can be formulated as:

Lover = −
C∑
i=1

wiri log(g(f(I))), (4)

where wi = 1/ni and C denotes the number of the pred-
icate categories. This environment deliberately picks rela-
tion triplets with the probability negatively correlated with
predicate class size.

3.3. Class-Balanced Curriculum Learning

After obtaining a context-unbiased relation representa-
tion from the environment learning module, we assume the
network has already modeled the P (ze | r = c, zc). There-
fore, we only need to tackle the class imbalance P (r = c)

Algorithm 1 EICR Framework
Input: SGG Dataset {(I, r)}, # Iteration T .
1: Initialize the pretrained relation feature extractor f and

relation classifier g
2: while t ≤ T do
3: // Context-Debias
4: Generate multiple environments {e1, e2, e3}
5: Learn parameters of g through IRM with Eq. 2
6: // Class-Debias
7: Reweight environments by schedule in Eq. 5
8: Update the model by balanced risks from Eq. 7.
9: end while
Output: The debiased relation feature extractor f and re-

lation classifier g

in the context-balanced SGG data. We devise a curricu-
lum schedule for environment learning to make the relation
prediction model successfully explore general patterns from
head predicates and then gradually focus on the tail predi-
cates. Specifically, we adjust the learning weights between
the over-balanced environment and the normal environment
by a trade-off factor λ which is defined as:

λ =


λmax if t ≤ T,

max (H(t), λmin) if T < t ≤ 2T,

λmin if t > 2T,

(5)

where t is the current training iteration, T is predefined in-
termediate training iterations for different stages of curricu-
lum learning. λmin, λmax ∈ [0, 1] are hyper-parameters.
In order to ensure the scale invariance, λmin + λmax = 1.
H(t) is a curriculum schedule function decreasing from 1
to 0 with the input iteration t, which can be defined as:

H(t) =
2T − t

T
(λmax − λmin), (6)

thus the joint loss function for the three environments can
be formulated as:

Rhybird = λ · Rnorm + (1− λ) · Rover +Rbalanced, (7)

where Rnorm,Rover,Rbalanced are the risks under normal,
class-balanced, and over-balanced environments. The class-
balanced curriculum learning strategy thus can be divided
into three phases. In the first training phase (t ≤ T ), the
model is mainly focused on the normal environment to learn
the general patterns from head predicates. In the second
phase (T < t ≤ 2T ), λ gradually decreases during the
training. The model’s learning focus shifts from the nor-
mal environment to the over-balanced environment to in-
crementally learn the fine-grained tail predicates while re-
taining the general patterns. In the third phase (t > 2T ),
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Method PredCls SGCls SGDet
R@50 / 100 mR@50 / 100 F@50 / 100 R@50 / 100 mR@50 / 100 F@50 / 100 R@50 / 100 mR@50 / 100 F@50 / 100

IMP [35] 61.1 / 63.1 11.0 / 11.8 18.6 / 19.9 37.4 / 38.3 6.4 / 6.7 10.9 / 11.4 23.6 / 28.7 3.3 / 4.1 5.8 / 7.2
GPS-Net [25] 65.2 / 67.1 15.2 / 16.6 24.7 / 26.6 37.8 / 39.2 8.5 / 9.1 13.9 / 14.8 31.1 / 35.9 6.7 / 8.6 18.9 / 22.3
BGNN [19] 59.2 / 61.3 30.4 / 32.9 40.2 / 42.8 37.4 / 38.5 14.3 / 16.5 20.7 / 23.1 31.0 / 35.8 10.7 / 12.6 15.9 / 18.6
DT2-ACBS [10] 23.3 / 25.6 35.9 / 39.7 28.3 / 31.1 16.2 / 17.6 24.8 / 27.5 19.6 / 21.5 15.0 / 16.3 22.0 / 24.0 17.8 / 19.4
SHA-GCL [12] 35.1 / 37.2 41.6 / 44.1 38.1 / 40.4 22.8 / 23.9 23.0 / 24.3 22.9 / 24.1 14.9 / 18.2 17.9 / 20.9 16.3 / 19.5
Motifs [45] 65.2 / 67.0 14.8 / 16.1 24.1 / 26.0 38.9 / 39.8 8.3 / 8.8 13.7 / 14.8 31.1 / 35.9 6.7 / 8.6 11.0 / 13.9
+ TDE [32] 46.2 / 51.4 25.5 / 29.1 32.9 / 37.2 27.7 / 29.9 13.1 / 14.9 17.8 / 19.9 16.9 / 20.3 8.2 / 9.8 11.0 / 13.2
+ PCPL [38] 54.7 / 56.5 24.3 / 26.1 33.7 / 35.7 35.3 / 36.1 12.0 / 12.7 17.9 / 18.8 27.8 / 31.7 10.7 / 12.6 15.5 / 18.0
+ EBM [31] 65.2 / 67.3 18.0 / 19.5 28.2 / 30.2 39.2 / 40.0 10.2 / 11.0 16.2 / 17.3 31.7 / 36.3 7.7 / 9.3 12.4 / 14.8
+ NICE [18] 55.1 / 57.1 29.9 / 32.3 38.8 / 41.3 33.1 / 34.0 16.6 / 17.9 22.1 / 23.5 27.8 / 31.8 12.2 / 14.4 17.0 / 19.8
+ IETrans [46] 48.6 / 50.5 35.8 / 39.1 41.2 / 44.1 29.4 / 30.2 21.5 / 22.8 24.8 / 26.0 23.5 / 27.2 15.5 / 18.0 18.7 / 21.7
+ EICR 55.3 / 57.4 34.9 / 37.0 42.8 / 45.0 34.5 / 35.4 20.8 / 21.8 25.9 / 27.0 27.9 / 32.2 15.5 / 18.2 19.9 / 23.3
VCTree [33] 65.4 / 67.2 16.7 / 18.2 26.6 / 28.6 46.7 / 47.6 11.8 / 12.5 18.8 / 19.8 31.9 / 36.2 7.4 / 8.7 12.0 / 14.0
+ TDE [32] 47.2 / 51.6 25.4 / 28.7 33.0 / 36.9 25.4 / 27.9 12.2 / 14.0 16.5 / 18.6 19.4 / 23.2 9.3 / 11.1 12.6 / 15.1
+ PCPL [38] 56.9 / 58.7 22.8 / 24.5 32.6 / 34.6 40.6 / 41.7 15.2 / 16.1 22.1 / 23.2 19.4 / 23.2 9.3 / 11.1 12.6 / 15.0
+ EBM [31] 64.0 / 65.8 18.2 / 19.7 28.3 / 30.3 44.7 / 45.8 12.5 / 13.5 19.5 / 20.9 31.4 / 35.9 7.7 / 9.1 12.4 / 14.5
+ NICE [18] 55.0 / 56.9 30.7 / 33.0 39.4 / 41.8 37.8 / 39.0 19.9 / 21.3 26.1 / 27.6 27.0 / 30.8 11.9 / 14.1 16.5 / 19.3
+ IETrans [46] 48.0 / 49.9 37.0 / 39.7 41.8 / 44.2 30.0 / 30.9 19.9 / 21.8 23.9 / 25.6 23.6 / 27.8 12.0 / 14.9 15.9 / 19.4
+ EICR 56.0 / 57.9 35.6 / 37.9 43.6/ 45.8 39.4 / 40.5 26.2 / 27.4 32.8 / 33.9 26.0 / 30.1 15.2 / 17.5 19.2 / 22.1
Transformer [32] 63.6 / 65.7 19.7 / 19.6 27.9 / 30.2 38.1 / 39.2 9.9 / 10.5 15.7 / 16.6 30.0 / 34.3 7.4 / 8.8 11.9 / 14.0
+ CogTree [44] 38.4 / 39.7 28.4 / 31.0 32.7 / 34.8 22.9 / 23.4 15.7 / 16.7 18.6 / 19.5 19.5 / 21.7 11.1 / 12.7 14.1 / 16.0
+ IETrans [46] 49.0 / 50.8 35.0 / 38.0 40.8/ 43.5 29.6 / 30.5 20.8 / 22.3 24.4 / 25.8 23.1 / 27.1 15.0 / 18.1 18.2 / 21.7
+ EICR 52.8 / 54.7 36.9 / 39.1 43.5/ 45.6 31.4 / 32.4 21.6 / 22.4 25.6 / 26.5 23.7 / 27.7 17.3 / 19.7 20.0 / 23.0

Table 1. Performance (%) of our method and other baselines on VG dataset. + EICR denotes different models equipped with our EICR.

Method PredCls SGCls SGDet
R@50 / 100 mR@50 / 100 F@50 / 100 R@50 / 100 mR@50 / 100 F@50 / 100 R@50 / 100 mR@50 / 100 F@50 / 100

Motifs [45] 65.3 / 66.8 16.4 / 17.1 26.2 / 27.2 34.2 / 34.9 8.2 / 8.6 13.2 / 13.8 28.9 / 33.1 6.4 / 7.7 10.5 / 12.5
+ GCL [12] 44.5 / 46.2 36.7 / 38.1 40.2 / 41.8 23.2 / 24.0 17.3 / 18.1 19.8 / 20.6 18.5 / 21.8 16.8 / 18.8 17.6 / 20.2
+ EICR 56.4 / 58.1 36.3 / 38.0 44.2 / 46.0 28.8 / 29.4 17.2 / 18.2 21.5 / 22.5 24.6 / 28.4 16.0 / 18.0 19.4 / 22.0
VCTree [33] 63.8 / 65.7 16.6 / 17.4 26.3 / 27.5 34.1 / 34.8 7.9 / 8.3 12.8 / 13.4 28.3 / 31.9 6.5 / 7.4 10.6 / 13.2
+ GCL [12] 44.8 / 46.6 35.4 / 36.7 39.5 / 41.1 23.7 / 24.5 17.3 / 18.0 20.0 / 20.8 17.6 / 20.7 15.6 / 17.8 16.5 / 19.1
+ EICR 55.3 / 57.0 35.9 / 37.4 43.5 / 45.2 28.4 / 29.1 17.8 / 18.6 21.9 / 22.7 24.0 / 27.6 14.7 / 16.3 18.2 / 20.5

Table 2. Performance comparison of different methods on three tasks of GQA dataset

the model avoids overfitting the general patterns from the
normal environment when focusing on the tail predicates at
later training periods. Algorithm. 1 shows details of EICR.

4. Experiments

In this section, we first show the generalizability of our
method with different baseline models and the expansibil-
ity to different SGG datasets. Ablation studies are also con-
structed to explore the influence of different modules and
hyperparameters. Finally, we conduct several analyses to
show the effectiveness of our method in solving both the
context imbalance and the class imbalance.

4.1. Experimental Settings

Dataset. In the SGG task, we choose Visual Genome
(VG) [17] dataset which comprises 75k object categories
and 40k predicate categories. We applied the widely ac-
cepted benchmark [45, 33, 32, 47, 28], using the 150 high-
est frequency objects categories and 50 predicate categories.
GQA [15] is another dataset for vision-language tasks with

more than 3.8M relation annotations. Following previous
work [12], we select Top-200 object classes as well as Top-
100 predicate classes by their frequency for the GQA200
benchmark. For both datasets, the training set is set to be
70%, and the testing set is 30%, with 5k images from the
training set for validation [45].

Tasks. Following previous works [45, 33, 12, 6], we
evaluate our model on three widely used SGG tasks: (1)
Predicate Classification (PredCls): given images, object
bounding boxes, and object labels, models are required to
recognize predicate classes. (2) Scene Graph Classification
(SGCls): gives images and object bounding boxes and asks
models to predict object labels and relationship labels be-
tween objects. (3) Scene Graph Detection (SGDet): models
are required to localize objects, recognize objects, and pre-
dict their relationships directly from images.

Metrics. Following previous works [19, 38], we use Re-
call@K (R@K) and mean Recall@K (mR@K) as our met-
rics. Moreover, inspired by previous work [46], we use the
overall metric F@K to jointly evaluate R@K and mR@K,
which is the harmonic average of R@K and mR@K.
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Method PredCls SGCls SGDet
R@50 / 100 mR@50 / 100 F@50 / 100 R@50 / 100 mR@50 / 100 F@50 / 100 R@50 / 100 mR@50 / 100 F@50 / 100

Motifs [45] 65.2 / 67.0 14.8 / 16.1 24.1 / 26.0 38.9 / 39.8 8.3 / 8.8 13.7 / 14.8 31.1 / 35.9 6.7 / 8.6 11.0 / 13.9
+ TDE [32] 46.2 / 51.4 25.5 / 29.1 32.9 / 37.2 27.7 / 29.9 13.1 / 14.9 17.8 / 19.9 16.9 / 20.3 8.2 / 9.8 11.0 / 13.2
+ EIL 64.1 / 65.8 24.5 / 26.5 35.5 / 37.8 39.3 / 40.1 15.4 / 16.1 22.1 / 23.0 32.2 / 36.8 10.6 / 12.6 15.9 / 18.7
VCTree [33] 65.4 / 67.2 16.7 / 18.2 26.6 / 28.6 46.7 / 47.6 11.8 / 12.5 18.8 / 19.8 31.9 / 36.2 7.4 / 8.7 12.0 / 14.0
+ TDE [32] 47.2 / 51.6 25.4 / 28.7 33.0 / 36.9 25.4 / 27.9 12.2 / 14.0 16.5 / 18.6 19.4 / 23.2 9.3 / 11.1 12.6 / 15.1
+ EIL 64.5 / 66.5 22.8 / 24.3 33.7/ 35.6 45.9 / 46.9 17.8 / 18.9 25.6 / 26.9 31.2 / 35.5 10.6 / 12.4 15.9 / 18.3
Transformer [32] 63.6 / 65.7 19.7 / 19.6 27.9 / 30.2 38.1 / 39.2 9.9 / 10.5 15.7 / 16.6 30.0 / 34.3 7.4 / 8.8 11.9 / 14.0
+ CogTree [44] 38.4 / 39.7 28.4 / 31.0 32.7 / 34.8 22.9 / 23.4 15.7 / 16.7 18.6 / 19.5 19.5 / 21.7 11.1 / 12.7 14.1 / 16.0
+ EIL 63.3 / 65.0 27.7 / 29.8 38.6/ 40.9 38.2 / 40.0 15.7 / 16.5 22.3 / 23.2 31.7 / 36.1 12.7 / 14.9 18.1 / 21.0

Table 3. Ablation study of the Environment-Invariant Learning (EIL) module on VG dataset.

Environments SGCls
Normal Balanced Over-Balanced R@50 / 100 mR@50 / 100 F@50 / 100

38.9 / 39.8 8.3 / 8.8 13.7 / 14.8
✓ ✓ 21.5 / 22.6 22.1 / 23.4 21.8 / 23.0

✓ ✓ 39.8 / 40.6 13.7 / 14.8 20.3 / 21.6
✓ ✓ 39.7 / 40.5 13.3 / 14.0 19.9 / 20.8
✓ ✓ ✓ 39.3 / 40.1 15.4 / 16.1 22.1 / 23.0

Table 4. Ablation study of constructing different environments on
VG dataset.

Model SGCls
R@50 / 100 mR@50 / 100 F@50 / 100

w/o-Curriculum Schedule 39.3 / 40.1 15.4 / 16.1 22.1 / 23.0
w/o-Norm Schedule 39.2 / 40.0 14.8 / 15.8 21.5 / 22.7
w/o-Over Schedule 35.6 / 36.4 18.1 / 19.1 24.0 / 25.1

w-Curriculum Schedule 34.5 / 35.4 20.8 / 21.8 25.9 / 27.0

Table 5. Ablation study for curriculum learning strategy on VG
dataset.

Setting PredCls
R@50 / 100 mR@50 / 100 F@50 / 100

w/o IRM term 52.4 / 54.4 35.4 / 37.4 42.2 / 44.3
w/ IRM term 55.3 / 57.4 34.9 / 37.0 42.8 / 45.0

Table 6. Ablation study of the IRM term.

Implementation Details. We employ a pre-trained
Faster-RCNN [29] with ResNeXt-101-FPN [23] provided
by [32] as the object detector. We use Glove [27] to ob-
tain the semantic embedding. In the training process, the
parameters of the detector are fixed to reduce the computa-
tion cost. The hyper-parameter lambda which balances the
different environments is set to 0.9. We optimize all mod-
els with an Adam optimizer with a momentum of 0.9. The
batch size is set to 4, and the total training stage lasts for
120,000 steps with T = 30000 and λmax = 0.9. The ini-
tial learning rate is 0.001, and we adopt the same warm-up
and decayed strategy as [12]. One RTX2080 Ti is used to
conduct all the experiments.

4.2. Compared Methods

We demonstrate the effectiveness of our method by com-
paring the results with current SOTA methods and vali-

λmax
SGCls

R@50 / 100 mR@50 / 100 F@50 / 100
w/o-λmax 39.3 / 40.1 15.4 / 16.1 22.1 / 23.0

0.7 37.1 / 38.0 18.0 / 19.0 24.3 / 25.2
0.8 36.2 / 37.1 19.1 / 20.0 25.0 / 26.0
0.87 34.8 / 35.6 18.9 / 19.7 24.5 / 25.4
0.9 34.5 / 35.4 20.8 / 21.8 25.9 / 27.0
0.92 32.9 / 33.8 21.1 / 22.1 25.7 / 26.7
0.95 33.3 / 34.2 20.0 / 21.1 25.0 / 26.1
0.99 27.6 / 28.7 20.9 / 21.9 23.8 / 24.8

Table 7. Parameter analysis towards λmax on VG dataset.

date its generalizability with different baseline models. On
the one hand, to prove its performance, we select some
dedicated designed SGG models with state-of-the-art per-
formance, including re-produced IMP [35], GPS-Net [25],
DT2-ACBS [10], SHA-GCL [12], and BGNN [19]. On the
other hand, to demonstrate the generalizability of our EICR,
we compare our method with the model-agnostic baselines
which can be applied in a plug-and-play fashion, including
TDE [32], CogTree [44], PCPL [38], EBM [31], DLFE [7],
GCL [12], NICE [18] and IETrans [46].

4.3. Main Results

We report the results of the proposed EICR framework
and baselines on the VG and GQA datasets in Table 1 and
Table 2. From the results of various tasks and baselines, we
have several observations as follows:

On the one hand, our EICR is adaptive to different base-
lines. We adapt our method to 3 popular baselines for SGG,
including Motifs [45], VCTree [33], and Transformer [32].
These baselines include various architectures such as con-
ventional LSTM (Motifs), tree structure (VCTree), and self-
attention layers (Transformer). Various training algorithms
are also contained such as supervised training and reinforce-
ment learning (VCTree). Specifically, our method can boost
all models’ mR@50/100 metric and the overall F@50/100
metric. With our method, the results for VCTree are im-
proved over 14% on mR@50/100 and improved over 12%
across all 3 tasks on the metric F@50/100. Moreover, com-
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Figure 4. Visualization scene graphs between Motifs and Motifs + EICR with regard to R@20 on PredCls setting. Purple edges represent
the reasonable relationships predicted by Motifs. Red edges represent the refined reasonable relationships which are predicted by Motifs +
EICR but failed to be detected by Motifs.

Figure 5. R@100 of 50 predicate classes on SGCls on the VG dataset.

pared with other model-agnostic methods, our method out-
performs all of them on the F@50/100 and gains compet-
itive results on mR@50/100. By applying our methods to
VCTree and Transformer on SGCls and SGDet, our model
can achieve the highest R@50/100 and mR@50/100 among
all model-agnostic baselines.

On the other hand, compared with strong specific base-
lines, our method can also achieve competitive perfor-
mance on mR@50/100 and the best overall performance
on F@50/100. Our method with VCTree is close to the
SOTA results in DT2-ACBS on SGCls and SGDet tasks on
mR@50/100 while outperforming much better than them
on R@50/100. For an overall comparison of the F@50/100
metrics, our method with VCTree can achieve the best
F@50/100 on PredCls and SGCls and our method with Mo-
tif achieves the best F@50/100 in the SGDet task.

4.4. Ablation Studies

In this part, we analyze the influence of the environment-
invariant learning, curriculum learning strategy, and corre-
sponding parameter λmax.

Influence of Environment-Invariant Learning (EIL).
Table 3 and Table 4 present the results of all the ablation
models. As shown in Table 3, only using environment-
invariant learning is hard to boost the mR@50/100 and
F@50/100 performance as much as EICR. The reason is
that the training procedure is still led by the normal environ-
ments and overfitting the corresponding general patterns.

However, though the performance on the mR@50/100 and
F@50/100 are not boosted so much, the EIL retains the
performance on the R@50/100 compared with the origi-
nal baselines (Motifs, VCTree, Transformer). We can con-
clude that by introducing EIL to cope with the context im-
balance problem, the model learns the context-unbiased re-
lation representation and make a gain on the mR@50/100
metric while retaining the general patterns without the de-
crease on the R@50/100 metric. As shown in Table 4,
different settings of learning environments all achieve im-
provements on mR@50/100 and F@50/100 compared with
Motifs. However, its performance is poor compared with
EIL, which shows the importance of combing multiple en-
vironments by EIL. Integration of multiple learning envi-
ronments can alleviate the context imbalance and improve
the performance on SGG benchmarks.

Influence of Curriculum Learning Strategy. As
aforementioned, we propose the class-balanced curriculum
learning strategy to alleviate the class imbalance. In order
to prove the effectiveness of the above components, we test
various ablation models on the VG dataset as follows:

(1) w/o-Curriculum Schedule: To evaluate the effective-
ness of the curriculum schedule, we do not use curriculum
schedule, i.e., Rhybird = Rnorm +Rover +Rbalanced.

(2) w/o-Norm Schedule: To evaluate the effectiveness
of the changing weight of the normal environment, we re-
move the curriculum schedule for the normal environment
risk and only employ the curriculum schedule for the over-
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Figure 6. mR@100 of various subject categories inside the predi-
cate classes on the VG dataset.

balanced environment, i.e., Rhybird = Rnorm + (1 − λ) ·
Rover +Rbalanced.

(3) w/o-Over Schedule: To evaluate the effectiveness of
the curriculum schedule for the over-balanced environment,
we remove the curriculum schedule for the over-balanced
environment, i.e., Rhybird = λ·Rnorm+Rover+Rbalanced.

Table 5 presents the results of all the ablation models.
First, the curriculum schedule can achieve a huge improve-
ment on the mR@50/100 and F@50/100 metrics. Com-
pared with w/o-curriculum schedule, w-curriculum sched-
ule boosts the mR@50/100 metric by over 5 points and im-
proves by nearly 4 points on the F@50/100. Second, we
witness an obvious performance decay when removing the
curriculum schedule either for the normal environment or
the over-balanced environment. It verifies that constructing
curriculum learning schedules for multiple environments
would effectively alleviate the class imbalance in the SGG
dataset, thus leading to class-unbiased relation predictions.

Influence of IRM regularization. We take Motifs [45]
as the baseline model. As shown in Table 3, we can see
that adding the IRM regularization term improves the per-
formance of R@50/100 and F@50/100, demonstrating that
the IRM regularization enhances the representation ability
of the predicate predictor.

Influence of λmax. As shown in Table 7, the
mR@50/100 metric significantly increases with the in-
crease of the λmax while the R@50/100 metric decreases
at the same time. Since the over-balanced environment is
highly related to the samples from the tail predicates, the
increase of the λmax can somewhat be considered as in-

Method PredCls
R@50 / 100 mR@50 / 100 F@50 / 100

BBN [50] 56.0 / 57.7 19.4 / 21.3 28.8 / 31.1
Reweight [8] 54.7 / 56.5 17.3 / 18.6 26.3 / 28.0

EICR 55.3 / 57.4 34.9 / 37.0 42.8 / 45.0

Table 8. Related class-balancing strategies on VG dataset.

Model
PredCls SGCls SGDet

mT@50 / 100 mT@50 / 100 mT@50 / 100
Motifs 7.9 / 8.8 3.1 / 3.4 2.0 / 2.4
+ EICR 17.8 / 19.2 8.3 / 8.9 5.8 / 6.6
VCTree 8.4 / 9.3 4.3 / 4.8 1.7 / 2.1
+ EICR 18.3 / 19.7 11.6 / 12.4 5.8 / 6.7

Transformer 9.6 / 10.6 3.3 / 3.7 2.4 / 2.9
+ EICR 18.8 / 20.3 8.9 / 9.4 6.7 / 7.6

Table 9. Performance of balancing the contexts of our EICR
method on VG dataset.

creasing the model’s attention to the tail samples. Thus,
the phenomenon indicates that the conventional structures
of the SGG model (Motifs, VCTree, Transformer) may eas-
ily classify tail classes as negative samples and lead to low
results on mR@50/100, while this part of the data is of vi-
tal significance for improving the model’s ability to make
class-unbiased predictions.

4.5. Qualitative Studies

To get an intuitive perception of the superior perfor-
mance on the SGG tasks of our proposed method, we make
quantitative studies.

Visualization. To show the potential of our method for
real-world application, we visualize several PredCls exam-
ples generated from the biased Motifs and the unbiased Mo-
tifs + EICR. As shown in Fig. 4, we can observe that our
method can help to generate more various relation pred-
icates while keeping faithful to the image content. The
model prefers to provide more specific relationship predic-
tions (e.g., ‘covering’ and ‘in front of’) rather than com-
mon and trivial ones (e.g., ‘at’ and ‘along’). Moreover,
our method could also help capture potential reasonable re-
lationships. For example, in Fig. 4, our method captures
‘logo-on-bag’ in the left example and ‘track-in-train’ in the
right example. In a nutshell, the proposed method could
enhance the unbiased scene graph generation and generate
more informative relation triplets to support various down-
stream tasks.

Detailed Results. In Fig. 5 (a), we show the detailed re-
sults of comparing Motifs and Motifs + EICR with respect
to R@100 of all the predicate classes on the SGCls task.
We can observe that by applying our methods to the Motifs
baseline, though there exists an acceptable decay on the mi-
nority of several head predicate classes, the performance on
most of the predicate classes is obviously improved. More-
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Figure 7. mR@100 of various triplets with different contexts in-
side all predicate classes of Motifs and Motifs + EICR on VG.

over, we also compare Motifs + EIL (i.e., w/o curriculum
schedule) and Motifs + EICR on the detailed performance
towards every predicate class on VG. As shown in Fig. 5
(b), the curriculum schedule effectively prevents the model
from overfitting the general pattern on the head predicate
classes and achieves a better performance towards the tail
predicate predictions. It demonstrates that the curriculum
schedule could achieve a reasonable trade-off between the
environments, and effectively alleviate the class imbalance
of the predicates to get a class-unbiased relation classifier.

4.6. Further Analysis

Verification for Alleviating the Context Imbalance.
To make a further analysis, we verify the effectiveness of
our EICR for alleviating the context imbalance between
the various subject-object pairs. Specifically, we calculate
the mR@100 of all the different subject categories inside
the same predicate class. i.e., the mR@100 for the sub-
ject ‘man’ is calculated by the mean R@100 of the rela-
tion triplets with the subject ‘man’ such as ‘man-wearing-
shirt’ and ‘man-wearing-boots’. Two examples on the VG
dataset are shown in Fig. 6. We can see that compared with
the Motifs, the EICR help to make a more balanced dis-
tribution for the various subject-object pairs thus gaining
context-unbiased results.

Discussions with Relevant Long-Tailed Approaches.
To demonstrate the effectiveness of our EICR strategy in al-
leviating the class imbalance, we compare our method with
two other relevant typical class-balancing strategies on the
Motifs baseline, i.e., the resampling strategy BBN [50] and
the reweighting strategy [8] following SHA [12]. As shown
in Table 8, we can see that our method achieves the best
performance. We can see that compared with the Motifs,
our EICR model could help to make a more balanced distri-
bution for the various predicate classes thus gaining better
results on the various SGG datasets.

Verification for Balancing Contexts. To provide a more
detailed analysis of our method’s effectiveness in alleviating
the context imbalance, we report the metric mT@50/100
on the VG dataset. mT@50/100 denotes the average of
the mean Recall for various triplets (i.e., the same predi-

T
SGCls

R@50 / 100 mR@50 / 100 F@50 / 100
10000 34.3 / 35.1 19.9 / 20.9 25.2 / 26.2
20000 34.3 / 35.1 20.8 / 21.6 25.9 / 26.8
30000 34.5 / 35.4 20.8 / 21.8 25.9 / 27.0
40000 34.9 / 35.8 19.0 / 19.9 24.6 / 25.6

Table 10. Parameter analysis towards T on VG dataset.

cate with different subject-object context) inside each pred-
icate class. As shown in Table 9, our EICR can be applied
in a plug-and-play fashion for solving the context imbal-
ance. By adding our EICR to the three baselines, the results
are significantly improved across all 3 tasks on the metric
mT@50/100. Moreover, in Fig. 7, we show the detailed
results of comparing Motifs and Motifs + EICR with re-
spect to mR@100 of the triplets inside all predicate classes
on the PredCls task. With our method, the performance of
the triplets inside most of the predicate classes is obviously
improved. It demonstrates that our method could achieve
a reasonable trade-off for the existing imbalance contexts
between the predicate classes, and effectively alleviate the
context imbalance.

Influence of T . To provide a more detailed analysis
of the influence of the curriculum learning module, we re-
port the performance with different T . As shown in Ta-
ble 10, with the increase of the intermediate training it-
erations T , the mR@50/100 metric and the overall met-
ric F@50/100 first increases and then decreases. The phe-
nomenon shows that blindly focusing on the tail predicates
does not necessarily mean higher performance on the vari-
ous SGG datasets.

5. Conclusions
In this paper, we design a method named EICR for fine-

grained scene graph generation. We were motivated by the
observation that there not only exists the class imbalance
between predicate classes, but also the context imbalance
for various subject-object pairs. The proposed EICR con-
sists of two debias modules to learn a robust relation classi-
fier unbiased to the various class and contexts. Comprehen-
sive experiments show the effectiveness of our method. In
the future, we will further analyze more effective methods
to alleviate the context imbalance and explore our theory
in other visual recognition problems (e.g., image classifica-
tion) with similar challenges.
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