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Abstract

Our MATE is the first Test-Time-Training (TTT) method
designed for 3D data, which makes deep networks trained
for point cloud classification robust to distribution shifts oc-
curring in test data. Like existing TTT methods from the 2D
image domain, MATE also leverages test data for adaptation.
Its test-time objective is that of a Masked Autoencoder: a
large portion of each test point cloud is removed before it is
fed to the network, tasked with reconstructing the full point
cloud. Once the network is updated, it is used to classify
the point cloud. We test MATE on several 3D object clas-
sification datasets and show that it significantly improves
robustness of deep networks to several types of corruptions
commonly occurring in 3D point clouds. We show that MATE
is very efficient in terms of the fraction of points it needs for
the adaptation. It can effectively adapt given as few as 5% of
tokens of each test sample, making it extremely lightweight.
Our experiments show that MATE also achieves competitive
performance by adapting sparsely on the test data, which
further reduces its computational overhead, making it ideal
for real-time applications.

1. Introduction
Recent deep neural networks show impressive perfor-

mance in classifying 3D point clouds. However, their suc-
cess is warranted only if the test data originates from the
same distribution as training data. In real-world scenarios,
this assumption is often violated. A LiDAR point cloud can
be corrupted, for example, due to sensor malfunction or en-
vironmental factors. It has been shown in [19, 22] that, even
seemingly insignificant perturbations, like introduction of
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Figure 1: Overview of our Test-Time Training methodol-
ogy. We adapt the encoder to a single out-of-distribution
(OOD) test sample online by updating its weights using a
self-supervised reconstruction task. We then use the updated
weights to make a prediction on the test sample. To enable
this approach, the encoder, decoder, and the classifier are
co-trained in the classification and reconstruction tasks [17],
which is not shown in the figure.

jitter or minute amount of noise to the point cloud, can signif-
icantly decrease the performance of several state-of-the-art
3D object recognition architectures. This lack of robustness
can limit the utility of 3D recognition in numerous appli-
cations, including in construction industry, geo-surveying,
manufacturing and autonomous driving. Distribution shifts
that can affect 3D data are diverse in nature and it might not
be feasible to train the network for all the shifts which can
possibly be observed in point clouds at test-time. Thus, there
is a need to adapt to these shifts online at test-time, in an
unsupervised manner.

Test-Time Training (TTT) leverages unlabeled test data
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to adapt the classifier to the change in data distributions at
test-time in an online manner. Several TTT approaches have
been recently proposed for the 2D image domain. The main
techniques include regularizing the classifier on test data
with objective functions defined on the entropy of its predic-
tions [12, 26, 30], updating the statistics of the batch normal-
ization layers to match the distribution of the test data [16],
and training the network on test data with self-supervised
tasks [14, 23]. However, existing 2D TTT methods fail when
naively applied to the 3D point clouds, stressing upon the
need for 3D-specific TTT methodologies, which are cur-
rently non-existent.

In this paper, we address the problem of test-time train-
ing for 3D point cloud classification. We propose a 3D-
specific method, MATE, which adopts the self-supervised
paradigm [14, 23], in which a deep network is adapted by
solving a self-supervised task for the OOD test data. Our
choice is dictated by the availability of a self-supervised task
that perfectly matches our goal of adapting 3D networks.
Masked autoencoder proved very effective in pre-training
3D object recognition networks [17], and adapting deep net-
works to corruptions of 2D images [6]. It removes a large
portion of the point cloud, and tasks the network with re-
constructing the entire point cloud given only the part that
has not been removed. We use this procedure to update the
network on every test sample that is used for the adaptation.
An overview is provided in Figure 1.

Our main contributions are extending TTT to the 3D point
cloud domain and showing that simply adopting TTT tech-
niques widely used in the 2D image domain is not a viable
solution for 3D, stressing out the need for 3D-specific ap-
proaches. To this end, we demonstrate how well-suited and
powerful masked autoencoding is to address online test-time
training for 3D data. We conduct extensive evaluations on
three point cloud recognition datasets. Apart from achieving
strong performance gains for online adaptation, we discover
and highlight several useful properties for TTT with masked
autoencoders. For example, our MATE achieves significant
performance gains even when masking 95% of tokens from
the point clouds. This seemingly nuance can have important
benefits: At test-time, the encoder only needs to process the
remaining 5% of the visible tokens to adapt the network, rad-
ically limiting the computational overhead of the adaptation.
The overhead from TTT can be further reduced by adapting
sparsely to test data, as MATE can achieve significant per-
formance gains over un-adapted networks by only adapting
on every 100-th sample of the OOD test data.

2. Related works

Our work is related to Unsupervised Domain Adaptation
(UDA), Self-Supervised Learning (SSL) and more closely
to methods which learn on test instances.

Unsupervised Domain Adaptation. UDA methods aim
to bridge the domain gap between the source and target
domains without requiring access to labels from the target
domain. UDA has gained considerable traction in the 3D
vision community. PointDAN [18] aligns local and global
point cloud features from the source and target domain in
an end-to-end manner. Liang et al. [13] propose to predict
masked local structures by estimating cardinality, position
and normals for the point cloud. Shen et al. [20] first propose
to encode the underlying geometry of point clouds from the
target data with the help of implicit functions and resort to
pseudo-labeling in the second step. For 3D object detection,
adversarial augmentation is proposed by 3D-VField [20] for
generalization to different domains. MLC-Net [15] proposes
to use a student-teacher network along with pseudo-labeling.
Wang et al. [27] propose to bridge the domain gap for 3D
object detection by using priors, such as bounding box sizes
from the target domain. Although unsupervised domain
adaptation approaches tackle an important problem, they
assume knowledge about the test distribution and try to miti-
gate the distribution mismatch by an extensive training phase.
On the other hand, test-time training requires no such pri-
ors and offers a setting which is more closer to real world
scenarios, where on-the-fly adaptation is required.

Self-Supervised Learning. Self-Supervised representa-
tion learning thrives on the idea of extracting supervision
from the data itself. A popular SSL training objective is
to bring the representations from the two randomly aug-
mented views from the same sample closer and push apart
the views from the other samples in the batch [3, 4, 10, 29].
Another approach for SSL is to extract the supervision from
the reconstruction of the input data. Self-supervised repre-
sentation learning by using Autoencoders [25] has been a
long-standing research topic in computer vision. Recently,
He et al. [8] proposed Masked Autoencoders (MAE) for
self-supervised representation learning in the image domain.
MAE uses an asymmetric encoder-decoder structure based
on the Vision Transformer [5]. High proportion of the image
tokens (70− 75%) are masked and the SSL objective is to
reconstruct the masked tokens. On a similar note, Pang et
al. [17] propose Point-MAE, an MAE framework for self-
supervised representation learning in 3D point cloud domain
and show that due to the sparse nature of point clouds, a
more severe masking ratio can also be employed. In our
work we also use reconstruction of point clouds as an auxil-
iary self-supervised task for test-time training. To this end,
we use the PointMAE framework and at test-time get our
supervisory signal by reconstructing highly masked regions
from the OOD input point cloud.

Test-Time Training. TTT methods can be divided in to
two distinct groups. The first group of methods add post-hoc
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Figure 2: Overview of our 3D Test-Time Training methodology. We build on top of PointMAE. The input point cloud is first
tokenized and then randomly masked. For our setup, we mask 90% of the point cloud. For joint training the visible tokens
from the training data are fed to the encoder to get the latent embeddings from the visible tokens. These embeddings are
fed to the classification head for the classification loss and concatenated with the masked tokens and fed to the decoder for
reconstruction to obtain the reconstruction loss. Both losses are optimized jointly. For adaptation to an out-of-distribution
test sample at test-time, we only use the MAE reconstruction task. Finally, after adapting the encoder on this single sample,
evaluation is performed by using the updated encoder weights.

regularization for adaptation to OOD test data. Boudiaf et
al. [1] propose a gradient free TTT approach, which pro-
motes consistency of output predictions coupled with Lapla-
cian regularization. TENT [26], SHOT [12] and MEMO [30]
rely on entropy minimization from the output softmax distri-
bution. T3A [11] casts TTT as a prototype learning problem,
while DUA [16] employs online statistical correction in the
batch normalization layers for TTT. We test several of these
approaches by porting them for TTT in the 3D point cloud
recognition task but none of these approaches prove to be a
competitive baseline for our MATE (Section. 4.4), further
highlighting the need for 3D-specific methods.

The other group of methods propose to use auxiliary
self-supervised tasks for adaptation to distribution shifts at
test-time and are more closely linked to our MATE. Sun et
al. [23] employ rotation prediction [7] as an auxiliary task for
TTT. TTT++ [14] uses contrastive self-supervised learning
(SimCLR [3]) as an auxiliary objective. TTT-MAE [6] sub-
stitutes the self-supervised objective with Masked Autoen-
coder [8] reconstruction task for TTT in the image domain.
A general insight from these works implies that the choice
of auxiliary self-supervised task is of utmost importance.
MATE also employs the task of masked auto-encoding to
drive the adaptation, but it reconstructs point clouds instead
of images. This forces the network to encode the geome-
try of the point cloud and model long-range dependencies
between local shapes. Furthermore, our experiments show

that, for 3D point clouds, geometric reconstruction is a better
auxiliary task than rotation prediction, which is employed
by TTT [23].

3. MATE
We first describe our problem setting and model architec-

ture in detail, then we describe our training setup and finally
provide details about our test-time training methodology.

3.1. Problem setting

We follow the conventional test-time training setting, pro-
posed by TTT [23], where at test-time we first adapt on a
single sample and then test it. For adaptation we use the
MAE reconstruction task. To process the point clouds, we
use the PointMAE [17]. Given a point cloud X={pi}Ni=1 of
N points pi=(x, y, z)T , the points are grouped into tokens,
that is, possibly overlapping subsets of nearby points, using
the farthest point sampling [17]. A proportion of tokens
equal to the mask ratio m is then randomly masked, yielding
the masked tokens, that we denote by Xm, while X v rep-
resent the remaining visible tokens. During joint training,
we assume access to the training data S = {(X ,Y)}, where
each point cloud X is accompanied by its ground truth la-
bel Y . During test-time training, we do not have access to
the entire test dataset but instead adapt to each single sample
as it is encountered. After adapting the network parameters
on each sample, the updated weights are used for predicting
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the class label. A detailed overview of different stages in
our pipeline is shown in Figure 2, while the pseudocode is
provided in the supplementary material.

3.2. Architecture

We adopt the PointMAE architecture [17], proven to work
well in unsupervised pre-training for 3D object classifica-
tion. It consists of an encoder E, a decoder D, a prediction
head P , and a classifier head C. The encoder E consists
of 12 standard transformer blocks and receives only the un-
masked point patches as input. The decoder D is similar
to E, however, it is lightweight (4 blocks), which makes
the encoder-decoder structure asymmetrical. The masked
point patches and the embeddings from the unmasked point
patches are fed to the decoder after concatenation. The de-
coder feeds the embeddings to the prediction head P , which
is a simple linear fully connected layer and reconstructs the
points in coordinate space. The classifier head C is a projec-
tion from the dimensions of the encoder output to the number
of classes in the respective dataset. We use 3 fully connected
layers with ReLU non-linearity, batch normalization and
dropout as our classification head.

3.3. Joint Training

Previous methods that employ the masked autoencoder
for images or point clouds [6, 17] pre-train the encoder and
decoder in a self-supervised manner and subsequently train
the classifier on top of it. In contrast, to make the encoder
learn embeddings that at the same time describe the input
geometry and are well suited for the downstream task, we
train the two heads jointly. Given all the parameters of the
network {θE , θD, θP , θC}, the joint training is posed as

min
θE , θD, θP , θC

E(X ,Y)∈S
[
Lc(X ,Y; θE , θC)

+ λ · Ls(X ; θE , θD, θP )
]
, (1)

where the expectation is taken over the training set S, and
the hyper-parameter λ balances the two tasks. We set λ = 1
for all experiments. Here, Lc is a cross entropy (CE) loss to
learn the main classification task

Lc(X ,Y; θE , θC) = CE(C ◦ E(X v),Y), (2)

where X v are the visible tokens and Ls is the self-supervised
loss. Following [17], we use

Ls(X ; θE , θD, θP ) = CD(P ◦D ◦ E(X v),X ), (3)

which is the Chamfer distance CD between the recon-
structed tokens, and the training point sets X .

3.4. Test-Time Training

Given the parameters {θE , θD, θP , θC}, trained jointly
for the main classification task and the self-supervised re-
construction task on the training data. Our goal at test-time

is to adapt to the OOD test data in an unsupervised manner,
to achieve generalization. For this purpose we use the self-
supervised MAE reconstruction task to adapt the network
parameters to the OOD test sample.

For adaptation at test-time, we are granted access to only a
single out-of-distribution point-cloud X̃ , without any ground
truth label. The point cloud is tokenized and masked, and
processed by the encoder E which yields the encoding vec-
tor. Finally, the patch encodings and the masked patches are
concatenated and fed to the decoder D and ultimately to the
prediction head P to obtain the reconstructed point cloud.
The reconstruction loss is again an l2 Chamfer distance be-
tween the reconstructed masked tokens and the correspond-
ing ground truth tokens from the original out-of-distribution
test sample. Our objective at test-time is to update the param-
eters of the encoder θE , decoder θD and the prediction head
θP to generalize to the OOD test sample. More formally, for
test-time training we minimize

LTTT = min
θE ,θD,θP

Ls(X̃ ; θE , θD, θP ). (4)

Although for the downstream task of object classification,
we only require the updated encoder, through experiments
we find that updating the decoder and the prediction head
does not affect the final classification performance.

3.5. Online Adaptation Variants

After adapting the encoder weights by the reconstruction
loss during test-time training, prediction scores for the OOD
sample are obtained by using the classifier head C, from the
joint training phase. Following TTT [23], we provide two
variants of our MATE, which are described as follows:

MATE-Standard only assumes access to a single point
cloud sample at test-time and the goal is to iteratively adjust
the weights on single samples in order to make the right
prediction. For this purpose, we perform 20 gradient steps
on the encoder parameters θE to minimize the objective in
Eq. (4), computed for one test sample. As the next sample is
received, we reinitialize the weights for all the parameters
{θE , θD, θP }, and repeat the same process again.

MATE-Online assumes that point clouds are received in a
stream. For this version, we accumulate the model updates
after adaptation on each sample. We only calculate (and
backpropagate) LTTT from Eq. (4), once for each sample.

3.6. Augmentations

During joint-training we only train the network with point
cloud scale and translation augmentations, as originally used
by the authors of PointMAE. For test-time training, we do
not use any augmentation, instead we construct a batch (fol-
lowing [23]) from the single point cloud sample and for
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reconstruction, we randomly mask 90% of the tokens. Ran-
dom masking is essential for MAE and also provides us with
a natural augmentation. We further find that we can increase
the masking ratio up to 95% and still get an impressive per-
formance improvement. This is in contrast to images where
a masking ratio of up to 70 − 75% is employed. Higher
masking ratios help in efficient test-time training, since only
the unmasked tokens are processed by the encoder, which
carries the majority of the computation effort because it has
a larger structure than the decoder.

4. Experimental Evaluation
We provide results for both the Standard and the Online

evaluation variants. Here, we first describe the datasets we
use for evaluation, second we provide our implementation
details and later present our results.

4.1. Datasets

We test MATE on the task of object classification for 3D
point clouds. To this end, we use 3 popular object classifica-
tion datasets.

ModelNet-40C. ModelNet-40C [22] is a benchmark for
evaluating robustness of point cloud classification architec-
tures. In this benchmark, 15 common types of corruptions
are induced on the original test set of ModelNet-40 [28].
These corruptions are divided into 3 parent categories com-
prising transformation, noise and density. Their goal is to
mimic distribution shifts which occur in real-world, e.g.,
common noise patterns on a LiDAR scan due to fault in the
sensors capturing the data.

ShapeNet-C. ShapeNetCore-v2 [2] is a large-scale point
cloud classification dataset consisting of 51127 shapes from
55 categories. We divide this dataset into three splits,
train (35789, 70%), validation (5113, 10%) and test (10225,
20%). We provoke 15 different corruptions in the test set
of ShapeNet, similar to ModelNet-40C, by using the open
source implementation provided by [22]. We refer to this
dataset as ShapeNet-C.

ScanObjectNN-C. ScanObjectNN [24] is a point cloud
classification dataset which is collected in the real-world. It
consists of 15 categories with 2309 samples in the train set
and 581 samples in the test set. We again use the open source
code provided by [22] to cause 15 different corruptions in
the test set of ScanObjectNN for our evaluations, which we
refer to as ScanObjectNN-C.

4.2. Implementation Details

We jointly train a network for supervised classification
and self-supervised reconstruction tasks, as described in Sec-

tion 3.3. For joint training we only use 10% of the visible
tokens for the self-supervised reconstruction and the clas-
sification task. However, to obtain the final classification
scores at test-time, we always feed 100% of the tokens to the
PointMAE backbone. For ModelNet-40 and ShapeNetCore
experiments, we train the networks from scratch for 300
epochs with a learning rate of 0.001 and Cosine scheduler.
ScanObjectNN is a small-scale dataset, thus, we finetune the
PointMAE network pre-trained on the large-scale ShapeNet-
55 [2] dataset with a learning rate of 0.0005 and a Cosine
scheduler for only 100 epochs, to avoid overfitting. All these
models (including the vanilla PointMAE) use only the point
cloud scaling and translation as augmentations1. For a fair
comparison, the architectural details for all baselines and our
method are kept constant.

During test-time training we update the encoder, decoder
and the prediction head only. The classification head re-
mains frozen. We use a learning rate of 5e−5 for TTT on
ModelNet-40C, a learning rate of 1e−4 for ShapeNet-C and
ScanObjectNN-C. We use AdamW optimizer for both, pre-
training and the test-time training. To calculate the test-time
training loss, we construct a batch of 48 from the single
corrupted point cloud at test-time and randomly mask 90%
of each sample in the batch. To encourage reproducibility,
our entire codebase and pre-trained models are available at
this repository: https://github.com/jmiemirza/MATE.

4.3. Baselines

We compare our MATE to several other TTT approaches
proposed for images. In our work we assume access to only
a single sample for adaptation at test-time, thus, for a fair
comparison with our MATE, we also test other baselines in
the single sample adaptation protocol. However, many 2D
baselines fail in the single sample protocol, thus, we also
provide results for larger batch sizes. A brief description of
all the baselines is as follows.

- Source Only refers to the PointMAE backbone trained
in a supervised manner on the classification task only. For
testing on the OOD data, we do not mask the tokens, instead
feed the entire point cloud.

- Joint Training [9] results are obtained by training the
network jointly on the classification and MAE reconstruction
task and testing it on the target data (e.g. ModelNet-40C)
without adaptation.

- SHOT [12] proposes to minimize the expected entropy
of predictions calculated from the output probability distri-
bution from the network.

- T3A [11] relies on learning class specific prototypes to
replace the classifier which is learned on the training set.

- TENT [26] also minimizes the entropy of predictions

1We avoid other augmentations, e.g. jitter or rotation, because they
might correlate with the corruptions in the ModelNet-C benchmark and can
provide us with an unfair advantage during TTT.
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corruptions: uni gauss backg impul upsam rbf rbf-inv den-dec dens-inc shear rot cut distort oclsion lidar Mean

Source-Only 66.6 59.2 7.2 31.7 74.6 67.7 69.7 59.3 75.1 74.4 38.1 53.7 70.0 38.6 23.4 53.9
Joint-Training 62.4 57.0 32.0 58.8 72.1 61.4 64.2 75.1 80.8 67.6 31.3 70.4 64.8 36.2 29.1 57.6
DUA 65.0 58.5 14.7 48.5 68.8 62.8 63.2 62.1 66.2 68.8 46.2 53.8 64.7 41.2 36.5 54.7
TTT-Rot 61.3 58.3 34.5 48.9 66.7 63.6 63.9 59.8 68.6 55.2 27.3 54.6 64.0 40.0 29.1 53.0
SHOT 29.6 28.2 9.8 25.4 32.7 30.3 30.1 30.9 31.2 32.1 22.8 27.3 29.4 20.8 18.6 26.6
T3A 64.1 62.3 33.4 65.0 75.4 63.2 66.7 57.4 63.0 72.7 32.8 54.4 67.7 39.1 18.3 55.7
TENT 29.2 28.7 10.1 25.1 33.1 30.3 29.1 30.4 31.5 31.8 22.7 27.0 28.6 20.7 19.0 26.5

MATE-Standard 75.0 71.1 27.5 67.5 78.7 69.5 72.0 79.1 84.5 75.4 44.4 73.6 72.9 39.7 34.2 64.3
MATE-Online 82.9 80.6 32.4 74.0 85.7 78.3 80.2 78.1 86.5 79.3 56.6 77.9 77.1 49.7 50.0 71.3

Table 1: Top-1 Classification Accuracy (%) for all distribution shifts in the ModelNet-40C dataset. All results are for the
PointMAE backbone trained on clean train set and adapted to the OOD test set with a batch-size of 1 (copied 48 times through
random masking). Source-Only denotes its performance on the corrupted test data without any adaptation. Highest Accuracy
is in bold, while second best is underlined.

Method Source TENT SHOT T3A MATE-O
Accuracy (%) 53.9 65.6 63.8 55.9 74.5(BS - 128)

Table 2: Mean Top-1 Classification Accuracy (%) for
ModelNet-40C by using a larger batch size (BS) of 128
for baselines and MATE-Online.

from the output of the classifier.
- DUA [16] updates the batch normalization statistics to

adapt to OOD test images at test-time.
- TTT-Rot [23] with self-supervised rotation prediction

task proposes to adapt to test data at test-time by predicting
the rotation of images. Following the original paper, we train
a network for classification and rotation prediction tasks.

4.4. Results

ModelNet-40C: In Table 1 we provide the results for all
the distribution shifts in the ModelNet-40C dataset. From
the table, we see that our MATE outperforms other baselines
comfortably. Furthermore, even our MATE-Standard per-
forms better than the baselines with a considerable margin,
while also performing favorably on individual distribution
shifts. The test-time training approaches which rely on post-
hoc regularization, e.g. SHOT [12] and TENT [26] perform
poorly, while T3A [11] is only marginally above Source-
Only baseline. This shows that the approaches designed
for image data cannot be trivially transferred to the 3D do-
main. Moreover, all these approaches require larger batch
sizes to work in the 2D domain. These approaches cannot
adapt on a single test sample at test-time. For example, the
entropy based approaches [12, 26], can have a trivial solu-
tion while optimizing the entropy of a single test sample.
For larger batch sizes, we see that SHOT, TENT and T3A
show some improvement in results (Table 2) but still MATE

outperforms them comfortably. However, we reason that in
online real-time applications we cannot access a batch of
test data for adaptation, thus it is necessary that the TTT
approaches work well even while having access to a single
sample for adaptation at test-time.

From the results we also see that the mean performance
over all corruptions of TTT-Rot falls below Source-Only,
even though it is originally designed for the single sample
adaptation scenario in the 2D domain. This could be an
indication that the rotation prediction task is not well suited
for test-time adaptation for 3D data. However, for Back-
ground corruption TTT-Rot [23] fares well. This might be
because Background corruption introduces artifacts in the
background and TTT-Rot uses the entire point cloud for
test-time adaptation, so it can adapt to this corruption better.
On the other hand, we only adapt with 10% of the visible
tokens and might not be able to capture these artifacts in-
troduced in the background. Furthermore, we analyze the
reconstructions from the background corruption and find that
the reconstruction results are worse as compared to other cor-
ruptions. We show these visualizations in the supplemental.
These reconstruction results suggest that the reconstruction
task is co-related with the classification task. Hence, better
reconstruction accounts for better adaptation performance.
We also see a similar trend for the TTT loss and classifi-
cation accuracy at each adaptation step for corruptions in
the ModelNet-40C. These results are also delegated to the
supplementary material.

ShapeNet-C: In Table 3 we provide Top-1 Accuracy (%)
for object classification on the ShapeNet-C dataset. We again
see that both evaluation variants of our MATE show impres-
sive results on the large-scale ShapeNet dataset. MATE-
Online has a huge performance gain over other baselines,
which is expected, since for these evaluations we accumu-
late the model updates. Similarly, MATE-Standard also
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corruptions: uni gauss backg impul upsam rbf rbf-inv den-dec dens-inc shear rot cut distort oclsion lidar Mean

Source-Only 69.2 62.8 10.3 56.2 70.1 70.5 71.9 85.5 86.2 73.9 41.3 84.4 69.9 7.9 3.9 57.6
Joint-Training 72.5 66.4 15.0 60.6 72.8 72.6 73.4 85.2 85.8 74.1 42.8 84.3 71.7 8.4 4.3 59.3
DUA 76.1 70.1 14.3 60.9 76.2 71.6 72.9 80.0 83.8 77.1 57.5 75.0 72.1 11.9 12.1 60.8
TTT-Rot 74.6 72.4 23.1 59.9 74.9 73.8 75.0 81.4 82.0 69.2 49.1 79.9 72.7 14.0 12.0 60.9
SHOT 44.8 42.5 12.1 37.6 45.0 43.7 44.2 48.4 49.4 45.0 32.6 46.3 39.1 6.2 5.9 36.2
T3A 70.0 60.5 6.5 40.7 67.8 67.2 68.5 79.5 79.9 72.7 42.9 79.1 66.8 7.7 5.6 54.4
TENT 44.5 42.9 12.4 38.0 44.6 43.3 44.3 48.7 49.4 45.7 34.8 48.6 43.0 10.0 10.9 37.4

MATE-Standard 77.8 74.7 4.3 66.2 78.6 76.3 75.3 86.1 86.6 79.2 56.1 84.1 76.1 12.3 13.1 63.1
MATE-Online 81.5 78.6 40.9 75.9 81.6 79.7 80.1 84.9 85.9 81.8 70.8 85.1 79.0 14.2 16.6 69.1

Table 3: Top-1 Classification Accuracy (%) for all distribution shifts in the ShapeNet-C dataset. All results are for the
PointMAE backbone trained on clean train set set and adapted to the OOD test set with a batch-size of 1.

Method Accuracy (%) Method Accuracy (%)

Source 45.7 TTT-Rot 46.1
SHOT 38.3 T3A 40.3
JT 45.6 MATE-S 47.0
DUA 46.0 MATE-O 48.5

Table 4: Top-1 Classification Accuracy (%) averaged over
the 15 corruptions in the ScanObjectNN-C dataset (adapted
with batch size 1). JT: Joint Training, MATE-S: MATE-
Standard, MATE-O: MATE-Online

Mask Ratio (%)

97.5 95 90 80 70 60

MATE
56.9 71.6 71.3 71.5 71.6 71.5

Online

Table 5: Top-1 Classification Accuracy (%) averaged over
all corruptions in the ModelNet-40C dataset, while using
different masking ratios for test-time training. The accuracy
for Source-Only baseline is 57.6%.

outperforms other baselines and even surpasses MATE-
Online on the density-related corruptions of the point clouds.
We again notice that popular 2D test-time training meth-
ods [11, 12, 16, 23, 26] struggle for the ShapeNet dataset as
well. These results further strengthen our reasoning that the
need for 3D test-time training cannot be fulfilled by naively
porting the 2D TTT approaches.

ScanObjectNN-C: We also test our MATE on point clouds
collected in real world, on which we introduce the corrup-
tions proposed in the ModelNet-C benchmark [22]. The
results are provided in Table 4 and are in-line with the other
datasets. These results show the applicability of MATE on
data collected in the real world scenarios as well.

Batch Size for Test-Time Training

1 2 8 16 24 32 40 48

MATE
43.1 66.4 69.7 70.2 70.4 70.5 70.5 71.3

Online

Table 6: The effect of batch size for TTT. We provide the
Mean Top-1 Accuracy (%) over all the corruptions in the
ModelNet-40C dataset for different batch sizes used for TTT.
The accuracy for Source-Only baseline is 57.6%.

5. Ablation Studies

We additionally test how MATE performs with different
masking ratios, scenarios where sparse adaptation on test
samples is required, the effect of batch size on TTT and the
effect on performance while combining multiple corruption
types together.

5.1. Masking Ratios

The PointMAE has an asymmetric encoder-decoder de-
sign. The decoder is a lightweight architecture, while the
encoder is a deeper network. Therefore, most of the com-
putation effort is spent in the encoding part of the pipeline.
Since the encoder processes only the visible tokens, higher
masking ratio implies lower burden for the encoder. We
find that our MATE can work with extremely high masking
ratios, making test-time training very efficient. The results
for adaptation with different masking ratios are provided in
Table 5. We see that even with a severe masking of 95%
of the tokens (i.e. only processing 5% visible tokens), our
MATE can achieve 14 percent-points over the Source-Only
(without adaptation) results. Even with 97.5% masking, we
still improve on the Source-Only results. These results also
show that lower masking ratios do not give us more gain in
performance but instead could induce latency during test-
time training, undesirable for real-time applications.
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Source JT DUA TTT-Rot MATE-S MATE-O

Comb - 1 33.9 36.7 42.6 34.3 47.7 55.7
Comb - 2 29.6 34.7 40.6 32.9 45.2 51.4
Comb - 3 28.3 33.3 41.5 30.7 44.5 52.5

Mean 30.6 34.8 41.6 32.6 45.8 53.2

Table 7: Top-1 Mean Accuracy (%) for three different
datasets constructed by combining 2 randomly chosen cor-
ruptions for each subsequent sample in the test-set of
ModelNet-40. JT: Joint Training, MATE-S: MATE-Standard,
MATE-O: MATE-Online

5.2. Strides for TTT

Some applications might require adaptation at test-time
with minimum latency. For example, a test-time training
method deployed in autonomous vehicles would ideally be
required to adapt at a high frame-rate per second (FPS). Thus,
a test-time training method should be able to run with close
to real-time adaptation speed. Since most of the computa-
tion overhead for adaptation methods is during the backward
pass, adapting to test samples sparsely should help to reduce
the computation effort. In order to scratch the boundaries
of our MATE for achieving a higher FPS, we design an ex-
periment where we only adapt at test-time after a certain
number of samples (stride). Results for ShapeNet dataset
in this scenario are provided in Figure 3. When performing
an adaptation step after a stride, we find that our MATE can
achieve close to real-time performance, with a minimum
performance penalty. For example, when we take a gradi-
ent step on every 5-th sample, MATE can adapt at 20 FPS
on an NVIDIA 3090 (for reference 30 FPS is often con-
sidered as real-time [21]) with only ∼3 percent-point drop
in performance while comparing with the results obtained
with a stride of 1 (adapting on each incoming sample). We
can even increase the stride up to 300 and still achieve ∼3
percent-point better performance than the Source-Only re-
sults, with an FPS of 62. These results indicate the efficient
nature of our MATE and its ability to show effective real-
time adaptation performance. Results for ModelNet-40C in
this adaptation protocol are provided in the supplementary.

5.3. Batch Size for Test-Time Training

MATE constructs a batch of 48 from each point cloud
encountered at test-time for adaptation. The point cloud in
this batch is randomly masked and then masked patches are
reconstructed. Random masking helps us achieve a natural
augmentation during test-time training. To test the effect of
our design choice on the test-time training performance, we
experiment with different batch sizes on the ModelNet-40C
dataset. These results are provided in Table 6. Surpris-
ingly, for batch size of 1, test-time adaptation performance

Stride - 1

Stride - 5

Stride - 50

Stride - 100

Stride - 200

Stride - 300

Figure 3: MATE can achieve real-time adaptation perfor-
mance with only a minor performance penalty. Here, we
report the Mean Top-1 Accuracy (%) over the 15 corruptions
in the ShapeNet-C dataset for different adaptation strides.
Strides represent the number of samples after which an adap-
tation step is performed.

falls below Source-Only but is 8.8 percent-point better than
Source-Only for the batch size of 2. We also see that batch
size larger than 8 achieve minor gains, thus it could be a
resource-efficient alternative.

5.4. Combination of Distribution Shifts

In realistic scenarios there could be situations where the
test sample might be corrupted with a combination of cor-
ruptions. Thus, a test-time training method should be able to
cope with such scenarios as well. To test our MATE in such
a scenario, we design an experiment where we randomly
combine 2 corruption types (from the ModelNet-40C bench-
mark) for each sample in the test set of ModelNet-40 and
create 3 such datasets. To generate these datasets, we ensure
that all 15 corruption types are selected for each dataset and
for each sample 2 corruptions are chosen randomly from the
set of 15 corruptions. We test our MATE and other baselines
on these datasets and provide the results in Table 7. We
see that MATE can effectively adapt to this scenario as well
and outperforms other baselines by a considerable margin.
DUA fares better than TTT-Rot, because DUA does not use
any geometric information, which is another indication that
rotation prediction might not be a suitable test-time training
objective for 3D point clouds.

5.5. Limitation

In this paper we propose the first TTT method for 3D
point cloud data. To this end, we tested our MATE rigorously
for the point cloud classification task. Focusing on this
task we were able to show that masked autoencoders can
provide extremely powerful self-supervisory signal for this
task. However, application of TTT to other downstream
tasks is out-of-scope for this work and thus we leave it for
future exploration.
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6. Conclusion
Test-time training approaches designed for the 2D image

domain can often degrade significantly if naively applied
to the 3D data, requiring specialized 3D-specific designs.
To this end, we are the first to propose a 3D test-time train-
ing method, MATE. We show that masked autoencoding is
a powerful self-supervised auxiliary objective, which can
make the network robust to various kinds of distribution
shifts occurring in 3D point clouds. Our MATE, is com-
putationally cheap and can also run in real-time adaptation
scenarios while achieving significant performance gains.
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