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Figure 1. Verb-Focused Contrastive (VFC) learning: (Left): Given a video and its corresponding caption, we leverage a Large Language
Model (LLM) to output (1) hard negative captions, where only the verb has been changed while keeping the remaining context, and
(2) verb phrases which succinctly describe the action in the video. (Right): To encourage better verb reasoning, we subsequently enforce
(1) a calibrated hard negative loss, using our generated hard negative captions and other captions in the batch, and (2) a fine-grained, verb
phrase loss. We show that VFC improves verb understanding of video-language models compared to the standard contrastive loss.

Abstract

Understanding verbs is crucial to modelling how peo-

ple and objects interact with each other and the environ-

ment through space and time. Recently, state-of-the-art

video-language models based on CLIP have been shown

to have limited verb understanding and to rely extensively

on nouns, restricting their performance in real-world video

applications that require action and temporal understand-

ing. In this work, we improve verb understanding for CLIP-

based video-language models by proposing a new Verb-

Focused Contrastive (VFC) framework. This consists of two

main components: (1) leveraging pretrained large language

models (LLMs) to create hard negatives for cross-modal

contrastive learning, together with a calibration strategy to

balance the occurrence of concepts in positive and negative

pairs; and (2) enforcing a fine-grained, verb phrase align-

ment loss. Our method achieves state-of-the-art results for

zero-shot performance on three downstream tasks that fo-

cus on verb understanding, including video-text matching,

video question-answering and video classification; while

maintaining performance on noun-focused settings. To the

best of our knowledge, this is the first work which proposes

a method to alleviate the verb understanding problem, and

does not simply highlight it. Our code is publicly available

at [16] : scenic/projects/verbs in action.

1. Introduction

Large-scale visual-language models (VLMs) such as
CLIP [58] have shown strong performance on multiple
video-language tasks such as text-to-video retrieval [44],
video question-answering, and open-set action recogni-
tion [42]. These models perform surprisingly well on these
tasks in a zero-shot setting, despite being trained only on
image-language pairs (with no access to temporal data),
even outperforming strong video-specific models [5, 87].

A recently highlighted and well-documented problem
with such models, however, is their strong noun or ob-

ject bias, as evidenced by their lower performance in dis-
tinguishing between verbs in natural language descrip-
tions [31, 53, 93]. This was first studied in images alone
by the SVO-Probes benchmark [31], which shows that im-

age-language models struggle to distinguish between dif-
ferent verbs, and often rely on the nouns instead. This
problem persists with video-language models that inherit
these VLMs, even after they are fine-tuned on video-text
datasets [62, 85]. For example, Park et al. [53] similarly
propose evaluation sets with hard verb negatives, and show
that CLIP-based models, even when fine-tuned on video
datasets, have difficulties discriminating verbs in a multi-
choice setting where the context remains unchanged. Yuk-
sekgonul et al. [93] further highlight limitations of vision-
language models at understanding attribute, relationship,
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and order information. This deficiency in verb understand-
ing limits the model’s applicability for real-world tasks.
Verbs encapsulate how people and objects interact with each
other, and the environment, via actions in space and time.

We believe that there are two probable causes for this
deficiency, even after fine-tuning on video-text data: (i) ex-
isting visual-text datasets have a strong bias towards single-
frame concepts such as objects and backgrounds as well as
static actions [9, 37, 67]. Models are hence less incentivized
to understand dynamics and temporal actions [67], biasing
them towards noun understanding; and (ii) the limitations
of the cross-modal contrastive pretraining objective used by
most current vision-language models [93]. In contrastive
learning, the model is trained to distinguish correct video-
caption pairs from incorrect ones. Since it is unlikely that
existing datasets contain many examples with captions of
similar context but different verbs, the task can be solved
by taking little verb information into account. This relates
to shortcut learning in deep neural networks [27].

In an attempt to mitigate this problem, we propose a
novel training framework for tackling the task of verb un-
derstanding in vision-language models. Our framework,
called Verb-Focused Contrastive pretraining (VFC), con-
sists of two novel technical modifications to the contrastive
learning framework. We first introduce a method to au-
tomatically generate negative sentences for training where
only the verb has changed, keeping the context the same.
This is done using LLMs [23, 59], in an automatic and scal-
able manner. Note that we generate hard negative captions,
unlike works that simply mine hard negatives from an exist-
ing paired dataset [57], or change the order of words [93].
For example, given the caption ‘two brown horses eating

grass’, we generate the negative caption ‘two brown horses

running on the grass’ (see Fig. 1). While this improves per-
formance on some downstream tasks, we find that introduc-
ing concepts simply in negative examples can also lead to
an imbalance in the contrastive objective, favouring certain
concepts in the feature space. To solve this, we propose a
simple but effective calibration strategy to balance the oc-
currence of verbs in both positive and negative captions.

Secondly, inspired by recent works on grounding con-
cepts in vision-language learning [10, 35], we also intro-
duce a verb phrase loss that explicitly isolates the verb from
a caption for more focused training. For example, we ex-
tract the verb phrase ‘eating grass’ from the caption ‘two

brown horses eating grass’ (see Fig. 1). We find that this
helps particularly for zero-shot performance on downstream
tasks that do not use long sentences in their evaluation [28].
Verb phrases are also extracted from sentences using LLMs.

We then train a CLIP-based model [44] on a video-
language dataset with this novel training framework. We
show that a single model trained in this way transfers well
to diverse downstream tasks that focus particularly on verb

understanding, including three video benchmarks (multiple
choice video-text matching on MSR-VTT [85], video ques-
tion answering on Next-QA [82], action recognition on Ki-
netics [11]) and one image benchmark (SVO-probes [31]),
achieving state-of-the-art performance compared to previ-
ous works in zero-shot settings (and often with fine-tuning
as well); while maintaining performance on noun-focused
settings. On Kinetics, we also introduce a verb split of the
data which specifically highlights classes that are challeng-
ing to distinguish without fine-grained verb understanding
(‘brushing hair’ vs ‘curling hair’) and show that our model
particularly improves performance on this split.

2. Related works
LLMs for video-text tasks. LLMs have been used for vari-
ous vision applications, for example to initialise vision-text
models [12, 45, 66]. Recent works further use frozen LLMs
via prompting for tackling vision-language tasks [3, 24, 70,
76, 89, 91, 95]. LLMs have also been used in creative
ways to obtain better supervision for training for various
tasks [41, 64, 88, 94, 97]. For example, [88] use LLMs
to generate question-answer pairs from transcribed video
narrations, while [94] use LLMs to rephrase questions into
sentences. [41] use LLMs to match noisy speech transcrip-
tions to step descriptions of procedural activities. [51] train
BERT [17] to predict action labels from transcribed speech
segments and use this to scale up training data for action
classification. [97] use pretrained LLMs conditioned on
video to create automatic narrations. Recent works [64, 97]
also show the benefits of using LLMs to paraphrase cap-
tions for data augmentation for video-language pretraining.
[39] use LLMs to generate negative captions by manipulat-
ing event structures. Our work differs to [39] in that we
focus specifically on verb negatives, and videos instead of
images. Most closely related to our work, [53] construct a
test set for verb understanding by leveraging T5 [59] and
highlight the poor performance of current video-language
models. Our work is substantially different: (i) we auto-
matically construct hard negative captions for training (not
testing), (ii) we compare the use of different LLMs, (iii) we
show that training with such negative captions can improve
verb understanding on various verb-focused benchmarks.
Hard negatives for contrastive pretraining. Hard nega-
tives have been used to improve performance in metric rep-
resentation learning and contrastive learning [30, 34, 80].
Recent works mine hard negatives from an existing paired
dataset [57, 84, 90]. In comparison, in our work, we gen-

erate hard negative captions and propose a careful calibra-
tion mechanism for training effectively with such unpaired
data. We also verify here the benefit of the HardNeg-NCE
loss [57] when training with generated hard negative cap-
tions. [93] construct hard negative captions by shuffling
words from the original caption to improve order and com-
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positionality understanding. Our work differs by (i) focus-
ing specifically on verb reasoning, as opposed to object-
attribute relationships, (ii) using LLMs to construct hard
verb text negatives as opposed to perturbing the word or-
der, (iii) focusing on video-language models.
Learning from parts-of-speech in video. Recent works
use parts-of-speech (PoS) tags for video understanding [25,
28, 63, 79, 86]. [79] learn multi-label verb-only represen-
tations, while other works focus on learning adverb repre-
sentations [21, 22]. [2] use verb-noun pairs for unsuper-
vised learning with instructional videos, while [25] lever-
age such pairs to generate data augmentations in the feature
space. Other works exploit PoS for fine-grained or hier-
archical alignment between video and text [14, 96]. [78]
learn a separate multi-modal embedding space for each PoS
tag and then combine these embeddings for fine-grained ac-
tion retrieval. [14] construct a hierarchical semantic graph
and use graph reasoning for local-global alignments. Most
closely related to our work, [90] use a PoS based token
contrastive loss. Our work differs in that: (i) we apply a
verb phrase contrastive loss, as opposed to separate verb and
noun losses; (ii) we extract verb phrases using a LLM and
show this performs better than PoS tagging with NLTK [8]
(Tab. 5); (iii) we evaluate our methods on verb-focused
downstream tasks. Similarly to [28], we find that train-
ing with verb phrase supervision helps for zero-shot per-
formance on tasks with shorter sentences.
Temporal understanding in videos. A long term goal in
computer vision is temporal understanding in videos [11,
18, 29, 65, 68, 81, 98]. However, current training and
test datasets have a strong visual bias towards objects and
backgrounds as well as static actions [32, 67], with some
works [9, 37] demonstrating strong results with a single

frame. Despite these challenges, many recent works in
video-only self-supervised learning propose pretext tasks
for improving temporal modelling [1, 6, 7, 15, 19, 36, 40,
47, 54, 56, 60, 72, 73, 77, 92]. Unlike these works that use
only video, [10, 69] focus on fine-grained temporal video-
text alignment via localization of text sub-tokens. [4] also
leverage before/after relations in captions to create artifical
training samples for video-text. Differently to these works
(which create augmented video negatives or positives), we
approach the problem of improving verb understanding in
video-language models from the language side, by leverg-
ing the strong generalization capabilities of LLMs.

3. Method
Our goal is to adapt large-scale vision-language pre-

trained models (such as CLIP) to understand verbs. We
aim to do this without requiring such models to be retrained
from scratch, but by simply fine-tuning them on a video-
language dataset. However, given the pitfalls with using the
standard video-text contrastive setup [58] on existing video-

language datasets, we propose a new framework which we
call Verb-Focused Contrastive pretraining (VFC). It con-
sists of two components, both using the power of LLMs:
(i) a novel calibrated hard negative training method where
we train with synthetic verb-focused hard negative captions,
and (ii) an additional verb phrase loss where videos are con-
trasted against isolated verb phrases as opposed to the entire
caption. Note that a ‘verb phrase’ can be a single verb or
verb-noun pair depending on the caption (see Fig. 1).

3.1. Preliminaries

Large Language Models (LLMs) are generative text mod-
els with impressive capacities, in particular for few-shot
or prompt-based learning [23]. In our work, we design
prompts to instruct a LLM to (i) create verb-focused hard
negative captions and (ii) isolate verb phrases from the cap-
tions of a dataset. LLMs allow scalability and generali-
sation, and as we show in the ablations (see Tab. 2 and
Tab. 5), are preferable to manual or rule based methods
(eg. NLTK [8]). In particular, we use PaLM [23], a state-of-
art autoregressive model, throughout this paper. However,
our framework is agnostic to this choice and other LLMs
can be used instead (see Tab. 2).
Video-language contrastive pretraining works by learn-
ing to distinguish between aligned and non-aligned video-
text pairs. Given a dataset of N pairs {(Vi, Ti)}i2N with
video Vi and caption text Ti, we extract normalised feature
representations vi and ti by using a video encoder f and text
encoder g: we have vi = f(Vi) and ti = g(Ti). We use the
InfoNCE loss [71] to make aligned (‘positive’) pairs close
in feature space and all other pairwise combinations in the
batch further apart [58]. We optimize for video-to-text Lv2t

and text-to-video Lt2v alignments:

Lt2v
i

= �t>
i
vi/� + log

BX

j=1

exp(t>
i
vj/�) (1)

where B is the batch size and � a temperature parameter
controlling the sharpness of the distribution. Lv2t is ob-
tained by inverting v and t in Eq. 1.
Architecture: adapting image-text models to videos. We
leverage CLIP [58] for video-language tasks following the
CLIP4CLIP ‘seqTrans’ protocol [44]. Both single-modal
encoders (video f and text g) are initialized with CLIP
weights, with four additional temporal frame aggregation
transformer blocks stacked on top of the image encoder (see
Sec. C.2 of the appendix for more details). Our approach is
agnostic to model architecture and so any state-of-the-art
video-language architecture could be potentially used.

3.2. Verb-Focused Contrastive Pretraining (VFC)

We describe both our calibrated hard negative training
(Sec. 3.2.1) and the proposed verb phrase loss (Sec. 3.2.2).
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it’s a video of a bald monk sitting at a temple looking at his laptop 
it’s a video of a bald monk lying at a temple looking at his laptop   
it’s a video of a bald monk standing at a temple looking at his laptop   
it’s a video of a bald monk dancing around a temple holding his laptop   
it’s a video of a bald monk jumping up at a temple closing his laptop 
it’s a video of a bald monk running in a temple searching for his laptop  

man is arguing with another man in the dark 
man is kissing another man in the dark 
man is talking to another man in the daylight 
man is kicking another man in the light 
man is hugging another man in the dark

man is punching another man in the dark

a person draws a dragon

a person carves a dragon 
a person paints a dragon 
a person doodles a dragon 
a person sculpts a dragon 
a person destroys a dragon

a girl skateboarding in a public place

a girl dancing in a public place 
a girl running in a public place 
a girl singing in a public place 
a girl sitting on her skateboard in a public place 
a girl falling off her skateboard in a public place

Figure 2. Qualitative examples of hard negatives generated by PaLM. We show a single frame per video and the corresponding caption
in bold, with the verb highlighted in green. We see that PaLM can effectively generate hard negatives where the verb has changed (changes
in red). When there are several verbs in the caption (see top left), PaLM may replace one or all verbs. As a failure case (bottom right),
we show an example where PaLM can change more than just the verb, which could make it an easier negative (replacing ‘punching’ by
‘talking’ but also ‘dark’ by ‘daylight’).

3.2.1 Calibrated Hard Negative training

In regular contrastive learning, given a video-caption pair,
other captions in the batch are simply pushed further in the
feature space. Since it is unlikely that existing datasets con-
tain many examples with captions of similar context but dif-
ferent verbs, the task can be solved by paying little atten-
tion to verbs. Instead, our goal is to encourage the video-
language model to focus on verb reasoning. We do so by
tasking a LLM to generate hard negative captions where
only the verb(s) in the captions change. Second, we train
with these additional negative captions. We find that naive
training with additional data leads to imbalances affecting
the resulting video-text feature space. We propose a simple
but effective calibration mechanism to solve this.
Generating verb-focused hard negatives with PaLM.
Given a caption Ti, we task PaLM to replace the verbs with
other verbs that convey a different action, but still form a
linguistically and semantically viable sentence (which may
not be guaranteed with random verb replacements – see
qualitative examples in Sec. B.4 of the appendix). For ex-
ample, in the caption ‘a man washes his face’, the verb
‘washes’ should not be replaced with ‘jumps’ or ‘plays’.
The generated caption is then a negative match for the cor-
responding video Vi (albeit a hard negative, as the nouns
and context remain the same). We experiment with different
handcrafted prompts, and find our best performing prompt
to be the following: ‘In this task, you are given an input sen-

tence. Your job is to tell me 10 output sentences with a dif-

ferent meaning by only changing the action verbs’. We also
add four input-output pair examples to the prompt, which
increases the quality of PaLM’s predictions (see Sec. A.3.2
of the appendix). We use one PaLM forward pass per cap-
tion Ti to generate ten verb-focused hard negatives for that
caption (qualitative examples of the generated captions can
be seen in Fig. 2). During training, we randomly sample
N hard generated captions for each pair (Vi, Ti) in the mini-

batch, which we denote
�
T hard
ik

�
k2[1,N hard]

. Importantly, note
that a T hard

ik
is a new generated text caption, or an unpaired

data sample, meaning that it does not come with a corre-
sponding matching (‘positive’) video.

Calibration. Interestingly, we observe that naively adding
in negative captions into training with a contrastive loss
leads to harmful feature space distortions, as some concepts
are only seen in negative captions but never in positives.
This is observed by careful analysis of downstream perfor-
mance (see study in Tab. 3 and Tab. 4). We hence next de-
scribe a calibration mechanism to avoid such distortions:
we first denote the vocabulary of all verb phrases in the orig-
inal and generated captions as ⌦. For each verb phrase ! (or
‘concept’) in ⌦, we use S! to represent the number of times
it appears in the captions of the original dataset and G! for
the number of times it appears in the PaLM-generated cap-
tions. We then derive equations for R! (see Tab. 1), which
we define as the ratio of the number of times a verb phrase !
is used as a negative versus as a positive during training, for
different choices of the video-to-text contrastive loss (note
Lt2v is unchanged).

Contrastive training with paired data (Baseline). We
first note that the ratio R! is independent of the verb phrase

! in regular contrastive learning (paired data only). It sim-
ply depends on the batch size B, as Sw is cancelled from
both the numerator and denominator. This means that the
number of times a concept is used as a positive versus neg-
ative sample is the same regardless of the considered verb
phrase. This naturally balances training, and is a great prop-
erty of the contrastive framework.
Adding generated unpaired negative captions (HN).
However, when training with unpaired captions, this ratio
is proportional to G!/S! and therefore becomes depen-

dent on the considered verb phrase !. This can have sig-
nificant consequences for the video-text feature representa-
tions. The model can learn to either ignore or always predict
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Name Video-to-text alignment loss R!

Baseline �v>i ti/� + log
P

B

j=1 exp(v
>
i tj/�)

(B�1)S!
S!

?? !

HN �v>i ti/� + log
⇣P

B

j=1 exp(v
>
i tj/�) +

P
B

j=1

P
N

hard

k=1 exp(v>i thard
jk

/�)
⌘

(B�1)S!+BG!
S!

/ BG!
S!

Calibrated HN �v>i ti/� + log
⇣P

B

j=1 exp(v
>
i tj/�) +

P
N

hard

k=1 exp(v>i thard
ik

/�)
⌘

(B�1)S!+G!
S!

/ G!
S!

with G! t S!

Table 1. Different choices for video-to-text alignment when training with additional hard negatives (HN). R! is the ratio of the number of
times a given verb phrase ! is used as a negative versus the number of times it is used as a positive. We note that for the regular contrastive
loss (Baseline), R! only depends on the batch size B, however when training with generated hard negatives (HN), it depends on the verb
phrase !. We minimise this effect using our proposed Calibrated HN loss, which we denote as LCHN

i . See details in Section 3.2.1.

some concepts based on the average concept occurrences in
positive or negative pairs during training.
Hard negatives with calibration (Calibrated HN). In or-
der to make R! as !-agnostic as possible, we introduce an
ensemble of two techniques which we refer to as ‘calibra-
tion’. First, we ignore the hard negative captions from the
other elements of the batch (see row 3 in Tab. 1), which
allows us to mitigate the influence of G!/S! by not am-
plifying it by the batch size B (equal to 256). Second, we
filter the generated PaLM captions to have G! t S! . In
practice, we discard some generations so that the number of
times a verb phrase appears in the set of kept generations is
equal to the number of times it is originally present in the
dataset. We denote our video-to-text loss (text-to-video is
unchanged) as LCHN

i
for calibrated hard negative training.

Video mining. An alternative to avoid imbalances due to
the addition of negative captions would be to avoid training
with unpaired data at all, by mining a matching video V hard

ik

for each generated caption T hard
ik

. We attempt this via CLIP-
based text-to-video retrieval in a large video database but
found that finding a video matching a detailed, long caption
is challenging, as such a precise video may not exist in a
given corpus (see Sec. A.3.1 in the appendix for examples).

3.2.2 The verb phrase loss
In order to further encourage our model to focus on verbs,
we introduce a contrastive ‘verb phrase’ loss. We use PaLM
to extract the verb phrase T verb

i
in a caption Ti with the fol-

lowing prompt: ‘In this task, you are given an input sen-

tence. Your job is to output the action verb phrases.’ While
multiple parts-of-speech (PoS) tagging tools exist, we use a
LLM for the following reasons: (i) we would like to isolate
verb phrases, which may correspond to single verbs or verb-
noun pairs depending on the caption, (ii) LLMs deal better
with ambiguous cases (see qualitative examples in Sec. B.5
of the appendix). We show the benefits experimentally via
an ablation in Tab. 5. During training, we minimize the fol-
lowing loss:

Lverb-phrase
i

= �v>
i
tverb
i

/� + log
BX

j=1

exp(v>
i
tverb
j

/�)

where the negative verb phrase representations tverb
j

sim-
ply come from other captions in the batch. Note that we

do not require the calibration mechanism described in Sec-
tion 3.2.1 since all verb phrases T verb

i
have a positive video

match Vi (i.e. the video aligned with Ti).
Overall, our verb-focused contrastive (VFC) pretraining op-
timizes the sum of three objectives:

LVFC =
1

B

BX

i=1

⇣
�1L

t2v
i

+ �2L
CHN
i

+ �3L
verb-phrase
i

⌘

with parameters �1, �2 and �3 weighting the contribution
of the different terms. We learn the parameters of f and g
via back-propagation.

3.3. Implementation details
Spoken Moments in Time (SMiT) pretraining dataset.
The SMiT [49] training set consists of 481K pairs of 3 sec-
onds video clips with corresponding captions. It is a sub-
set of Moments in Time (MiT) [48]. Our work falls under
the umbrella of transfer learning: we pretrain on SMiT and
then use the resulting features to solve different downstream
tasks in a zero-shot or fine-tuned manner. Pretraining is ei-
ther done as in regular contrastive learning (‘baseline’) or
with our VFC framework. We find that the baseline already
performs competitively on our benchmarks, despite the rel-
atively small size of SMiT compared to other datasets such
as HowTo100M [46], due to the quality and diversity of the
manually annotated captions. We encourage the community
to consider SMiT as a powerful pretraining dataset.
PaLM. We use PaLM-540B [23] with beam size 4, output
sequence length 512, and temperature of 0.7. The negative
captions are generated in an autogressive way and are there-
fore of arbitrary length. We post-process them by removing
text after any newline character and by filtering out candi-
dates which contain the same verbs as the original caption.
Training details. Most hyper-parameters follow
CLIP4CLIP [44]. We initialise our model with CLIP
ViT/B-32 and train with VFC for 100 epochs with a batch
size of 256, base learning rate of 1e-7, weight decay of 1e-
2, temperature of 5e-3 and weights �1 = 2, �2 = �3 = 1
which we empirically find to work well in our experiments.
Indeed, this balances the video-to-text and text-to-video
loss terms. We also normalise each loss term by its value
obtained from a random uniform prediction in order to
have all loss terms in the same range (loss always equal to
1 for a random uniform prediction). We sample 32 frames
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Method Hard negatives VerbH K-400

Baseline ? 69.9 55.6

w/o LLM

Random verb 73.6 (+3.7) 55.0 (-0.6)
Antonym verb 72.4 (+2.5) 55.4 (-0.2)

w/ LLM

T5 [59] 75.1 (+5.2) 55.8 (+0.2)
Ours PaLM [23] 78.0 (+8.1) 55.8 (+0.2)

Table 2. Hard negatives generation. We explore both LLM
based and non LLM-based methods to obtain hard negative cap-
tions. Although PaLM LLM captions achieve the best perfor-
mance, other LLMs (T5) achieve good results too. All methods
are evaluated with calibration.

per video at 25fps, with a 2 frame stride. See Sec. C in the
appendix for further implementation details and extensive
evaluation protocols.

4. Experiments
We curate a suite of benchmarks from existing works to

evaluate verb understanding which we present in Sec. 4.1.
Then we ablate various components of our VFC framework
in Sec. 4.2. Finally, we demonstrate improved performance
on our diverse set of downstream tasks in Sec. 4.3, and com-
pare to the state of the art.

4.1. Verb-Focused Benchmarks
MSR-VTT multiple choice (MC) is a benchmark of 10K
videos of length 10–30 secs. We evaluate on the standard 3k
split and on VerbH from [53]. In this setting, the task is to
associate each video to the right caption among five choices.
While the four wrong captions are randomly chosen from
other videos in the standard 3k split, one of them is replaced
by a hard verb negative in VerbH [53].
Video question answering on NEXT-QA The train (resp.
val) split contains 3870 (resp. 570) videos with 32K (resp.
5k) questions. There are three types of questions: causal
(C), temporal (T) and descriptive (D). We consider the stan-
dard setting as well as ATPhard [9], a subset automatically
constructed with questions that are non-trivially solved with
a single frame. ATPhard is designed to be a better bench-
mark for the model’s true causal and temporal understand-
ing which we believe is strongly related to verb reasoning.
Kinetics-400 is a video classification dataset with 400 hu-
man action classes. We report top-1, top-5 and their average
classification accuracy. We follow [58] to evaluate classifi-
cation in an open-set, zero-shot manner. This benchmark al-
lows to assess transfer ability to action classification, which
requires strong verb understanding (given actions are usu-
ally described with verb phrases).
SVO-probes dataset is a benchmark specifically designed
to measure progress in verb understanding of image-text

Method R! # HN VerbH K-400

Baseline ?? ! 0 69.9 55.6

w/o calibration / BG!
S!

8.7M 80.5 (+10.6) 54.5 (-1.1)
w/ calibration / G!

S!
, G! t S! 0.9M 78.0 (+ 8.1) 55.8 (+0.2)

Table 3. Importance of the calibration mechanism when train-
ing with hard negative captions. The model trained without cal-
ibration suffers from a drop of performance on Kinetics.
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Table 4. Confusion matrix for the hair classes on Kinetics.
Without proper calibration, the verb phrase ‘brushing hair’ be-
comes highly attractive in the video-text feature space. This de-
teriorates the performance on all the ‘hair’ related classes. Our
calibration mechanism alleviates this issue by making the ratio R!

independent of verb phrases (see details in Sec. 3.2.1). More ex-
amples are shown in Sec. B.3 of the appendix.

models [31]. It contains image–caption pairs with 421 dif-
ferent verbs. We simply replicate the image multiple times
as input to our video model. We report Average Precision
(AP) on the entire dataset as well as the verb-focused set-
ting (details about our evaluation protocol are provided in
Sec. C.4 of the appendix).

4.2. Ablation Study
In this section, we analyze our different design choices.

We report results when transferring the models on two
of our benchmarks: MSR-VTT multi-choice verb split
(‘VerbH ’) and Kinetics-400 video classification (‘K-400’).
We chose these two benchmarks as they have very differ-
ent properties: the first involves captions, while the second
involves action labels. We note that N hard = 1 for all abla-
tions unless otherwise specified.
Hard negative captions generation. In Tab. 2, we ablate
the technique used to obtain additional negative captions:
we compare two LLMs (T5 [59] and PaLM [23]) and two
non LLM-based methods: (i) ‘random verb’: we replace
verbs by random verbs from the UPenn XTag1 verb cor-
pus and (ii) ‘antonym verb’: we replace verbs with their
antonyms, using the NLTK [8] package. We see in Tab. 2

1https://www.cis.upenn.edu/˜xtag/
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PaLM captions: VerbH K-400

? 69.9 55.6
Positive 69.3 55.4
Negative 78.0 55.8

Verb isolation: VerbH K-400

? 69.9 55.6
MiT labels 69.9 57.0
NLTK [8] 70.1 56.4
PaLM [23] 70.3 57.6

Table 5. (left): Generating negative versus positive captions
with PaLM. (right): Verb phrase isolation methods.

that ‘random verb’ and ‘antonym verb’ already give mod-
erate performance gains on VerbH compared to the base-
line. However, using LLM-based generations improves the
results by a large margin compared to the non LLM-based
methods. This is likely due to the fact that (i) random or
antonym replacements often create non semantically or lin-
guistically plausible negative captions; (ii) some verbs do
not have antonyms in NLTK (see qualitative examples in
Sec. B.4 of the appendix). Finally, we see in Tab. 2 that
T5 generations work very well in our framework too, which
demonstrates that our framework is LLM-agnostic and can
be extended to other LLMs. We observe that the best perfor-
mance is achieved using PaLM, with a substantial gain over
the baseline on MSR multi-choice (+8.1%) and a moderate
gain on Kinetics (+0.2%).
Hard negative captions: the importance of calibration.
We demonstrate the effect of the calibration mechanism de-
scribed in Section 3.2.1 for training with unpaired captions.
Tab. 3 shows the performance of hard negative training with
(‘w/’) versus without (‘w/o’) calibration. First, we observe
that the performance boost on MSR-VTT compared to the
baseline is slightly stronger without calibration than with
calibration. We believe this is because calibrating the PaLM
generations reduces their number. However, we see that
training with hard negatives without calibration deteriorates
a lot the performance on Kinetics (�2.0% compared to the
baseline). We hypothesize that this is due to some verb
phrases being seen only as repulsive in the video-text fea-
ture space, while others are seen equally as attractive and
repulsive. We illustrate this in Tab. 4 by showing the confu-
sion matrix for a subset of the Kinetics classes, along with
the ratio R! (defined in Sec. 3.2.1) for each verb phrase.
Intuitively, R! measures the ‘attraction’ (if low) and ‘repul-
sion’ (if high) of a verb phrase !. The confusion matrix in
Tab. 4 shows that the verb phrase ‘brushing hair’ becomes
an attraction point in the absence of calibration. Indeed, the
number of times the verb phrase ‘brushing hair’ is repul-
sive versus attractive is low (Rbrushing hair t 12) compared
to the other concepts such as for example ‘curling hair’
(Rcurling hair t 78): we have Rbrushing hair << Rcurling hair.
Hence, predictions for ‘brushing hair’ become dominant.
This actually improves the performance for that class but
deteriorates the performance on all the other classes related
to ‘hair’. We see in Tab. 4 that our calibration mechanism
alleviates this effect by making the ratio R! independent of

Method Hard negatives Verb phrase VerbH K-400

Baseline 69.9 55.6

X 78.0 (+8.1) 55.8 (+0.2)
X 70.3 (+0.4) 57.6 (+2.0)

VFC (Ours) X X 76.3 (+6.4) 58.5 (+2.9)

Table 6. Combining hard negative and verb phrase loss
achieves 9.2% relative improvement on MSR-VTT MC (accuracy)
and 5.2% relative improvement on Kinetics (top-1) compared to
the baseline.

! as in regular contrastive learning. Calibration allows us to
improve performance over the baselines on both tasks with
a single model.
Generating positive versus negative captions. In Tab. 5
(left), we investigate the impact of generating positive cap-
tions instead of negatives with PaLM. In this case, positives
correspond to sentences where the verb in the original cap-
tion is changed to a synonym verb, but the remaining con-
text is unchanged: PaLM therefore acts as a data augmenta-
tion generator for text (similar to [64, 97]). Details about the
positive caption generation implementation are in Sec. C.5
of the appendix. We observe that using positive captions has
a negative impact on the performance in our benchmarks,
possibly because with positive captions the model becomes
more invariant to different verbs.
Verb phrase loss. In Tab. 5 (right), we explore two alter-
natives for verb phrase extraction used in the verb phrase
loss: (i) using human-annotated action labels for clips from
the Moments in Time (MiT) dataset (these are available as
SMiT data inherits from MiT [48]) and (ii) using a rule-
based method (NLTK [8]) to isolate verbs. We observe in
Tab. 5 that using PaLM to extract verb phrases from the
caption outperforms both, probably because it extracts more
fine-grained action information. Qualitative analysis of the
verb phrases is shown in Sec. B.5 of the appendix.
Combining calibrated hard negatives and verb phrase
loss. We show in Tab. 6 the complementarity between our
two contributions: the calibrated hard negative training and
the verb phrase loss. The former greatly improves perfor-
mance on tasks requiring complex language understanding
such as MC VerbH . On the other hand, the verb phrase loss
improves transfer to video classification by focusing partic-
ularly on the action label in the sentence. We see in Tab. 6
that combining both approaches during training results in
a single model with excellent performance on both MSR-
VTT MC and Kinetics zero-shot transfer. Indeed, compared
to the baseline, VFC pretraining achieves 9.2% relative im-
provement on MSR-VTT MC and 5.2% relative improve-
ment on Kinetics.
Number of hard negative captions. In Tab. 7, we experi-
ment with increasing the maximum number of hard negative
captions N hard sampled per video in the batch. We find that
setting this to 5 increases the performance on VerbH while
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Method N hard VerbH K-400

VFC (Ours) 1 76.3 58.5
VFC (Ours) 3 77.8 58.5
VFC (Ours) 5 78.3 58.5

Table 7. Maximum number of hard negative captions. We ob-
serve that increasing the maximum number of hard negative cap-
tions sampled per video increases the performance on VerbH . We
use N hard = 5 in the remaining of the paper.

Method Contrastive loss VerbH K-400

Baseline NCE 69.9 55.6
Baseline HardNeg-NCE 72.0 56.4

VFC (Ours) NCE 78.3 58.5
VFC (Ours) HardNeg-NCE 80.5 58.8

Table 8. Complementarity with other hard negative min-
ing methods. We observe that using the HardNeg-NCE loss,
instead of standard NCE, gives the highest performance. We
use HardNeg-NCE from now on. We note that for VFC we use
N hard = 5.

maintaining the performance on Kinetics. We use this set-
ting going forward. We note that we do not try larger values
as our maximum number of hard negatives per video after
calibration is 5.
Complementarity with other hard negative mining
methods. We investigate whether our VFC framework
is complementary to existing approaches for hard nega-
tives with the contrastive learning framework. Specifically,
we reimplement the hard negative noise contrastive multi-
modal alignment loss from [57, 61], which is denoted as
HardNeg-NCE. With this objective, difficult negative pairs
(with higher similarity) are emphasised, and easier pairs are
ignored. We use ↵ = 1 and � = 0.1 in the equations
from [57]. We note that we only adapt Lt2v

i
and LCHN

i
with

HardNeg-NCE. Adapting Lverb-phrase
i

does not bring further
improvements, so we omit this for simplicity. We observe in
Tab. 8 that VFC is complementary to existing hard negative
frameworks: using HardNeg-NCE instead of the standard
NCE loss achieves the highest performance. We observe
a large boost on VerbH [53], a benchmark that specifically
involves hard negatives. We therefore adopt HardNeg-NCE
in the remaining of this paper.

4.3. Comparisons to the State of the Art
We compare our VFC features to the state of the art on a

diverse set of tasks requiring verb understanding. Note that
we use the same model across different tasks, which is non-
trivial in itself as the tasks cover a wide range of domains
and evaluation protocols.
MSR-VTT MC results. We see in Tab. 9 that our verb-
focused pretraining transfers well to the MSR-VTT multi-
choice task, especially on the hard verb split (curated to as-
sess exactly the task we are trying to solve). We even out-

Model # params. 3k val. VerbH [53]

ZERO-SHOT

VideoCLIP [84] – 73.9 -
CLIP [58] 151M 91.1 64.1
InternVideo [75] t 460M 93.4 -
VFC (Ours) 164M 95.1 80.5

FINE-TUNED

ClipBERT [38] – 88.2 -
MMT [26] – 92.4 71.3
VideoCLIP [84] – 92.1 -
CLIP-straight [55] 151M 94.1 65.1
MMT [26] (CLIP features) – 95.0 71.4
C4CL-mP [53] 151M 96.2 73.7
VFC (Ours) 164M 96.2 85.2

Table 9. Multi-choice MSR-VTT. We report accuracy on the
3k val and on the verb-focused VerbH [53] splits. While VFC
improves the performance on both splits in a zero-shot setting, the
gap with previous works is especially important on VerbH [53],
a split measuring verb understanding. When available, we add
model parameter counts.

ATPhard [9]
Model all D T C all T C

ZERO-SHOT

CLIP [58] 43.9 57.0 38.1 43.6 23.0 21.8 23.8
VFC (Ours) 51.5 64.1 45.4 51.6 31.4 30.0 32.2

FINE-TUNED

HGA‡ [33] 49.7 59.3 50.7 46.3 44.1 45.3 43.3
ATP [9] 49.2 58.9 46.7 48.3 20.8 22.6 19.6
Temp[ATP] [9] 51.5 65.0 49.3 48.6 37.6 36.5 38.4
TAATP† [83] 54.3 66.8 50.2 53.1 - - -
VGT [83] 55.0 64.1 55.1 52.3 - - -
VFC (Ours) 58.6 72.8 53.3 57.6 39.3 38.3 39.9

Table 10. NEXT-QA video question answering. We report accu-
racy. We consider either ‘all’ questions or only causal (‘C’), tem-
poral (‘T’) or descriptive (‘D’) questions. We also use ATPhard

split [9]. VFC improves performance for both zero-shot and fine-
tuning. †Temp[ATP]+ATP. ‡ Uses additional motion features.

perform concurrent InternVideo [75] while using a signifi-
cantly smaller setting both in terms of architecture (Intern-
Video uses 2.8⇥ more parameters and 12.4⇥ more flops)
and pretraining dataset size (they use 24⇥ more data). We
also note that our method does not degrade performance on
other standard object-based tasks, such as text-to-video re-
trieval on MSR-VTT (results compared to the state of the
art are shown in Sec. A.2 of the appendix).
NEXT-QA results. We show in Tab. 10 that our verb-
focused pretraining gives a significant boost in both the
standard and ATPhard setting introduced by [9]. We high-
light the improved performance for the descriptive (and
therefore more noun-focused) setting. To the best of our
knowledge, we are the first work to report zero-shot results
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Model # param. top-1 top-5 average

VAL-SET
CLIP [58] 151M 48.9 75.8 62.4
ActionCLIP [74] t 164M 56.4 - -
VFC (Ours) 164M 59.4 85.3 72.4

TEST-SET
Flamingo-3B [3] 3B 45.2 66.8 56.0
Flamingo-80B [3] 80B 49.1 71.5 60.3
Flamingo-9B [3] 9B 49.7 71.5 60.6
CLIP [58] 151M 47.9 75.1 61.5
VFC (Ours) 164M 58.8 84.5 71.7

Table 11. Zero-shot transfer to Kinetics-400. We report top-1
accuracy, top-5 accuracy, and their average on the validation and
test set, as well as the parameter counts of the different models.

Model top-1 top-5

ZERO-SHOT
CLIP [58] 59.7 83.9
VFC (Ours) 70.2 92.5

FINE-TUNED
ER-ZSAR [13] 42.1 73.1
X-CLIP [52] 65.2 86.1
X-Florence [52] 68.8 88.4

Table 12. Zero-shot transfer to Kinetics-600. We report av-
erage top-1 and top-5 accuracies over three random 160-class
splits, covering classes not in Kinetics-400 but within Kinetics-
600. While [13, 52] fine-tune on Kinetics-400, we surpass their
performance in zero-shot.

for NEXT-QA and our zero-shot numbers improve upon
some previously published fine-tuning numbers. Finally,
although HGA [33] performs worse than ours on the stan-
dard setting, it achieves a high accuracy of 44.1 on ATPhard.
Their high performance on ATPhard can be explained by the
use of additional motion features, aiding in answering hard
dynamics questions, as noted by [9]. The addition of extra
motion features on the video side can be complementary to
our verb-focused pretraining approach.
Zero-shot Kinetics-400 results. In Tab. 11 we see that our
verb-focused features transfer very well to Kinetics video
classification benchmark in a zero-shot setting, achiev-
ing state-of-the-art results. We achieve better results than
Flamingo models [3] while using a significantly smaller
model: relative improvement of 20% over Flamingo-80B
model while using 489 ⇥ less parameters.
Zero-shot Kinetics-600 results. We evaluate our model on
Kinetics-600 in Tab. 12 and follow the protocol in [13, 52].
Specifically, the subset of categories which are outside
Kinetics-400, but within Kinetics-600 are used for evalu-
ation. The evaluation is then run on a random sample of
160 categories from this subset. The final performance is
averaged over three iterations. We observe that by evaluat-

Method all Kinetics-verb

Baseline 55.6 52.1
VFC (Ours) 58.8 (+3.2) 57.1 (+5.0)

Table 13. Zero-shot Kinetics-verb. We report accuracy perfor-
mance on our newly proposed Kinetics-verb split (from test split).

Model AP APverb

CLIP [58] 48.3 52.3
No-MRM-MMT [31]† 51.5 53.1
Baseline (Ours) 60.2 61.9
VFC (Ours) 61.8 64.6

Table 14. Verb understanding on SVO-probes [31]. We re-
port Average Precision (AP) on the entire dataset and on the verb
setting. † Scores provided by authors and used to calculate AP.

ing our model in a zero-shot setting, we surpass the perfor-
mance of works [13, 52] which fine-tune on Kinetics-400.
Kinetics-verb. To further analyse the VFC framework’s ef-
fect on action classification, we introduce the Kinetics-verb
split. We isolate classes from the Kinetics-400 dataset that
share a common noun with another class, but have a differ-
ent verb (and therefore action). For example, distinguising
between ‘braiding hair’, ‘brushing hair’ and ‘curling hair’
requires the model to focus on verb understanding as pre-
dictions cannot be inferred from the simple presence of hair
in the frame. We use this rule to create a subset of 97 classes
from the Kinetics-400 test set (see Sec. C.7 in the appendix)
called ‘Kinetics-verb’. We show in Tab. 13 that our VFC
improves substantially over the baseline (+5%) on this split.
Assessing verb understanding on SVO-probes. In
Tab. 14, we see that our VFC framework improves the per-
formance on SVO-probes compared to the baseline (partic-
ularly in the verb setting), and outperforms prior work [31]
with 21.7% relative improvement in the verb setting.

5. Conclusion
Video-language models based on CLIP have been shown

to have limited verb understanding, relying extensively on
nouns. We attempt to alleviate this problem with two tech-
nical contributions on the contrastive learning framework:
first, we leverage LLMs to automatically generate hard neg-
ative captions focused on verbs; second, we introduce a
verb phrase alignment loss. We validate our verb-focused
pretraining by showing improved performance on a suite of
benchmarks, chosen in particular to assess verb understand-
ing. Our framework is general and could be employed for
other video-language tasks, and further readily scales with
the rapid progress in language modelling.
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and Hugo Terashima-Marı́n. A straightforward frame-
work for video retrieval using CLIP. arXiv preprint

arXiv:2102.12443, 2021. 8, 2
[56] Will Price and Dima Damen. Retro-actions: Learning ‘close’

by time-reversing ‘open’ videos. In ICCVW, 2019. 3
[57] Filip Radenovic, Abhimanyu Dubey, Abhishek Kadian,

Todor Mihaylov, Simon Vandenhende, Yash Patel, Yi Wen,
Vignesh Ramanathan, and Dhruv Mahajan. Filtering, distil-
lation, and hard negatives for vision-language pre-training.
arXiv preprint arXiv:2301.02280, 2023. 2, 8

[58] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. arXiv preprint

arXiv:2103.00020, 2021. 1, 3, 6, 8, 9, 2, 10
[59] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,

Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J. Liu. Exploring the limits of transfer learning with a
unified text-to-text transformer. Journal of Machine Learn-

ing Research, 2020. 2, 6, 13
[60] Adria Recasens, Pauline Luc, Jean-Baptiste Alayrac, Luyu

Wang, Florian Strub, Corentin Tallec, Mateusz Malinowski,
Viorica Patraaucean, Florent Altché, Michal Valko, Jean-
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