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Abstract

The automatic analysis of chemical literature has im-
mense potential to accelerate the discovery of new materials
and drugs. Much of the critical information in patent docu-
ments and scientific articles is contained in figures, depict-
ing the molecule structures. However, automatically pars-
ing the exact chemical structure is a formidable challenge,
due to the amount of detailed information, the diversity of
drawing styles, and the need for training data. In this work,
we introduce MolGrapher to recognize chemical structures
visually. First, a deep keypoint detector detects the atoms.
Second, we treat all candidate atoms and bonds as nodes
and put them in a graph. This construct allows a natural
graph representation of the molecule. Last, we classify atom
and bond nodes in the graph with a Graph Neural Network.
To address the lack of real training data, we propose a syn-
thetic data generation pipeline producing diverse and real-
istic results. In addition, we introduce a large-scale bench-
mark of annotated real molecule images, USPTO-30K, to
spur research on this critical topic. Extensive experiments
on five datasets show that our approach significantly out-
performs classical and learning-based methods in most set-
tings. Code, models, and datasets are available 1.

1. Introduction

The creation of an open-source database offering a uni-

fied view of our current knowledge of all studied molecules,

would greatly accelerate research and development in nu-

merous fields, ranging from the pharmaceutical industry

to semiconductor manufacturing. Currently, information

about a molecule’s properties is distributed across vari-

ous databases, research articles, and chemical patents, each

measuring different subsets of properties. In such docu-

ments, molecules are most often described using images,

by drawing their molecular structures. Automatic parsing of

molecules from document images, known as Optical Chem-

1https://github.com/DS4SD/MolGrapher

Figure 1. MolGrapher extracts the chemical structure, including

all atoms and bonds, from a molecule image in a document. Our

approach constructs a supergraph of the molecule (bottom right),

containing all detected atom and bond candidates. These nodes

are then classified by a Graph Neural Network in order to retrieve

the chemical structure.

ical Structure Recognition (OCSR), is thus a critical task in

the quest towards establishing a large-scale digital molecule

database.

OCSR, however, poses multiple key challenges, which

limit the accuracy of current solutions. First, a molecule can

be drawn with a variety of styles and conventions. Even the

projection of the molecular structure from 3-D onto a 2-D

drawing is not unique, leading to the development of var-

ious projection algorithms with diverse results. Secondly,

OCSR requires the extraction of detailed information from

the image. Molecules often contain even hundreds of atoms

and bonds, which all need to be correctly classified and

linked. Thirdly, molecules have a virtually endless diver-

sity stemming from the combinatorical explosion of possi-

bilities, presenting particular challenges to data-driven deep

learning methods. Lastly, available real training datasets

are extremely limited, further complicating the application

of deep learning.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Initial OCSR approaches followed the graph

reconstruction paradigm. These methods start by ex-

tracting the fundamental components of molecules, such as

atoms, bonds, and charges, often using hand-crafted image

processing algorithms [8, 29, 21]. Then, rules are applied

to connect these elements to reconstruct a graph represen-

tation of the molecule. Some recent works [19, 33, 38]

introduce deep learning elements into the atom and bond

detection steps. However, these approaches still rely on

hand-crafted rules to link the recognized constituents, and

thus not fully benefit from the advantages brought by deep

learning.

Most recently, approaches instead follow the image

captioning [4, 24, 34] paradigm by applying a deep net-

work to directly output a character string identifying the

molecule, e.g. in the form of SMILES [32]. However, these

methods do not explicitly exploit the rich priors and invari-

ances provided by the graph structure. The SMILES rep-

resentation does not encode the geometrical and neighbor-

hood structure of the molecule graph in a natural manner.

While a recent work [36] predicts a graph in an autoregres-

sive manner, adding one atom at a time prevents from fully

exploiting the graph structure. Partially due to the lack of

such a strong inductive bias, image captioning based meth-

ods still lag behind from the performance of state-of-the-

art rule-based methods [8, 29, 21] on standard benchmarks

[8, 9, 28, 22]. Moreover, the performance of captioning

based methods severely degrade when increasing the size

and complexity of the molecule, as they struggle to recover

the detailed information in the image.

We introduce MolGrapher for Optical Chemical Struc-

ture Recognition, illustrated in Fig. 1. Our approach explic-

itly utilizes the graph structure as a strong inductive bias,

while also allowing for the final molecule structure itself to

be predicted by a deep learning model. MolGrapher oper-

ates in three steps. First, we locate atoms and abbreviations

in the image with a keypoint detector network. Given the

estimated locations of the atoms, we form a supergraph of

the molecular structure, where two types of nodes represent

candidate atoms and bonds respectively (see Fig. 1). Unlike

previous approaches, we do not commit to a final molecule

structure at this point, instead extracting a larger set of

candidate bonds, forming a superset of the final molecu-

lar graph. Candidates that do not correspond to any bond

are removed in the final prediction step by including a ‘no

bond’ class.

In the final step, we input the constructed supergraph

into a Graph Neural Network (GNN). We first extract deep

node embeddings through a backbone network. The GNN

then operates on the neighborhood structure provided by

the supergraph in order to integrate visual information with

learned chemistry priors. We then read-out the results with

MLPs, classifying each node into a set of atom and bond

classes. We also identify abbreviations through a separate

class, which are parsed by an OCR component. Since train-

ing data is scarce, we develop, and release, a synthetic train-

ing data generation pipeline, capable of generating diverse

and challenging examples to ensure robust generalization to

a wide variety of drawing styles.

To further aid the research in the community, we in-

troduce USPTO-30K, a large-scale benchmark dataset of

annotated real molecule images. It contains separate sub-

sets, in order to independently study the recognition of sim-

ple molecules, abbreviated molecules and extremely large

molecules. We perform comprehensive experiments on

five benchmarks: our USPTO-30K, USPTO [8], Maybridge

UoB [28], CLEF-2012 [22] and JPO [9]. We outperform

all deep learning based methods that only utilizes synthetic

training. Our approach even surpass previous methods that

rely on finetuning on real data on most benchmarks, and

outperform the longstanding state-of-the-art by rule-based

methods [8, 29, 21] in most settings.

2. Related work
OCSR approaches can be divided in two main categories.

Image captioning based OCSR. Most of the recent end-

to-end deep learning approaches are based on image cap-

tioning. These models use an encoder to extract visual

features from the image and a decoder to translate them

to a SMILES [32] or InChI [10] sequence. More pre-

cisely, DECIMER [26], MICER [35], MSE-DUDL [30] and

Img2Mol [4] are using a convolutional encoder and a re-

current decoder which is respectively, a GRU decoder, a

LSTM decoder, a GridLSTM decoder, and a RNN decoder.

Later works proposed replacing the recurrent decoder with

a transformer encoder-decoder, including DECIMER 1.0

[27], SwinOCSR [34], IMG2SMI [3] and Image2SMILES

[13]. Other image captioning methods are solely based on

transformers, using a vision transformer in [31], a Swin

transformer in [23] or a Deep TNT transformer encoder

with a transformer decoder in ICMDT [17].

One drawback of image captioning methods is the need

of large training sets. The SMILES representation has nu-

merous downsides for a learning task [15], one of them

which is ambiguity due to the association of very differ-

ent string identifiers to similar molecules. By predicting

SMILES, instead of a more faithful representation of the

image, the model needs to learn jointly to recognize the im-

age and understand the SMILES language. Multiple string

identifiers, possibly suited for a learning task have been

proposed, including SELFIES, DeepSMILES [25] or ab-

stract mathematical identifiers [4]. Nevertheless, represent-

ing a molecule image as a string adds extra complexity for

a learning task. Additionally, these models to not properly

handle uncertainty by predicting incorrect, but still valid,

molecules for challenging inputs such as large molecules.
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Figure 2. Molecular graph recognition architecture. We illustrate the architecture of MolGrapher, a graph-based network for Optical

Chemical Structure Recognition. The keypoint detector (red) locates atoms nodes in the molecule. A supergraph containing atom and bond

candidates is constructed (green). Atoms and bonds are classified using a Graph Neural Network (blue).

Yet, to parse scientific literature at large scale, avoiding

these false positives is critical. This behaviour is explained

by the fact that the model is trained to always output valid

SMILES, while using global image features. Contrary to

these approaches, our model extracts precise visual features

for each elementary component of a molecule and operate

on a graph, allowing substantially better recognition per-

formance for large molecules, possibly larger than the ones

used for training.

Graph reconstruction based OCSR. Traditional ap-

proaches for Optical Chemical Structure Recognition rely

on hand-crafted image processing algorithms to detect ele-

mentary components of the molecules and connect them to

reconstruct the molecular graph [2, 8, 12, 20, 28, 29, 21].

More recent works detect elementary components using

machine learning models. For instance, ChemGrapher [19]

or ABC-Net [38] use convolutional segmentation networks

while MolMiner [33] employs a YOLO object detector. As

studied in [11], detection based methods can be trained with

fewer training samples. By doing multiple low-level detec-

tions, it is possible to supervise precisely the training. It

also offers a natural way to inject prior knowledge, or im-

pose chemistry rules to the model. Our method benefits

from these advantages but differentiates itself by learning

both the detection and the association of the fundamental

components of molecules.

Image2Graph [36] uses a transformer to build the graph

in an auto-regressive way, by adding one atom at the time.

[23] predicts a SMILES sequence, but enriched with atoms

positions, and connectivity information, drifting away from

the string identifier and getting closer to a graphical repre-

sentation. Our new graph reconstruction approach do not

build a graph auto-repressively. We first detects all possi-

ble components and associations, and then classify them. It

allows to use localized visual features, as well as a com-

plete neighborhood contextual information for each atom

and bond prediction.

3. MolGrapher
We introduce MolGrapher, a graph-based network for

Optical Chemical Structure Recognition. Our model ar-

chitecture is illustrated in Figure 2. Our pipeline consists

of three steps. Firstly, the keypoint detector locates atoms

nodes in the molecule. Secondly, we construct a graph con-

taining atom and bond candidates. Finally, atoms and bonds

are classified using a Graph Neural Network.

3.1. Keypoint Detection

In order to construct the molecular graph, we first need

to localize keypoints in the image. Keypoints refer to the

position of atoms and ‘superatoms’, i.e. abbreviated groups

of atoms. In the later stages, this enables the extraction of

relevant visual features for atoms and bonds, as well as the

construction of our molecule supergraph.

Our keypoint detector predicts a heatmap, where each

peak corresponds to an atom location. The output of a fea-

ture extractor is passed through convolutional layers to pre-

dict the final single-channel heatmap of the atom locations.

To extract the peak locations, we first threshold the heatmap

by removing any value in the bottom 10th percentile. We

then collect regional maxima, using a window size of 5×5,

as the final atom locations.

Atoms are labeled with Gaussian functions, allowing

smoother supervision as well as capturing a degree of uncer-

tainty regarding the predicted positions. Since the ground-

truth heatmaps predominantly contains background values,

we use the weight-adaptive heatmap regression loss [18]

to overcome the class imbalance. It reduces the impact

of well-classified samples, which mostly constitute back-

ground, allowing the training to focus on harder samples.

3.2. Supergraph Construction

In this section, we describe the construction of the su-

pergraph, which contains all atom and bond candidates to

be classified. The supergraph is composed of two types of
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Figure 3. Supergraph construction. The figure presents the con-

struction of bonds proposals for an atom denoted A. Considered

bonds are depicted with dashed lines. Green bonds are accepted in

the supergraph, while red bonds are discarded because: (1) there

are no filled pixels around their centerpoints or (2) they are ob-

structed by other keypoints.

nodes: atoms and bonds. Further, each edge in the graph

only connects an atom node to a bond node. Representing

both of these entities as nodes allows us to process them

uniformly through standard message passing layers.

The input to our supergraph construction is a set of ap-

proximate atom locations. Since the connectivity between

the detected atoms is unknown, our graph has to represent

a superset of the final molecule prediction, thus termed ‘su-

pergraph’. That is, it contains all possible bonds. By in-

cluding a prediction class corresponding to ‘no bond’, bond

candidates which are not actually in the molecule can be

removed in the later stage. Including an analogous class

for ‘no atom’, our approach can even correct false positives

predicted by the keypoint detection network.

Our supergraph construction is illustrated in Figure 3.

We first consider each keypoint individually, adding con-

nections to all other keypoints within a radius of three times

the estimated bond length [8]. Subsequently, we remove

connections which have no filled pixels around their cen-

terpoints or if there is a third keypoint located between its

two extremities. Finally, we keep at most six bond candi-

dates for each atom, by eliminating the longest connections.

Chemistry prior knowledge ensures that it is extremely un-

likely for an atom to have more than five neighboring bonds.

Our settings are highly conservative to avoid deleting any

actual bond. On the other hand, pruning superfluous bonds

avoids any unnecessary false positives in the later stage and

a more effective connectivity for the GNN.

3.3. Node Classification

In order to classify atom and bond nodes, we integrate

a Graph Neural Network (GNN) that operates on the con-

structed supergraph. The embeddings for all nodes are ini-

tialized using visual features as well as their types. This

approach leverages the local context of atoms and bonds

to predict their class. Intuitively, it enables the learning of

chemistry rules, i.e. atoms have a fixed valence, as well as

chemistry prior knowledge, i.e. some typical substructures

are more common than others.

Let e1i ∈ RD denotes the initial embedding of the node

i of type ti ∈ {atom, bond} located at position (xi, yi). It

is computed by combining a visual feature vector vi and a

learnable type encoding wti ,

e0i = vi + wti (1)

The visual features vi are extracted from a deep feature map

F , extracted by a backbone network. For an atom node i
we evaluate the feature map in the corresponding location

(xi, yi) with bilinear interpolation,

vi = F (xi, yi) . (2)

For a bond node i, we aggregate features at locations along

the bond as

vi =
1

J

J∑

j=1

F (xj
i , y

j
i ) , (3)

where (xj
i , y

j
i ) are the locations of J uniformly spaced

points along the bond itself.

Given initial node embeddings, information is propa-

gated through the graph to learn local dependencies be-

tween atoms and bonds. Indeed, directly neighboring atoms

and bonds respect strict chemistry rules, and larger neigh-

borhoods form patterns called functional groups, which are

typically abundant in nature. We employ GNN layers, de-

noted
{
gk

}
k∈[1,N ]

, to iteratively update the node embed-

dings,

ek+1 = gk(ek) . (4)

The final predictions {pi} are then obtained using two

Multi-Layer Perceptrons, one for each node type t,

pi = MLPt(e
N
i ) . (5)

The vector pi ∈ R
Ct contains the logits for the final atom

or bond classes.

The most represented bond types include ‘no bond’, ‘sin-

gle’, ‘double’ and ‘triple’. Atom classes include the com-

mon (e.g. O) and exotic atoms as well as charged atoms (e.g.

O−). Since molecule images often include whole groups in

the nodes, e.g. COOH, we further include a class ‘super-

atom’ to recognize these cases. Such nodes are then parsed

as described in Section 3.4.

Our node classification model is trained using the cross-

entropy loss for both the atom and bond prediction heads.

During training, the supergraph structure used as input is

obtained by applying the graph construction algorithm on

augmented ground truth keypoints. To simulate possible er-

rors from the keypoint detector, we add noise to the atom

positions and randomly include false-positive keypoints.

Decoupling the keypoint detection and the node classifica-

tion allow to train faster and to use optimized training sets

for each task.
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3.4. Superatom Groups Recognition

To recognize abbreviated substructures, named super-

atoms, we use an external Optical Character Recognition

(OCR) system. Relying on an external OCR system pro-

vides strong robustness, since the model is trained on a

diversity of text representations that cannot necessarily be

generated in a molecule image. At the location of an ab-

breviated group, the node classifier predicts a ‘superatom’

class. Then, the OCR engine PP-OCR [6] is used to rec-

ognize the text written at this location, which is finally re-

placed by its corresponding sub-molecule, stored in a pre-

computed mapping.

4. Datasets
4.1. Synthetic Training Data Generation

Training datasets of annotated molecule images ex-

tracted from scientific publications are extremely limited.

Therefore, we develop a synthetic training pipeline to gen-

erate a broad diversity of molecular representations. It fur-

ther allows us to extract atom-level annotations.

Our dataset is created using molecule SMILES retrieved

from the database PubChem [14]. To increase the proba-

bility that the dataset covers the largest variety of molecu-

lar structures, we sample SMILES using a strategy based

on functional groups. A functional group is molecule sub-

structure typically abundant in nature. Thus, we retrieve

molecules from PubChem containing each functional group

in a defined collection of 1540 functional groups. To fur-

ther increase diversity, these molecules are queried with dif-

ferent ranges of number of atoms. Finally the dataset is

filtered by removing salts, molecules containing complex

polycyles, isotopes or radical electrons. Training images

are then generated from SMILES using the molecule draw-

ing library RDKit [16].

To capture the large diversity of drawing styles and

conventions from different scientific documents, the syn-

thetic set is highly augmented, at multiple levels. Firstly,

molecules are randomly transformed, notably by setting the

selection of a molecular conformation, adding artificial su-

peratom groups with single or multiple attachment points

or displaying solid, dashed or wavy bonds. Secondly, the

rendering parameters used in RDKit are randomly set, in-

cluding the font, the bond width, the display of aromatic

cycles using circles. This leads to substantial variations in

the drawn molecule, to aid generalization to real datasets.

The generated molecule images are saved together with

their corresponding MolFiles. A MolFile [5] stores infor-

mation about the atoms and their positions in a molecule,

as well as bonds and their connectivity. It provides the nec-

essary information for supervising the training. This gener-

ation pipeline covers a large diversity of molecules includ-

ing stereo-chemistry and molecules with superatom groups.

Finally, the images undergo several image augmentations

on the fly such as gaussian blurring, the adding of pepper

patches, random lines, and random captions.

The exhaustive lists of molecule, rendering and image

augmentations, as well as details regarding the generation

of atom-level annotations are available in the supplementary

materials.

4.2. The USPTO-30K Dataset

Existing benchmarks have some limitations. Being cre-

ated using only a few documents, they contain batches of

very similar molecules. For example in a patent, a molecule

could typically be displayed together with all the substituent

of one particular substructure, resulting in large batches of

almost identical molecules. Additionally, the existing sets

contain molecules of different kinds, including superatom

groups and various markush [7] features, which should be

evaluated independently. In practice, it is important to de-

limit on which types of molecules models can be applied.

We introduce USPTO-30K, a large-scale benchmark

dataset of annotated molecule images, which overcomes

these limitations. It is created using the pairs of images

and MolFiles [5] by the United States Patent and Trade-

mark Office (USPTO) [1]. Each molecule was indepen-

dently selected among all the available images from 2001 to

2020. The set consists of three subsets to decouple the study

of clean molecules, molecules with abbreviations and large

molecules. USPTO-10K contains 10,000 clean molecules,

i.e. without any abbreviated groups. USPTO-10K-abb con-

tains 10,000 molecules with superatom groups. USPTO-

10K-L contains 10,000 clean molecules with more than 70

atoms. We provide visualizations and analysis in the sup-

plementary materials.

5. Experiments
In this section, we perform comprehensive experiments

on multiple OCSR benchmarks. Moreover, we propose an

analysis of the different components of our method.

5.1. Implementation details

The implementation is done with PyTorch 1.12 with

CUDA 11.3. For the keypoint detector features extractor,

we use a ResNet-18 backbone with 8× dilatation factor [37]

to preserve a high spatial resolution. For the node classi-

fier features extractor, we resort to a ResNet-50 with a 2×
dilation factor. The model is trained on 300,000 synthetic

images, presented in subsection 4.1. We train for 20 epochs

on 3 NVIDIA A100 GPUs using ADAM with a learning

rate of 0.0001 that we decay after 5000 iterations by a fac-

tor of 0.8. The losses for atoms and bonds classifiers are

weighted by factors 1 and 3, respectively. During infer-

ence, we pre-process images by removing captions using

PP-OCR [6]. Additionally, in case an initial prediction is an
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Table 1. Comparison of our method with existing OCSR models. We report the accuracy, i.e. the percentage of perfectly recognized

molecule images, on datasets coming from real scientific documents. ∗: re-implemented results. †: results from original publications. ‡:

results from [11].

Method USPTO

(5719)

Maybridge UoB

(5740)

CLEF-2012

(992)

JPO

(450)

USPTO-10K

(10 000)

USPTO-10K-Abb

(10 000)

USPTO-10K-L

(10 000)

Rule-based methods
OSRA 2.1 [8] ∗ 89.3 86.3 93.4 56.3 89.7 63.9 43.1

MolVec 0.9.7 [21] ∗ 89.1 88.3 81.2 66.8 92.4 70.3 64.0
Imago 2.0 [29] ∗ 89.4 63.9 68.2 41.0 89.9 63.0 47.3

Only synthetic training
DECIMER 2.0 [24] † 61.0 88.0 72.0 64.0 - - -

Image2Graph [36] † 44.9 72.0 37.8 24.0 - - -

Graph Generation [23] † 67.0 83.1 74.6 - - - -

CEDe [11] ‡ 79.0 74.1 68.0 49.4 - - -

ChemGrapher [19] ‡ 80.9 83.2 75.5 53.3 - - -

Img2Mol [4] ∗ 25.2 68.0 17.9 16.1 35.4 13.8 0.0

MolGrapher (Ours) 91.5 94.9 90.5 67.5 93.3 82.8 31.4

invalid molecule, we use PP-OCR to merge keypoints lo-

cated in a same detected text cell. See the supplementary

material for more details.

5.2. Evaluation datasets and metrics

To compare our method with state-of-the-art, the model

is evaluated on the standard benchmarks USPTO [8], May-

bridge UoB [28], CLEF-2012 [22] and JPO [9]. USPTO

and CLEF are collections of 5,719 and 992 molecule im-

ages. Besides, JPO contains 450 images published by the

Japanese Patent Office (JPO). JPO is particularly challeng-

ing because of its non-standard drawing conventions and

poor images qualities. Lastly, Maybridge UoB is a dataset

of 5,740 scanned molecule images taken from a catalogue

of drug compounds by Maybridge. To compare methods,

we compute accuracy, defined as the percentage of perfectly

recognized molecules. In practice, this is done by verifying

that the predicted and ground-truth molecules have identi-

cal InChI [10] keys. For evaluation, stereo-chemistry is re-

moved and markush structures are not considered.

5.3. State-of-the-art Comparison

Table 1 compares the OCSR methods on different bench-

marks. Our method achieves superior results compared

to rule-based models on most datasets, including USPTO,

Maybridge UoB and JPO. Solely using synthetic training,

our method reduces the error rate by more than half com-

pared to other deep learning methods on USPTO, May-

bridge UoB, and CLEF-2012. The design of our model con-

fers a strong generalization ability. In practice, this is very

important as our model will be applied to a wide variety of

documents, which are not necessarily evaluated by the cur-

rent benchmark datasets. MolGrapher also maintains good

performance for extremely large molecules in USPTO-10K-

L, which only contains examples with more than 70 atoms.

On the contrary, recognizing large molecules is a signifi-

cant challenge for image captioning based methods. For

Table 2. Comparison of our method with deep OCSR models
finetuned on real data. We report the accuracy, i.e. the percentage

of perfectly recognized molecule images, on datasets coming from

real scientific documents. †: results from original publications. ‡:

results (in grey) from unavailable sub-splits of the original bench-

marks, only reported for reference.

Method USPTO

(5719)

Maybridge UoB

(5740)

CLEF-2012

(992)

JPO

(450)

Real data finetuning
Image2Graph [36] † 55.1 83.0 51.7 50.0

Graph Generation [23] † 92.9 86.6 87.5 -

CEDe [11] † ‡ 91.0 91.5 86.6 74.0

Only synthetic training
MolGrapher (Ours) 91.5 94.9 90.5 67.5

instance, Clevert et al. point out that the performance of

Img2Mol [4] drop sharply for molecules larger than 40

atoms. This is confirmed in our evaluation, where it fails

to correctly recognize virtually any molecule in USPTO-

10K-L. Table 2 also provides comparison with models fine-

tuned using real data. Our model surpasses these methods

on Maybridge UoB, CLEF-2012 and JPO and is second best

on USPTO, while not relying on any real data for training.

Our model outperforms existing methods on our

USPTO-10K and USPTO-10K-Abb. The performance is

particularly improved for molecules containing abbrevi-

ated groups. The performance gap between USPTO and

USPTO-10K-Abb for rule-based approaches suggests that

these methods are specifically parameterized for abbrevia-

tions in the existing benchmark datasets. Our model is the

only deep learning method to provide a competitive perfor-

mance for extremely large molecules. This is allowed by

our architecture, which extracts localized visual features.

5.4. Model Robustness

Clevert et al. [4] introduced modified version of the stan-

dard benchmarks by applying slight perturbations, such as

rotation and shearing, to the input images. Table 3 presents

a comparison to previous methods on the same perturbed

sets. The augmented images can be seen as a simulation
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Table 3. Evaluation of model robustness. We report the accu-

racy, i.e. the percentage of perfectly recognized molecule images,

on perturbed datasets coming from real scientific documents. †:

results from [4].

Method USPTOp

(4852)

Maybridge UoBp

(5716)

CLEF-2012p

(711)

JPOp

(365)

OSRA 2.1 [8] † 6.4 70.9 17.0 33.0

MolVec 0.9.7 [21] † 30.7 75.0 44.5 49.5

Imago 2.0 [29] † 5.1 5.1 26.7 23.2

Img2Mol [4] † 42.3 78.2 48.8 45.1

MolGrapher (Ours) 86.7 94.1 87.8 55.4

of scanned images, which are typically found in chemical

patents. We observe that the performance of rule based

approaches, OSRA, MolVec and Imago, decreases sharply.

However, our model maintains a good result, outperform-

ing other methods by a significant margin. This robustness

is essential for large-scale analysis of chemical literature, as

input molecule image quality cannot be controlled.

5.5. Qualitative evaluation

In this section, we conduct a qualitative evaluation of

MolGrapher, in comparison to state-of-the-art methods.

First, Figure 4 illustrates the intermediate outputs of Mol-

Grapher. Note that MolGrapher accurately recognizes

molecules in challenging cases with overlapping bonds,

without the use of any post-processing rules. Figure 5 show-

cases examples of predicted molecules for images from var-

ious benchmark datasets. MolGrapher demonstrates robust-

ness to images containing captions (Figure 5 row 1). It

can correctly recognize extremely large molecules (Figure 5

row 4), and is robust to solid, dashed or wavy bonds (Fig-

ure 5 row 5). Unlike image captioning based methods such

as as Img2Mol, our predictions preserve the projection and

atom placement used in the input image (Figure 5 row 2).

This can convey critical information for human interpreta-

tion.

5.6. Ablation study

We conduct an ablation study to demonstrate the impact

of each component in the proposed method.

Synthetic training set. We evaluate the impact of the three

levels of augmentation of the training set, illustrated in Ta-

Table 4. Training set analysis. Impact of training set augmenta-

tions on performance. Molecule, rendering and image level aug-

mentation are independently removed.

USPTO JPO JPOp

All augmentations 91.5 67.5 55.4
No molecule augmentation 52.4 52.7 43.4

No rendering augmentation 78.4 55.7 44.1

No image augmentation 69.8 29.3 22.5

ble 4. The image augmentations have a major impact on

the performance of the model. In practice, we noticed that

the keypoint detector benefits greatly from using heavy im-

age transformations. Additionally, the molecule augmenta-

tions, which allow training molecules to contain abbreviated

groups, proved crucial to handle images containing abbre-

viated groups, such as in USPTO.

Keypoint detector. In Table 5, we experiment with dif-

ferent standard deviations for the Gaussian keypoint labels,

and keypoint regression losses. Using a large standard devi-

ation of b/5, where b denotes the bond length, creates over-

laps between keypoints and significantly decreases perfor-

mance. While the model is not sensitive to the choice of

training loss, the WAHR loss offers a slight advantage.

Supergraph construction. In Table 7, we evaluate the im-

pact of the maximum number of bond candidates and the

search radius in the supergraph construction. We observe

that our approach is not sensitive to these settings, but only

experiences a small drop when increasing the number of

bond candidates. This drop is explained by false positives

predicted during the node classification stage.

Node classifier. As demonstrated in Table 7, initializing

nodes embeddings with both visual and type encoding in-

creases performance. We also experimented with positional

Table 5. Keypoint detector analysis. We analyse the standard

deviation of the Gaussian functions (top), as well as the training

loss function (bottom). b denotes the molecule bond length.

USPTO JPO JPOp

Heatmap standard deviation b/5 81.3 54.7 46.8

b/10 91.5 67.5 55.4
b/15 91.4 64.7 51.6

Training loss L2 91.1 66.2 55.1

WAHR [18] 91.5 67.5 55.4

Figure 4. Prediction steps. Keypoints are detected and then used to build a supergraph. After classifying the nodes of the graph and

recognizing abbreviated groups, the output molecule is created. In this example, the polycyclic molecule contains overlapping bonds, a

challenging feature for OCSR models, and is still correctly recognized.
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Figure 5. Qualitative comparison. The figure shows examples of predictions for characteristic images from different benchmarks. Com-

pared to previous rule-based and learning based methods, our approach robustly recognizes the exact molecular structure in challenging

cases, such as with distracting captions, stereo-chemistry, and very large molecules.

Table 6. Supergraph construction analysis. We analyse the max-

imum number of bond candidates (top), and the maximum search

radius (bottom). b denotes the molecule bond length.

USPTO JPO JPOp

Number bond candidates 6 91.5 67.5 55.4
10 91.0 65.7 54.1

Search radius 3b 91.5 67.5 55.4
5b 91.3 65.0 53.1

Table 7. Node classifier analysis. We analyse the features repre-

senting graph nodes (top), and the usage of GCN layers (bottom).

†: without abbreviated molecules and charges.

USPTO JPO JPOp

Node embedding Visual 90.0 64.7 54.9

+ Type 91.5 67.5 55.4
+ Position 91.3 62.8 54.8

USPTO† JPO† JPOp†

Number of GCN Layers 0 90.1 58.0 53.6

4 90.4 66.6 61.6

embedding but found it to reduce the overall performance.

The model demonstrating, in average, best performances

does not include GCN layers. However, as demonstrated

in Table 7, for a limited evaluation setup, GCN layers have

positive impact on performance, leading to significant gains

of 8.6% and 8.0% on JPO and JPOp when using 4 instead

of 0 GCN layers. Note that even the version using 0 GNN

layers, still employs our supergraph for feature aggregation

Figure 6. Ablation experiment. The figure shows MolGrapher

predictions with and without using GCN layers, illustrating that

GCN layers allows the model to learn chemistry rules. Indeed, the

model correctly connect the oxygen atom highlighted in red to a

double bond only.

and classification. The propagation of information through

the graph is beneficial for challenging cases, such as the one

illustrated in Figure 6. In this example, interpreting only the

visual information would be misleading, even for humans.

Understanding chemistry rules is mandatory to resolve the

ambiguities in the drawing, which is correctly done by our

model.

6. Conclusion

We propose a novel architecture for recognizing 2-D

molecule depictions in documents by exploiting the natural

graph representation of molecules and graph symmetries.

Our model accurately detects atoms and bonds based on

their visual features and local context, outperforming exist-
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ing methods on standard benchmarks and our new USPTO-

30K dataset. The model is trained on synthetic images and

demonstrates strong generalization capabilities, making it

useful at scale without requiring annotations for each jour-

nal or patent office.
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