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Figure 1: SIDGAN synthesizes the mouth regions that are synchronized with the driving audio while maintaining the identity
of the reference face and the pose of the query faces. Note that the dubbed faces from two different identities and poses have
the similar lip shapes for the corresponding audio. Query faces for the second identity are not visualized due to space limit.

Abstract

Dubbed video generation aims to accurately synchronize
mouth movements of a given facial video with driving audio
while preserving identity and scene-specific visual dynam-
ics, such as head pose and lighting. Despite the accurate
lip generation of previous approaches that adopts a pre-
trained audio-video synchronization metric as an objective
function, called Sync-Loss, extending it to high-resolution
videos was challenging due to shift biases in the loss land-
scape that inhibit tandem optimization of Sync-Loss and vi-
sual quality, leading to a loss of detail.

To address this issue, we introduce shift-invariant learn-
ing, which generates photo-realistic high-resolution videos
with accurate Lip-Sync. Further, we employ a pyramid net-
work with coarse-to-fine image generation to improve sta-
bility and lip syncronization. Our model outperforms state-
of-the-art methods on multiple benchmark datasets, includ-

*Equal contribution.

ing AVSpeech, HDTF, and LRW, in terms of photo-realism,
identity preservation, and Lip-Sync accuracy.

1. Introduction

Dubbed video generation aims at Lip-Syncing a face at
each query frame with driving audio while retaining its vi-
sual identity and pose as shown in Figure 1. With the un-
precedented expansion of multimedia industry, there has
been a huge rise in video content that involves speakers de-
livering dialogues. For those videos, dubbed video genera-
tion can facilitate many applications, such as avatar anima-
tion, automated creating of audio-visual content, and visual
dubbing of movies. Due to recent advances in camera sen-
sors, internet speed, and display, high resolution video con-
tent (4K or more) has become a necessity in most computer
vision applications, including dubbed video generation.

Generating lip motions accurately synchronized with au-
dio has been a major challenge in dubbed video genera-
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(a) Without Shift-invariance (b) With Shift-invariance

Figure 2: Loss landscape of reconstruction (blue contours)
and sync losses (red contours) (a) without and (b) with shift-
invariant learning. We obtain this landscape by comparing
original faces to their horizontally-shifted and landmark-
warped faces to simulate lip position and shape changes, re-
spectively. While shift-invariant learning makes both losses
to be more consistent across different lip positions, they re-
main reactive to lip shape changes. This enables a model to
better converge to viable minima (purple meshes).

tion. Many approaches rely on SyncNet [6], an audio-
visual synchronization discriminator trained to detect an
offset between a video and audio. Wav2lip [28] was first
to propose use of a pretrained SyncNet as a training ob-
jective (Sync-Loss) for video dubbing to penalize incorrect
mouth shapes, and some recent methods [40, 27] adopt
it. Though SyncNet-based approaches have achieved state-
of-the-art Lip-Sync, most previous works have focused on
low-resolution face generation. These low-resolution out-
puts cannot preserve finer textures of the face and suf-
fer from loss of identity and artifacts. However, high-
resolution dubbed video generation is challenging due to
high-frequency visual information. Our experiments reveal
that a naive extension of a SyncNet-based approach fails
to produce acceptable high-resolution results even when
trained on high-resolution data, which is consistent with re-
cent findings [40].

In this work, we identify and resolve two limitations
of SyncNet-based approaches on high-resolution dubbing.
First, as depicted in Figure 2 (a), we find that there is a con-
flict between reconstruction and Sync-Loss objectives (dif-
ferent minima). Since SyncNet learns to yield the same
embedding for different faces with the same mouth shapes
(or visemes), its embeddings are averaged representation of
visemes. Thus, Sync-Loss minimum does not usually align
with the ground truth lip shape, which is person-specific.
High-resolution training amplifies this effect due to increase
of texture frequency. Second, generalizing over diverse
datasets causes some degree of pixel shifts in generated
faces compared to their ground truths, which is further ag-
gravated by Sync-Loss. In presence of this misalignment,

conventional reconstruction losses suppress high frequen-
cies textures vital for high-resolution dubbing. To jointly
address these two problems, we propose to replace the tra-
ditional objectives with shift-invariant ones. By adopting
adaptive polyphase sampling [4] and contextual loss [25],
we enhance shift-invariance of Sync-Loss and reconstruc-
tion loss, respectively. As shown in Figure 2 (b), the shift-
invariant learning makes both types of losses more flexible
on the lip position domain, facilitating a learning objective,
where both losses are small (single minimum). We concep-
tually and empirically show that shift-invariant learning is
critical in high-resolution dubbed video generation.

Another obstacle is unstable training when supervising
models at high-resolution output only. To tackle this, we
propose a pyramid network with supervisions at multiple
resolutions, allowing us to use a coarse to fine learning strat-
egy. We reconstruct coarse geometry at lower resolutions
where SyncNet is more stable, and higher resolution mod-
ules focus on generating high-fidelity textures.

By combining the above solutions, we develop a novel
dubbed video generator, called SIDGAN. Experimental re-
sults show that our SIDGAN significantly outperforms the
existing methods in terms of visual quality on three datasets;
AVSpeech [9], HDTF [41], and LRW [6]. Our three major
contributions are as follows:

* Analysis of the necessity of shift-invariant learning to
generate high-resolution dubbed video while achieving
accurate Lip-Sync.

* Building a coarse-to-fine pyramid model to enable
gradual improvement on fine details on faces.

* Remarkable quantitative and qualitative performance
on both high-resolution and low-resolution datasets.

2. Related Work

Here, we broadly review related works that are identity-
agnostic. Identity-specific models are another major stream
in this domain [19, 32, 33, 20, 31, 10], but they require
identity-specific training and access to significant speaker
data. Hence, we focus on identity-agnostic methods.

Dubbed Video Generation. The objective of dubbed
video generation is to produce an altered mouth region that
matches driving audio without changing a head pose. Pra-
jwal et al. [ 18] propose LipGAN, an encoder decoder archi-
tecture supervised by audio-visual synchronization discrim-
inator that is trained alongside. However, the method pro-
duces inaccurate lips in unconstrained videos in the wild.
To improve Lip-Sync, Prajwal et al. [28] extend LipGAN
with a pretrained Lip-Sync discriminator. Park et al. [27]
use audio-lip memory to accurately retrieve an in-sync lip
shapes. But, these methods produce low resolution dub-
bing, which limits usage for high resolution videos such as
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4K. In recent works, to generate high resolution dubbed
videos, Gupta et al. [11] introduces a vector quantized
dubbed video generator and a post processing refinement
network. Zhimeng et al. [40] exploit spatial feature defor-
mation and in-painting to generate dubbed videos.
However, all these methods are struggling to synthe-
size the high-quality results with temporally consistent fine-
grained facial features like teeth, lip color, and lip shape.

Portrait Animation. Portrait animation generates Lip-
Synchronized videos from a single image. Jamaludin et
al. [14] propose a simple convolutional neural network
(CNN) that encodes visual identity and audio and decodes
a Lip-Synchronized face. MakeltTalk [43] extracts facial
landmarks and disentangles audio signal into speaker iden-
tity and content. There are some recent works [36, 41]
enable stylized portrait animation by encoding style codes
from 3D modeling [2]. Talking-head synthesis using driv-
ing videos or landmarks is another research trend [42, 29,

, 26].

These works are different from dubbed video generation
since their design is not for a video input.

Shift-invariant Learning of CNNs. Researchers widely
use L1 loss as a reconstruction loss for image-to-image
translation tasks [13]. However, for high-resolution im-
ages, L loss is too sensitive to reconstruct fine-grained tex-
tures, e.g. wrinkles and teeth. With a small displacement,
L, loss can diverge. To overcome this limitation, Ledig et
al. [22] propose a perceptual loss, which measures differ-
ences between deep features extracted using a pretrained
model (VGG16 or VGG19 [30] is a general choice). A con-
textual loss [25] calculates maximum correlation between
deep features of a generated image and its ground truth.

CNNs do not generalize well to small image transfor-
mation [ ], including small displacements. Zhang [3°] an-
alyzes this instability is from downsampling and upsam-
pling, such as convolution and pooling layers with a stride
higher than one, and introduces a solution using a blur-
pool layer. StyleGAN [16] leverages this blurpool-based
upsampling and downsampling layers and achieves signif-
icant visual improvement. Zou et al. [45] raise a concern
that over-blurring from the blurpool layers can induce in-
formation loss and propose a CNN that adaptively blurs
features. Recently, adaptive polyphase sampling (APS) [4]
makes CNNGs truly shift-invariant by downsampling features
based on the norm of polyphase components within tensors.

We leverage shift-invariant learning that enables high-
resolution training by allowing more flexible translations in
loss computation.

3. The Proposed Approach

We propose a visual dubbing approach that is tailored
for high-resolution dubbed video generation. Our approach

consists of 1) multi-branch encoder to process audio, ap-
pearance, and alignment signals separately (Sec. 3.1), 2)
a pyramid-based decoder for high-resolution face synthe-
sis (Sec. 3.2), and 3) novel shift-invariant loss functions to
enable high-resolution training where previous approaches
struggle due to arbitrary pixel misalignment (Sec. 3.3).

3.1. Multi-branch Encoder Architecture

Our encoder architecture processes 1) query face frame
Q € RP12X512X3 9y driving audio as melspectrogram
A € R®0*16_and 3) reference face image R € R?12x512x3
in three separate branches. In order to remove the input
viseme, we mask the lip out of the query image, and propa-
gate the appearance information into a generated face from
the reference image.

The intermediate activations of query encoder and ref-
erence encoder, {féﬁxm, . 7f(‘gwﬂ’m} = &o(Q) and

{£307°16 . Fo12X5121 — gp(R), are fed to the genera-
tor by skip-connections as shown in Figure 3. Unlike con-
ventional methods [18, 28], which concatenate query and
reference faces at the beginning of a single encoder, we in-
dependently encode a query face and a reference face to
make each encoder focuses on its learning objective, i.e.,
the query encoder focuses on the head pose prior and the
reference encoder extracts identity-related features.

Our audio encoder embeds a melspectrogram of driving
audio into 512 channel feature vector £, = £x(A). To
tailor our audio encoder for viseme extraction, we train our
audio encoder as a part of SyncNet [7] and use its pretrained
weights for dubbed video generation.

3.2. High-resolution Dubbed Video Generation

For the dubbed video generator, we employ a pyramid
network [38], as shown in Figure 3, whose earlier modules
reconstruct outlines and coarse geometry and later modules
are for detailed textures. We set 128 x 128 as the lowest res-
olution, where visemes are the most expressive. 512 x 512
is our finest level, where we reconstruct detailed textures.

We input the audio features for the first three generator
block only since audio information is useful in synthesizing
visemes (rough mouth shape and jawline structure) not in
improving visual details. On the other hand, the last three
generator blocks followed by the RGB blocks predict faces
at each target resolution. At each resolution, we calculate
gradients based on loss functions and update network pa-
rameters altogether. Laplacian pyramid [8] is another pos-
sible design choice but we find that it fails when coarse out-
puts have artifacts. This is because Laplacian operation,
which is an additive image generation technique, cannot
correct significant artifacts in the previous level. Overall
architecture can be formulated as:

1= SIDGAN (£4(Q),Er(R), €A (A)), (D)

7835



128128 f256><256
16)(16 fézxgz fgPeot fQ
fq

Input Feature
Upsampling

" _*$

f512><512

Query Face i
f1><1 ~ ~ ~ ™
h 8 8 E 8
E—IlE-lE- Bl E
c c c c
16x16 2 2 3 2
Query Face
AMAAIR A
Driving Audio féﬁxm

f32x32
R fo4x64
R 128x128
f,

Reference Face

1L e
Er

(a) Pipeline of Our Dubbed Video Generator

fr > Concat

Gen Block
Gen Block

Ly, Ly,
Upsampling

mwlp

fa >

Output Feature

(b) Generator Block

f£512x512
R

Ground Truth

Figure 3: A full pipeline of SIDGAN. We feed a query face resized to 16 x 16 into SIDGAN as an initial feature. Each
generator block upsamples the previous feature and blends it with features extracted by the query and reference encoders.
The first three generator blocks accept audio features as well. The RGB blocks output dubbed faces at each resolution. We
depict the losses at the highest resolution (512 x 512) only, but we minimize losses at the lower resolutions too.

where I indicates a generated dubbed face.

3.3. Shift-invariant Learning

We first establish the necessity of incorporating shift-
invariance in the losses for dubbed video generation, and
then we describe our objective function in detail.

Dubbed video generation typically involves a combina-
tion of reconstruction and Sync-Loss as a learning objective,
as demonstrated in various studies [40, 28, 11, 27]. The re-
construction loss provides supervision on identity preserva-
tion, skin color and textures, while the Sync-Loss encour-
ages the model to generate a viseme that synchronizes with
driving audio. This combination has been successful in
generating low-resolution dubbed videos. However, con-
tradictions between the naive reconstruction loss, such as
L1 loss, and the Sync-Loss, such as the one from vanilla
SyncNet [6], exist because the Sync-Loss is not usually min-
imized when the generated viseme is identical to the ground
truth, as shown in Figure 2 (a). In this work, we incorpo-
rate shift-invariant characteristics into our learning objec-
tive to guide our model to find a better minima in the learn-
ing space, as depicted in Figure 2 (b).

3.3.1 APS-SyncNet: Shift-invariant Sync-Loss

Sync-Loss [28] is based on a synchronization score between
a video and audio measured by SyncNet [6]. Sync-Loss
forces a dubbed video generator to synthesize a mouth re-
gion that is synchronized with driving audio. The vanilla
SyncNet used in many dubbed video generators [40, 28, 11,
27] includes convolutional layers with stride two for down-
sampling, which make a model vulnerable against transla-
tions [39]. The output of vanilla SyncNet can change sig-
nificantly with small shifts. Hence, a Sync-Loss from the

vanilla SyncNet has the same misalignment issue on high
frequency textures as the pixel-wise reconstruction losses.
To tackle this problem, we propose a shift-invariant Sync-
Net, called APS-SyncNet. From the vanilla SyncNet, we
replace downsampling layers to combinations of convolu-
tion with stride one and adaptive polyphase sampling (APS)
layers [4]. APS splits a tensor into four sets of polyphase
components and then chooses the one with the highest L2
norm to achieve shift-invariance. Since SyncNet includes
asymmetric downsampling that reduces a vertical dimen-
sion while keeping a horizontal one, we newly implement
asymmetric APS layers by computing polyphase compo-
nents along the vertical dimension'. We define our shift-
invariant Sync-Loss as

Loyn = — log <1 + Cs(ﬁbXPs;I)a d)ﬁPS(A)))’ ?)

where I and A are generated faces (five frames) and their
corresponding audio, respectively. ¢ X p(+) and ¢4 pg(+) are
features extracted by APS-SyncNet’s visual encoder and au-
dio encoder, respectively. CS(-,-) indicates a cosine simi-
larity between two features. Figure 4 (a) visualizes Sync-
Loss with vanilla SyncNet and APS-SyncNet when varying
the horizontal offsets. In other words, we shift a ground
truth image by & pixels on the horizontal axis and use it as a
pseudo prediction. Then, we calculate losses using a pseudo
prediction and its ground truth. We observe APS-SyncNet
yields Sync-Loss with better shift-invariance.

IThe original implementation only provides symmetric APS layers
(https://github.com/achaman2/truly _shift_invariant_cnns).
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Figure 4: Shift-invariant characteristics of the proposed
losses. (a) visualizes differences between Vanilla-Sync-
Loss and APS-Sync-Loss. (b) compares different types of
reconstruction losses; L1, Perceptual, and Contextual.

3.3.2 Shift-invariant Reconstruction Loss

Pixel-wise losses lack shift-invariance and fail to generate
high frequency textures in supervised image reconstruction
tasks. Adding GAN loss is a general solution [2 1] but it can
encourage hallucinating sharp features which do not strictly
preserve target identity. Hence, to better utilize the ground
truth and preserve identity, feature losses have been pro-
posed. Perceptual loss [22] based on pretrained VGG [30]
network is a popular option and produces sharp textures.
But perceptual loss lacks degree of shift-invariance neces-
sary for our task. To tackle this we exploit the contextual
loss [25] as a feature loss with enhanced shift-invariance.
This feature based loss is not sensitive to misalignment as
it ignores spatial locations for loss computation. We define
our contextual loss as

Lox = —log (CX(¢v&dis (1), ovéds (I97))), )

17 are a generated face and its ground truth,

where I and

respectively. ¢RelV%(+) indicates features extracted by
VGG19 up to ReLU5_3 [30]. CX(+,-) denotes a contextual
similarity between input features. Figure 4 (b) compares
three different reconstruction losses when varying pixel off-
sets as done in Figure 4 (a). L1 loss increases as the offset
increases. Between the perceptual and contextual losses,
the contextual loss provides better shift-invariance since the
contextual similarity assesses the position agnostic similar-

ity between prediction and ground truth features.

3.3.3 Final Loss Function

For reconstruction, we exploit L1 (£;), contextual (Lcx),
and focal frequency (Lrrr,) losses. We empirically find that
L1 loss is necessary to obtain reliable predictions. Focal
frequency loss [15] is to maintain face’s identity better. For
adversarial training, we adopt GAN loss (Lgan) as done in
LSGAN [24]. The final loss function becomes

L=aly+ BLcx + YLrrL + pLaan + ALsyn, (4)

where «, 3, v, 1 and A indicate weights for each loss. We
set them differently for each generator’s level.

3.4. Implementation Details

Here, we describe implementation details of our work.
Please find our supplementary document for more details,
such as detailed network architecture.

Model Input. We convert raw driving audio into melspec-
trogram a € R80*16_ whose number of channels is 80 and
length is 16. For a 25 fps video, the audio length of 16
equals to 0.2 second long. For a query face, we set a block-
ing region as between cheeks (horizontally) and below nose
(vertically) using a facial landmark estimator [3] similar to
an existing method [40].

Generator. For our generator training, we leverage pro-
gressive training of increasing resolutions, which yields
fine-grained texture as studied in other works [8, 23]. Addi-
tionally, progressive training avoids degenerate solution of
copying reference face to output, a common training prob-
lem in dubbing architectures with skip connections [37].
To advance realism of generated faces, we train our gen-
erator in an adversarial way by adopting patch discrimina-
tors [13]. We adopt an Adam optimizer[ 7] with learning
rate of 0.0002 and train for 3.9M iterations with a batch
size of 4.

APS-SyncNet. We pretrain our APS-SyncNet using the
VoxCeleb2 dataset [5] and finetune it on the AVSpeech
dataset [9]. We use an Adam optimizer with the same hy-
perparameters as our generator. Batch size is 256. We train
APS-SyncNet for 370K iterations.

4. Experimental Results

To quantitatively evaluate the quality of the dubbing, we
follow the inference setting defined in [27]. In this set-
ting, we simulate generating dubbed content by using the
original audio to drive lip sync, the first frame of the orig-
inal video as the reference frame, and upper halves of the
original video as query face frames. Hence, the original
frame becomes the ground truth as its lower half is not seen
during generation and this allows computation of full refer-
ence metrics, such as SSIM, PSNR, and landmark distance
(LMD). Note that in actual dubbing application, dubbed au-
dio will be used but this setting lacks availability of ground
truths making it unsuitable for quantitative evaluation.

Datasets. Even though most of dubbed video genera-
tors [27, 28, 42, 18] leverage the LRS2, LRW [6], and
VoxCeleb2 [5] datasets for training, they consist of low-
resolution videos. Since our objective is to train a high-
resolution model, we constructed a training dataset using
a subset of the AVSpeech dataset [9], which has high-
resolution videos. We extract faces from these videos using
the OpenCV face detector and filter out extreme head poses.
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AVSpeech HDTF
Visual Quality Identity Lip Sync Quality Visual Quality Identity Lip Sync Quality
Method FID| SSIM{ PSNRfT| ID| |LMD| LSE-D| LSE-Ct || FID] SSIM{ PSNR{| ID| |LMDJ| LSE-D| LSE-Ct
PC-AVS [42] 93.16 0.73 19.22 0.39 4.35 722 7.06 63.62 0.72 19.49 0.40 4.11 6.40 9.29
LipGAN [18] 7784  0.89 24.70 0.28 3.57 7.43 6.63 68.56  0.89 24.67 0.26 3.32 6.82 8.46
Wav2Lip [28] 7350  0.89 24.32 0.29 3.74 6.64 8.03 5582 0.89 24.38 0.27 3.43 6.00 9.87
Wav2Lip-384 [28] || 61.25  0.84 21.82 0.32 4.37 7.15 6.61 4733 081 20.69 0.32 4.50 9.94 4.82
Ground Truth - - - - 0.00 8.17 5.64 - - - - 0.00 6.76 8.66
Ours 22.69 095 28.67 0.17 2.96 7.38 6.31 1215 0.95 28.12 0.17 2.99 6.80 8.05

Table 1: Quantitative results on the AVSpeech [9] and HDTF [4 1] test sets. | and 1 denote lower and higher values are better,

respectively. The best indices are boldfaced.

(a) Ground Truth (b) PC-AVS (c) LipGAN

(d) Wav2Lip

(e) Wav2Lip-384 (f) Ours - SIDGAN

Figure 5: Qualitative comparison of dubbed videos generated by different methods. Note that PC-AVS’s results have more
visual contexts than the other methods since they require more facial contexts as the input.

Our AVSpeech training set consists of 248,531 videos that
are three seconds long in average. We use 3,945 videos
that do not have identity overlap with the training set as a
AVSpeech test set. For evaluation, we additionally bench-
mark dubbed video generators on HDTF [41] and LRW [6]
test sets. The HDTF test set consists of 171 high-resolution
videos whose duration is relatively longer than AVSpeech
(from 30 seconds to seven minutes). In the LRW data set,
each clip is annotated with a word. We report results on
1,000 videos selected from the test set that had the high-
est overlap between the annotated word timestamp provided

with the dataset and the word timestamp predicted using a
forced alignment system. Further details are in the supple-
mentary section. The clips from the LRW dataset are in
low-resolution as compared to HDTF and AVSpeech.

Metrics. For image quality evaluation, we use standard im-
age quality metrics [35, 44], including FID [12], SSIM, and
PSNR. We also assess identity loss, called ID, which mea-
sures how well a model is able to retain source identity. ID
is calculated as mean Euclidean distance between a predic-
tion and a ground truth in an embedding space of a face
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(b) Ours - SIDGAN

Figure 6: More results of SIDGAN on extreme conditions,
such as beard, side-face, occlusion, and low-resolution.

Visual Quality Identity Lip Sync Quality
Method FID| SSIM? PSNR?| ID| |LMD| LSE-D| LSE-C{
PC-AVS 63.75 0.71 21.82 | 041 3.24 6.80 7.38
LipGAN 65.66 091 2584 | 025 | 3.12 7.01 6.60
Wav2Lip 5726 091 2586 | 025 | 3.24 6.22 8.31
Wav2Lip-384|50.84 0.87 2372 | 030 | 4.16 6.65 7.08
Ground Truth | - - - - - 7.17 6.34
Ours 1984 096 30.04 | 0.16 | 2.86 6.79 6.76

Table 2: Quantitative results on the low-resolution LRW test
set [6]. | and 1 denote lower and higher values are better,
respectively. The best indices are boldfaced.

recognition model. We extract face embeddings using a pre-
trained face recognition model®>. We use two types of met-
rics for lip-sync quality. LMD [27, 42] measures lip land-
mark distances between a prediction and its ground truth.
LSE-C and LSE-D [28] estimate audio-visual coherence us-
ing SyncNet [7]. We calculate these metrics using the face
crops only, ensuring the background does not play any role
in the calculations. We use same settings to compare all
methods for fairness.

Compared Methods. We compare our method with three
conventional methods, whose source codes are publicly
available; PC-AVS [42], LipGAN [18&], and Wav2Lip [28].
We additionally train a high-resolution Wav2Lip for fair-
ness, called Wav2Lip-384. Note that the original Wav2Lip’s
resolution is 96 x 96 but Wav2Lip-384’s resolution is 384 x
384. We apply the same inference setting to all models us-
ing the first frame as an identity reference and an original
video as a query. Lip regions in a query video are masked
for LipGAN, Wav2lip, Wav2Lip-384, and SIDGAN. Even
though PC-AVS is a portrait animation algorithm, we can
test it under the same inference setting by feeding query
frames as a pose-condition.

Zhttps://github.com/ageitgey/face_recognition
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Figure 7: Visualization of three benchmarking results of the
five different dubbed video generators with ground truths.

Method Synct  Visual T Overall T
PC-AVS 3.07 2.57 2.57
Wav2Lip 3.02 1.84 2.10
Wav2Lip-384  3.03 1.90 2.19
Ours 3.52 3.62 341

Table 3: User study for dubbed video generators. Higher
scores are better. We highlight the best scores.

4.1. Benchmark Results

Table 1 (left) benchmarks the dubbed video generators
on the AVSpeech test set [9]. In terms of visual quality,
SIDGAN outperforms all existing methods. SIDGAN re-
tains the identity better than the conventional methods by
achieving the best ID index. With respect to the landmark-
based lip-sync assessment, our method performs signifi-
cantly better. For LSE-D and LSE-C, Wav2Lip and PC-
AVS yield better scores. However, please note that even
ground truth’s LSE scores are worse than Wav2Lip and PC-
AVS. Furthermore, our training dataset is significantly dif-
ferent from the dataset Metric SyncNet [6] was trained on
introducing a domain gap. In order to fairly evaluate the
Lip-Sync quality without any model bias in the evaluation,
we conducted a user study to understand the preference of
real customers on Lip-Sync and other factors and the details
are discussed in Section 4.2.

Table 1 (right) benchmarks the dubbed video generators
on the HDTF test set [41], and we observe the same perfor-
mance trend as seen on the AVSpeech test set. Figure 5
compares dubbed video generation results with ground
truths on HDTF. LipGAN, Wav2Lip, and Wav2Lip-384 are
too blurry and do not reconstruct the facial textures. In
terms of lip sync, the lip shapes generated by PC-AVS, Lip-
GAN, and Wav2Lip-384 do not align with the ground truths
well. Even though Wav2Lip provides correct Lip-Sync re-
sults, they are too expressive as depicted in the first two
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(a) Ground Truth

(b) w/o Contextual (c) w Perceptual

(d) w/o APS (e) w/o Pyramid (f) Full Setting

Figure 8: Qualitative results from our ablation study.

rows. On the other hand, our SIDGAN consistently synthe-
size faithful faces. Figure 6 presents more qualitative results
of SIDGAN on extreme conditions. Our model outputs de-
cent faces even when frames have beard, side-face, and oc-
clusion. For a low-resolution frame, our method yields a
blurry face rather than a sharpened one allowing seamless
blending into source video.

Table 2 lists indices of the dubbed video generators on
the LRW test set [6]. Even though LRW is a low-resolution
dataset, our SIDGAN outperforms the conventional meth-
ods in terms of all metrics except for LSE. This indicates
that our method faithfully performs visual dubbing even for
low-resolution faces. Figure 7 plots consolidated bench-
marking results on an FID and LSE-D coordinate system. It
is observable that our method is closest to the ground truths.

4.2. User Study

We conducted a user study to better understand real
users’ preference on video contents visually dubbed by
four different algorithms; PC-AVS [42], Wav2Lip [28],
Wav2Lip-384 [28], and SIDGAN. In this user study, we ran-
domly selected 30 seconds long 22 talking head clips from
the HDTF test set. For every clip, we generated visually
dubbed videos with the same setting as our benchmarking
experiments. 10 viewers evaluated four outputs of every
clip in three quality dimensions; 1) Lip-Sync quality, 2) im-
age quality, and 3) overall experience. Rating ranges from
1 (worst) to 5 (best). As shown in Table 3, SIDGAN got the
best ratings across every dimension.

4.3. Ablation Study

We conduct ablation study to analyze contributions of
each component we designed. Table 4 shows efficacy of
each modification. We first ablate the contextual loss, and
SIDGAN’s performance gets degraded in terms of visual
and Lip-Sync quality. Replacing the contextual loss to the

Setting FID| LSE-D| LSE-Ct
w/o Contextual Loss 14.97 6.90 7.83
w Perceptual Loss 15.29 7.49 7.21
w Vanilla Sync Loss 12.61 7.06 7.76
w/o Pyramid Generator  13.01 6.93 7.91
Full Setting 12.15 6.80 8.05

Table 4: Comparison of different ablation settings tested on
HDTEF [41]. The boldfaced scores indicate the best results.

perceptual loss makes SIDGAN worse. Next, APS Sync-
Loss is necessary to maximize the performance. Finally, we
train our model without the pyramid architecture, and there
is degradation as well. In addition, we find that our model
without the pyramid architecture often fails to converge.
Figure 8 visually compares the results from the ablated set-
tings. We observe that the ablated settings result in wrong
teeth structures, wrong lip shapes, or identity changes. Es-
pecially, the results with the perceptual loss are blurry.

5. Limitations and Conclusion

Despite SIDGAN’s general success, we have observed
degraded performance on challenging cases such as full
profile views, very fast speech, and background audio
noises as the training data does not represent them well.
Furthermore, SIDGAN sometimes suffers from temporal
jitter as its competitors do.

In this work, we analyze the importance of shift-invariant
learning in high-resolution dubbed video generation. We
demonstrate that making the reconstruction loss and the
Sync-Loss shift-invariant enable the generator to achieve
state-of-the-art visual quality and Lip-Sync performance.
Further, we propose a coarse to fine generator which pro-
gressively learns how to reconstruct faces with fine-grained
textures as well as accurate visemes.
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