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Abstract

Accurate affordance detection and segmentation with
pixel precision is an important piece in many complex sys-
tems based on interactions, such as robots and assitive de-
vices. We present a new approach to affordance percep-
tion which enables accurate multi-label segmentation. Our
approach can be used to automatically extract grounded
affordances from first person videos of interactions using
a 3D map of the environment providing pixel level preci-
sion for the affordance location. We use this method to
build the largest and most complete dataset on affordances
based on the EPIC-Kitchen dataset, EPIC-Aff, which pro-
vides interaction-grounded, multi-label, metric and spatial
affordance annotations. Then, we propose a new approach
to affordance segmentation based on multi-label detection
which enables multiple affordances to co-exists in the same
space, for example if they are associated with the same ob-
ject. We present several strategies of multi-label detection
using several segmentation architectures. The experimental
results highlight the importance of the multi-label detection.
Finally, we show how our metric representation can be ex-
ploited for build a map of interaction hotspots in spatial
action-centric zones and use that representation to perform
a task-oriented navigation.

1. Introduction
When humans repeatedly interact in a close environ-

ment, we associate a set of affordable actions with a certain
distribution of objects in a physical space. For example,
we associate a pan on a stove with cooking, but the same
pan on the sink with washing. A joined spatial-semantic
understanding contains powerful insights to understand hu-
man behaviour. This requires a close combination of per-
ception, mapping and navigation algorithms; with poten-
tial applications in augmented reality systems [60, 61], but
also guiding a robot [19, 36] or assistive devices [68]. In
the last years, the ability of deep learning models to extract
high-level representations has improved the perception of
autonomous agents, while egocentric vision offers a pow-

Figure 1. From a sequence of egocentric observations, our agent
creates a spatial-metric multi-label representation of the affor-
dances, enabling a task-oriented navigation.

erful viewpoint for modelling human-object interaction un-
derstanding. Recent advances include anticipating future
actions [23, 26, 1], model the hands-object manipulation
[22, 77, 27, 16], detect the change in an object state [2],
identify interaction hotspots [20, 54] or create topological
maps [55]. Despite the fast movements of a headset camera,
egocentric perception has also contributed to the mapping
and planning phases: localising the agent in a known 3D
map [43], performing visual navigation [56, 62] or building
third-person (allocentric) maps [7, 47].

Gibson’s perception theory presents affordances as the
potential actions that the environment offers to the agent
based on its motor capabilities [25]. For example, the per-
son can afford taking a glass, but the affordances of a soup
in a pan can be mixing, emptying, scooping and pouring
simultaneously. This multiplicity models better complex
dynamic environments and opens the door to multi-agent
collaboration with task synchronization. Although some
authors have focused on more complex affordance models
[50, 75], affordance perception is typically defined as a clas-
sification problem. Some authors have focused instead on
grounded affordances [20], which provide a more flexible
setup and are truly associated with motor capabilities, show-
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ing improvements in action anticipation [46]. However,
most learning approaches in affordance perception consider
the problem ungrounded to the agent interaction with the
object, requiring previous annotations of each affordance
occurrence [53, 58, 48, 19, 8, 57]. While ungrounded meth-
ods have the advantage of providing pixel-wise precision,
which we call metric understanding of the scene, many
grounded approaches rely on full image classification losing
any metric meaning. In this paper, we propose a grounded
approach with pixel-wise precision, which enables detailed
metric understanding while maintaining the flexibility of
grounded methods and that can be used as prior information
for more complex affordance models [75]. Close to our pro-
posal is the work of Nagarajan et al. [54], which presented
a grounded approach for extracting interaction hotspots by
directly observing videos. Similar to other previous works,
the hotspots are modelled as a single available affordance.
Instead, we propose to consider the multiplicity of affor-
dances for a single object or spatial zone through multi-label
pixel-wise predictions.

We build a pipeline to automatically collect multi-label
pixel-wise annotations from real-world interactions using
a temporal, spatial and semantic representation of the en-
vironment. We use this method with the EPIC Kitchens
videos [15] to build a dataset of grounded affordances
(EPIC-Aff), which to the author’s knowledge, constitute the
largest dataset in affordance segmentation up to date. We
then adapt several segmentation architectures to the multi-
label paradigm to extract more diverse information from
the scene based on the assumption that the same object
may have multiple affordances available. Using a map-
ping approach we extract the multi-label affordance seg-
mentation to build a map that spatially links activity-centric
zones as shows Figure 1, allowing a metric representation
of the environmental affordances and goal-directed naviga-
tion tasks. Finally, we perform a quantitative evaluation of
the extension from common architectures to the multi-label
paradigm and we show mapping and planning applications
of our approach, that can be used for assistive devices or in
robotic scenarios.

2. Related works

2.1. Learning Visual Affordances

Ungrounded approaches [53, 58, 48, 19, 8, 57] for affor-
dance perception are fully supervised by manually labelled
masks. Due to their similarity with semantic segmentation
or object detection tasks, these works use common archi-
tectures such as an encoder-decoder [57], proposal-based
detectors [19, 58, 48, 8] or Bayesian instance segmenta-
tion [52]. Concerning grounded works, Fang et al. [20]
extracted a latent representation from demonstration videos
or Luo et al. [46] transferred the learning from exocentric

images to the egocentric perspective using only the seman-
tic label as supervision. Nagarajan et al. [54] extracted
the interaction hotspots by deriving the gradient-weighted
attention maps obtained at training an action classifier on
videos. Then Ego-Topo [55] built a topological graph of
the scene to perform affordance classification from egocen-
tric videos, grouping each node visually and temporally co-
herent frames with similar object and action distributions.
This allows them to discover activity-centric zones based on
their visual content and represent semantically the traversed
paths with the edges of the graph.

2.2. Multi-label perception

In the multi-label segmentation task, we assign two or
more categories to a single pixel. A particular case is an
amodal segmentation where the relevance of occluded parts
depends on the depth order [78, 49]. The most common
applications of multi-label segmentation are biomedical
works, where there are multiple overlapped non-exclusive
levels of tissues. Existing architectures extend a U-Net with
minor changes such as a dynamic segmentation head [18],
shuffle-attention mechanisms in the skip-connections [39],
a combination of appearance and pose features [5] and split-
attention modules [38]. The closest approach to multi-label
segmentation is multi-label image recognition, where the
label imbalance between positives and negatives in each bi-
nary classifier and the extraction of features from multiple
objects make this task more complex [45]. Class distribu-
tion aware losses [73] such as the asymmetric loss [66],
the focal loss [42] or the Multi-Label Softmax loss [24]
correct the over-suppression of negative samples. On the
other hand, Graph Neural Networks such as [74] deal with
the feature extraction from multiple objects by creating a
dynamic graph for each image that leverages the content-
aware category representations. Finally, the transformer ar-
chitecture extracts multiple attention maps in the different
regions of interest [13, 37], guiding the multi-label classi-
fication [45] or ranking the class of the pixels considering
only the categories selected by the classifier [30].

3. Grounded Affordance Labelling
We extract automatic, interaction-grounded, multi-label

pixel-wise and spatial affordance annotations from a se-
quence of real-world images in complex and cluttered envi-
ronments, as shows Figure 2. Our multi-label segmentation
approach learns all the potential options and does not reduce
the perception to a single action. For example, a potato on
a chopping board offers cutting, putting, peeling, removing
and taking simultaneously. Current affordance segmenta-
tion works [19, 53, 58, 46, 52] assume a single-label affor-
dance per object and lose a valuable amount of information.
Although other affordance models allow for multiple pre-
dictions, these works ignore the segmentation of the inter-
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Dataset Year IG Pix ML CP #Obj. #Aff. #Imgs.
UMD [53] 2017 X ✓ X X 17 7 30,000

IIT-Aff [58] 2017 X ✓ ✓ X 10 9 8,835
ADE-Aff [14] 2018 X ✓ ✓ X 150 3 10,000

OPRA [20] 2018 ✓ ✓ X X - 7 20,774
Grounded I.H [54] 2018 ✓ ✓ X X 31 20 1,800∗

Ego-Topo [55] 2020 ✓ X ✓ X 304 75-120 1,020-1,115∗

PAD v2 [76] 2021 X ✓ X X 72 31 30,000
AGD20k [46] 2022 X ✓ X X 50 36 23,816

EPIC-Aff 2023 ✓ ✓ ✓ ✓ 304 20-43 38,876

Table 1. Visual affordance datasets statistics. I.G: Interaction
Grounded. Pix: pixel-wise annotations. ML: multi-label. CP:
camera poses #Obj: Number of objects. #Aff: Number of affor-
dances. #Imgs: total number of images. ∗ The affordance labels
are only for evaluation, the model is trained supervised only by
action labels provided by [15]

action hotspot in the image and lose the pixel-level accu-
racy of the segmentation models. For example, topological
maps extract multiple affordances from an image [55], or
action anticipation models predict a probability distribution
of the different possibilities [23, 26]. Our methodology gets
the best of two worlds producing multi-label metric masks,
resulting in a full distribution of affordances. It enables a
deeper understanding of the manipulation task such as the
grasping points of the tool [3] or the evolution of the ma-
nipulation process over time[44]. Similar to previous un-
supervised or weakly supervised methods [50], we extract
affordance labels from weak VISOR and EPIC Kitchens an-
notations grounded on actual interactions.

We join the affordances with their 3D spatial location by
extracting the camera poses. The spatial approach to affor-
dance perception is not new for the community. Rhinehart
et al. [64] associate the functionality of regions with spe-
cific spatial locations, showing that that defining an affor-
dance based solely on semantics is insufficient due to the
significant influence of the physical context. For example, a
frying pan is only cookable when it is on the hob or a plate
is washable when the agent is next to the dishwasher. How-
ever, their method results in smooth 2D maps, which can be
problematic for the fine-grained affordances in 3D space in
our EPIC-Aff dataset. Instead, our method is able to scale
up to large environments while maintaining the detail by
using neural networks. Other previous works [28, 65] also
use SLAM for action prediction but with addressing differ-
ent problems. In those works, the action is set on the hu-
man, while the image provides context; while in our case
the action/affordance is set on the environment and the user
provides context. In our work, we use COLMAP to ex-
tract the relative pose between sparse frames with a filter of
the dynamic objects, registering up to 93 % of the frames
compared with the 44 % of the frames registered by ORB-
SLAM [51] on EPIC Kitchens [55]. Recently, EPIC Fields
[72] registered the camera pose of the dense videos in EPIC
Kitchens using neural rendering techniques.

Figure 2. Ground truth examples. For visualization purposes, we
show a single label of the affordable action on its location, al-
though these are overlapped for the same sample. The food in the
bowl affords taking or mixing, while the cutting board on the left
affords putting, cutting, moving and peeling.

3.1. Affordance datasets

Following our motivation, we conduct a study along
the visual affordance datasets shown in Table 1. The un-
grounded datasets are subjected to the annotator’s consider-
ation and required to draw pixel-wise semantic mask to each
object part [58, 53, 14, 76, 46] or additional sensors [35, 9],
decreasing the object variability and limiting the scalability
due to the annotation costs. The UMD dataset contains a
semantic affordance map for objects in isolated conditions
and with low variability, which prevents generalisation [53].
The IIT-Aff dataset [58] provides the most comprehensive
annotations designed for use in robotics, including multi-
ple objects in a single image. The ADE-Aff dataset [14],
built on top of ADE20K scenes, examines the social ac-
ceptability of actions about context but is limited to only
three affordance classes. The AGD20k [46] dataset includes
the largest number of categories and actions by transferring
from an exocentric to an egocentric viewpoint perspective.
On the other hand, grounded works learn from observing
interactions on the EPIC-Kitchens sequences [15], inter-
net demonstration videos [20] or with gaze point with eye-
tracking devices [21]. The annotations provided are only
used for evaluation since they do not require strong supervi-
sion. However, these approaches ignore the pixel-wise pre-
cision [55] or the multi-label modality of our approach[54].

Based on the mentioned limitations, our novel dataset
EPIC-Aff provides multi-label pixel-wise affordance anno-
tations with the camera pose. It contributes to a diverse and
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comprehensive affordance database with the largest number
of images up to date. This better captures the complexity,
dynamics, multiplicity and variability of real-world envi-
ronments, such as preparing a recipe in a kitchen. Finally,
as our labels are automatically extracted, we enable the ap-
plication of our method to other egocentric datasets.

3.2. EPIC-Aff dataset

We detail the procedure shown in Figure 3 for our
grounded affordance labelling. EPIC-Aff1 is composed of
38,876 images with up to 43 different affordable actions K.
We choose the EPIC-Kitchens as the base dataset because
of its sequential and repetitive nature, which allows us to
extract the 3D geometry, and because the kitchen is a sce-
nario with multi-step and structured activities very rich in
semantics. We cover all the object categories present in the
EPIC-100 annotations, which constitute a wide, large and
diverse knowledge base.

From a sequence of video, we join the EPIC-100 narra-
tions [15] and the VISOR Kitchen annotations [17] to ob-
tain a sparse sequence of frames SM = (f1, ..., fN ) with
the localization of the interactions on the image, as shows
Figure 4. The EPIC-100 labels [15] contains narrations
formed by an action verb V with an associated object O,
i.e: ”add steak”, for more than 100 hours of video. VISOR
Kitchens [17] interpolates from sparse annotations to gener-
ate semantic masks M and bounding boxes B on the active
objects. We set the centre of the interaction xi = {ui, vi} in
the middle of the intersection between the hand Bh and the
interacted object BO bounding-boxes given by the narration
V +O.

Then, we apply COLMAP, a Structure-from-Motion
(SfM) algorithm [69] to obtain the camera poses T c

w and
a point cloud of the environment {Xp}. In the EPIC-
Kitchens [15], each kitchen is composed of multiple videos,
thus, we join all the sparse frames with interactions SK =
{S1 . . .SM} to relate frames from different videos in a
common 3D reference. Furthermore, we use the VISOR
semantic masks to avoid including dynamic objects in the
point cloud.

Next, we employ a robust depth estimator based on a
neural network dNN = fd(·) [63] to predict the depth of
interaction points dNN (xi). Because the neural network
computes the depth up-to-scale, we compute a scale cor-
rection factor per image to fit the network scale to the SfM
scale: scale = median(dSfM (Xp)/median(dNN (Xp))
[34], where dSfM (Xp) is the depth of all the points {Xp}
visible from the current image and dNN (Xp) is the depth
of the same points given by the network estimator.

Using the predicted depth and the scale projection, we
can project the interaction point xi in 3D space Xi and

1https://github.com/lmur98/epic_kitchens_
affordances

use the camera pose to project into the global coordinates
Xw

i = T c
w·Xc

i . At this point, as shown in Figure 5 we obtain
in a common reference a history of all the interactions that
occured in the kitchen Ik = {Xw

1 , Xw
2 , . . . , Xw

k }, cross-
generalizing for the different sequences. This constitutes
our knowledge base that follows our hypothesis that the dis-
tribution of affordances is spatially linked to pre-determined
physical spaces (i.e you only wash in the dishwasher), not
only to the semantic context of a topological graph [55].

Then, once we store all the past interactions Ik with their
Vk and Ok labels, we reproject them back to the new cam-
era reference system Xc

i = Tw
c · Xw

i . Instead of consider-
ing all the object semantic masks as the affordance region,
we centre a Gaussian distribution over each affordance re-
projected point Xc

i and build an additive heatmap. Then, the
affordance masks Maff

i are defined as the regions where
the heatmap is greater than 0.25. This is grounded in how
humans interact with objects [54] and allows us to consider
the different affordability of the object parts (a knife is only
graspable with the handle). In order to generate the af-
fordance labels A = {(V1,O1,Maff

1 ), ...., (Vj ,Oj)}, we
select only those verbs whose associated object Oi was
present in the VISOR annotations {M,B}. With this pro-
cedure, we are grounding our dataset in the past interactions
in that environment and associating multiple affordances to
a single object. We show qualitative samples of the EPIC-
Aff in Figure 2.

We provide two different versions of the dataset: the easy
EPIC-Aff and the complex-EPIC Aff, with 20 and 43 affor-
dance classes respectively. There is a challenging class im-
balance, as shown the Figure 6 with a significant frequency
gap between the most common class (open, with a 16.0 %)
and the less represented (dry, with a 0.3 %). In Fig. 7 we
show the pixel ratio, which reflects that semantically sim-
ilar or opposite actions are associated with the same space
(i.e, turn-on, turn-off, adjust or cut and peel) and the impor-
tance of the multi-level approach. This shows that activity-
centric zones are physical spaces where there occur multiple
common activities, both synonyms or antonyms. For exam-
ple, in the hob controls region we likely find (i.e, turn-on,
turn-off, adjust), while on the dishwasher zone, we will en-
counter wash and dry.

4. Multi-label segmentation and mapping
In this section, we explain our inference procedure. First,

we describe the modifications needed to obtain a multi-label
segmentation model. We then show how our approach can
be applied to mapping and planning tasks.

4.1. Multi-label segmentation

In this section we describe how we transform classi-
cal semantic segmentation models to a multi-label ver-
sion. While there exists lots of single-label segmentation
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Figure 3. Left: Pipeline with the automatic extraction of the pixel-wise labels on the EPIC-Aff dataset. We combine the EPIC-100 narration
with the VISOR masks annotations to extract the interaction point. Then, using the camera pose extracted from COLMAP, we project all
the interactions in a common 3D global reference. Finally, we reproject all the past interactions to each frame, and filter the affordance
annotation by the objects present at the image. Right: the multi-label masks predictions from our model are leveraged to a 3D map

Figure 4. Using the masks provided by VISOR Kitchens, we define
the intersection between the object and the hand bounding boxes
as the center of the interaction. We show in yellow the bounding
box of the non-interacting objects, in green the bounding box of
the hands and in blue the bounding box of the interacting object.

Figure 5. Historical with all the past interaction frames in that en-
vironment, where the blue dots represent the camera poses of the
sparse frames from all the sequences

Figure 6. Distribution of the 20 classes in the easy-EPIC Aff
dataset, showing a significant class imbalance.

Figure 7. Pixel ratio of the 20 classes in the easy-EPIC Aff dataset,
where blue represents high correlation between the two classes and
yellow that they do not used to concur in the same pixel.

[11, 40, 4, 31, 30, 10] and multi-label image classifica-
tion works [73, 24, 12, 45], the multi-label segmentation
is a more unexplored task restricted to small domains like
biomedical images [39, 5].

Given an input image X, the multi-label segmentation
goal is to predict a group of categories for each pixel.
Therefore, we assume that each pixel could represent mul-
tiple affordances (takeable, cuttable, washable, . . . , etc.)
or not belong to any category. For a total number of K
classes we define the label y for each pixel of the image
as y = [y1, ..., yk], where yk = 1 if the pixel contains the
K-category label, otherwise yk = 0. In order to predict
multi-label segmentation masks, we have evaluated two dif-
ferent approaches. First, we use a standard multiclass seg-
mentation networks and evaluate three different heuristics
to select multiple labels per pixel. Then, we modify the
segmentation networks to output multiple binary classifiers
which enable multiple labels to be active.
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Figure 8. Heuristics to select multiple labels from a probability
vector

For the multiclass scenario, we assume that the net-
work output is a categorical distribution for all the
classes and use the standard supervision loss, the cross-
entropy. Then, we transform the probability vector p =

[p1, ..., pk],
∑k

k=1 pk = 1 with three heuristics to choose
the multiple winning-classes, as shows Figure 8. On the first
method, we select the top-k classes with the largest proba-
bility value pk. Note that we do not considers predictions
with a sk < 1/k, as it occurs to k1, k5 on Figure 8. The
second alternative is max-θ, which consists in selecting all
the possible classes whose pk is greater than a threshold θ.
Finally, the last heuristic is a dynamic θd threshold. We se-
lect the classes whose difference with the next class is larger
than a θd.

On the multi-label scenario, the model outputs K inde-
pendent Bernouilli distributions, generating binary proba-
bilities p = [p1, ..., pk], where we assume a detection if
pk > 0.5. Then, we substitute the cost function by a class-
weighting Binary Cross Entropy (BCE) loss, obtaining K
binary classifiers. One disadvantage of having independent
binary classifiers is that the performance is more sensitive to
the class imbalance in the dataset. To alleviate that, we use
the Asymmetric (Asym) loss Lasym [66] shown in Equa-
tion 1. It combines the focal loss [71] with the margin loss
[70] to reduce the contribution of easy negative samples and
rejects mislabeled samples with a continuous gradient.

ASLk =

{
log(pk)(1− pk)

γ+ , yk = 1
log(1− pk)(pk)

γ− , yk = 0

Lasym =
1

N

N∑ wk

K

K∑
k=1

ASLk

(1)

For each training image, X with N total pixels, Lasym

computes a different term depending on if the yk binary la-
bel indicating that the class k is present or not in the pixel.
We apply a weighting average wc depending on the ratio
between positive and negative samples for class k to avoid
the class imbalance. Following the original paper [66], we
set γ+ = 4 and γ− = 1.

4.2. Example applications

Given that our system provides metric information of the
affordance location, has information of the camera poses

and has multi-label affordance detection, we can apply it to
common spatial tasks such as mapping and navigation.

Mapping of activity-centric zones We take the video se-
quence and sample unseen frames {f1, ..., ft} during train-
ing. Following the same procedure as in the extraction of
labels, we reproject the inferred semantic masks on the pix-
els i, j to its respective 3D location x, y, z using the camera
intrinsic Kint, COLMAP pose Rc

w, tcw and the scaled depth
di,j . xy

z

 = di,j(R
c
w)

−1K−1
int

ij
1

− tcw (2)

We accumulate in a global map the COLMAP key-points
to represent the geometry and the segmented affordances re-
gions. We do not perform any fusion on voxels or octrees,
since our multi-label approach assumes that a zone can rep-
resent several predicted classes. Note that the map repre-
sentation is common for all the sequences of the same envi-
ronment, with the potential of linking zones across multiple
episodes and learning from past interactions.

Task-oriented navigation Finally, we introduce a task-
oriented navigation experiment to show the relevance of the
map representation. We use the COLMAP key-points to
build an occupancy grid with the available free space. Then,
the agent is initialized in a random localization and asked to
navigate to perform a certain action. Once it selects the lo-
cation from the semantic-metric representation, the agent
decides the path planning using a A∗ search with the Eu-
clidean distance on the free space. We use the point cloud
from COLMAP to create an occupancy grid.

5. Experiments
5.1. Models and metrics

In our experiments, we modify three popular semantic
segmentation architectures [33, 67, 10] and compare them
with a instance segmentation model [31] plus an interaction
hotspots model [54].

• Grounded Interaction Hotspots (GIH) [54]: We use the
weights on its EPIC-Kitchen trained version to extract
predictions from our images. To reduce the gap, we
crop our scenes to represent a single object and com-
pare for the same number of affordable actions K in
the easy-EPIC Aff dataset.

• Mask-RCNN [31]: we assume an overlapping in the
bounding boxes between two different instances. We
do not consider the amodal Mask-RCNN versions
[59, 49] which treat differently visible and occlusion
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GIH [54] 22.1 21.9 13.8 10.8 16.3 25.8 21.2 23.7 14.0 16.9 17.2 12.8 10.3 20.5 16.6 10.8 26.1 9.5 13.9 25.8 17.5
Mask R-CNN [31] 37.7 36.9 47.1 43.9 51.5 41.4 46.4 38.1 43.6 42.9 38.4 13.1 52.5 43.7 30.8 50.9 35.3 47.1 33.6 26.0 40.1
U-Net dyn-θ[67] 0.1 0.7 5.4 11.9 22.4 17.1 22.2 17.3 11.3 15.9 21.0 4.5 14.8 21.1 16.3 18.4 12.9 20.6 0.5 9.6 13.2
(ours) U-Net BCE 22.3 22.5 30.9 24.0 30.2 23.7 21.1 17.7 17.1 23.4 18.5 8.7 27.3 22.4 13.2 23.8 16.2 22.2 19.0 13.1 20.9
(ours) U-Net Asym 14.3 13.7 13.8 14.7 21.3 17.9 18.3 18.7 32.5 15.7 15.6 16.6 15.2 18.9 22.2 19.5 19.5 24.3 5.7 15.7 17.7
FPN dyn-θ [33] 2.4 2.4 5.6 10.2 21.7 13.2 17.7 17.0 11.5 13.6 20.0 4.6 13.8 22.6 12.5 15.5 14.4 17.3 0.8 9.7 12.9
(ours) FPN BCE 25.7 25.9 33.3 26.7 33.2 22.4 21.8 15.4 18.5 23.9 21.4 7.4 3.8 20.8 13.3 28.4 13.6 24.5 23.5 11.6 22.2
(ours) FPN Asym 36.3 34.7 46.1 42.0 46.8 42.7 42.2 37.5 43.3 41.7 39.6 21.3 47.4 43.7 34.3 45.0 33.8 46.3 38.0 33.2 39.8
Deep-Lab v3 dyn-θ [10] 10.1 11.0 15.4 17.3 19.1 19.4 25.2 19.1 14.7 17.9 17.1 9.2 20.4 31.9 25.3 26.5 24.3 31.7 18.0 18.1 19.5
(ours) Deep-Lab v3 BCE 33.3 34.2 44.1 37.6 43.1 32.0 30.9 26.2 28.9 33.7 27.6 13.2 41.6 27.6 22.2 39.1 22.3 35.1 32.3 20.7 31.3
(ours) Deep-Lab v3 Asym 31.6 32.9 37.3 37.8 44.5 43.9 45.0 41.8 53.4 42.3 39.4 33.1 45.5 52.2 44.0 46.7 43.5 51.1 32.3 46.6 42.3

Table 2. Class-wise IoU scores on easy-EPIC Aff test set. All scores are in [%].

KLD ↓ SIM ↑ AUC-J ↑ mIoU ↑ F1-Score ↑ mAP ↑ AP50 ↑
GIH [54] 2.381 0.116 0.511 17.5 29.4 14.2 15.5

Mask-RCNN [31] 1.365 0.150 0.841 40.1 56.5 59.3 62.6
U-Net [67] top-K 2.532 0.341 0.830 9.5 17.4 22.0 30.5
U-Net [67] max-θ 2.532 0.341 0.830 13.2 23.6 22.0 30.5
U-Net [67] dyn-θ 2.532 0.341 0.830 13.2 23.7 22.0 30.5

(ours) U-Net + BCE 2.718 0.304 0.949 20.9 34.2 48.2 44.7
(ours) U-Net + Asym 0.783 0.665 0.857 17.7 29.9 15.6 32.3

FPN [33] top-K 2.229 0.362 0.812 8.9 15.6 18.9 24.7
FPN [33] max-θ 2.229 0.362 0.812 12.4 21.8 18.9 24.7
FPN [33] dyn-θ 2.229 0.362 0.812 12.9 23.6 18.9 24.7

(ours) FPN + BCE 1.613 0.365 0.955 22.2 35.7 48.7 44.5
(ours) FPN + Asym 0.789 0.546 0.956 39.8 56.8 44.1 59.3

DeepLab-v3 [10] top-K 4.947 0.192 0.911 18.9 31.9 35.0 40.9
DeepLab-v3 [10] max-θ 4.947 0.192 0.911 19.2 32.3 35.0 40.9
DeepLab-v3 [10] dyn-θ 4.947 0.192 0.911 19.5 32.7 35.0 40.9

(ours) DeepLab-v3 + BCE 1.276 0.179 0.964 31.3 47.2 58.6 56.2
(ours) DeepLab-v3 + Asym 0.603 0.668 0.965 42.3 60.1 43.6 58.5

Table 3. Affordance multi-label segmentation on easy-EPIC Aff
test set (20 classes). Note that except the mIoU and the F1-Score,
the rest of the metrics are common for the three versions of the
multi-class segmentation models.

KLD ↓ SIM ↑ AUC-J ↑ mIoU ↑ F1-Score ↑ mAP ↑ AP50 ↑
Mask-RCNN 2.287 0.211 0.756 17.1 27.3 40.1 46.7

(ours) U-Net Asym 1.104 0.320 0.657 12.9 24.8 11.2 17.9
(ours) FPN Asym 0.530 0.673 0.921 28.1 42.9 24.8 43.4

(ours) DeepLab-v3 Asym 0.520 0.670 0.931 31.1 46.5 27.4 43.9

Table 4. Affordance multi-label segmentation on complex-EPIC
Aff test set (43 classes).

masks, since our affordance classes K are not ranked
in order.

• Semantic segmentation architectures. We compare the
performance of UNet [67], Feature Pyramid Networks
(FPN) [33, 41] and DeepLab v-3 [10].

We train the segmentation models with an input resolu-
tion of 232 × 348 for 100 k iterations usign Adam as op-
timizer with weight decay of 10−4, batch size of 8 and a
initial learning rate of 10−4, using a polynomial decay up
to 10−6. We apply random crop, color jitter, resize and
flipping as data augmentation. In the same way, we train
Mask-RCNN SGD and 10−2 as initial learning rate. We
use a Resnet-50 backbone pre-trained on Imagenet for all
the models in order to perform a fair comparative.

Following the evaluation of Nagarajan et al, [54], we re-
port the Kullback-Leibler Divergence (KLD) [20], the Sim-
ilarity metric (SIM) and the Area Under the Curve (AUC-J)
[6, 32] which provide different metrics for the mismatch of

Figure 9. Evolution of the mIoU for different heuristics to se-
lect multiple winning classes from a multi-class probability vector.
Left: top-K. Center: max-θ. Right: dyn-θ.

the distribution of heatmaps or affordance regions consider-
ing the predictive probability. We also report metrics from
segmentation literature, such as the mean Intersection over
the Union (mIoU) and the F1-Score to measure the perfor-
mance of the semantic segmentation, and the Average Pre-
cision (AP) AP-50 and mAP to report the performance of
the detection metrics.

5.2. Quantitative results

We compare the performance of different popular ar-
chitectures on the multi-label affordance segmentation task
in Table 3 on the easy-EPIC Aff dataset. DeepLab-v3
trained with the Asymmetric loss obtains the best perfor-
mance on the segmentation and saliency metrics (42.3 %
mIoU 60.1 % F-1 score, 0.603 KLD, 0.668 SIM, 0.965
AUC-J). Since the backbone of the three semantic segmen-
tation models is the same (Resnet-50), the different results
are due to the configuration of the different decoders. In the
dataset, since the labels represent interaction hotspots, they
are not aligned with the borders of the objects and repre-
sent a more high-level zone. Thus, the atrous convolution
of DeepLab enables to enlarge of the filter’s field of view
and better captures these regions. We show the per-class
segmentation performance in terms of the IoU in Table 2.
Comparing with the apparition frequency of the classes in
the dataset shown in Figure 6, Mask R-CNN fails at the low-
represented classes since is not trained with the Asymmet-
ric loss. However, it is the best architecture on the detection
metrics (59.3 % mAP, 62.6 % AP50). Compared with pre-
vious works, the pre-trained version of [54] achieves inter-
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Figure 10. Spatial distribution of the detected multi-label affordances for multiple time-steps

Figure 11. Goal oriented path-planning. In the example, at t=36
we indicate the user the trajectory from the sink to the place where
it used to dry the crockery. The blue points represents the steps of
the path planning

mediate results on the segmentation metrics (17.5 % mIoU,
29.4 % F-1 score) but low on the AP scores.

The results in Figure 9 show the impact of the hyper-
parameters when adapting the multi-class models. The top-
K = 1 represents the classical multi-label case. The results
show how its performance is far from the multi-label ver-
sions, supporting the need for specific architectural changes
for this scenario. In Figure 9 left, when we increase the
number of winning classes, the performance decreases by
introducing too many false positives. The other two heuris-
tics achieve better performance since they better reject these
outliers. For example, the dyn-θ adapts dynamically to the
probability distribution shape, obtaining higher mIoU and
F-1 in the three cases (see Table 3). Finally, we appreciate
similar results on the complex-EPIC Aff, shown in Table 4.
In this case, the overall performance decreases due to the
higher number of classes and its imbalance.

5.3. Mapping: metric distribution of affordances

We show on Figure 10 qualitative results of the multi-
label interaction hotspots from affordances predicted by the
DeepLab-v3 Asym model. Our perception model is con-
sistent from different view-points. For example, the mi-
crowave of the left-map in Figure 10 is detected as turn-on
both at t = 0, 25, 52. The qualitative results clearly moti-
vate our multi-label approach: the milkshake on the right

map affords mixing, pouring and taking, or the sink in the
center map affords drying and washing. The metric con-
ception of our approach is also relevant, since it reflects the
interactions hotspots rather than highlight the complete ob-
ject (for example grasping a pan only with the handle).

5.4. Task-oriented navigation

Finally, we use the spatial localization of the affordances
to show a proof-of-concept ”task-oriented” navigation. As
we illustrate on Figure 11, we guide the agent according to
the action possibilities that the environment offers to him.
Therefore, we can ask our system to perform certain action,
meaning to go to where the object and affordance are avail-
able. The A∗ indicates to the agent the shortest path from
its current location to the position where it took the action in
the past. For example, this could guide a visually impaired
person with an assistant device [29].

6. Limitations
Our current approach presents several limitations. At the

dataset extraction, we assume that the interaction occurs in
the intersection between the object and the hand bounding-
boxes, thus it depends on the bounding-box aligned to the
actual object. This could be mitigated with a detection
model for grasping points, but we wanted a simpler version
for our prototype as a more convoluted approach might in-
troduce further biases, difficult to detect. Also, the camera
poses from COLMAP can be distorted by noisy-frames or
dynamic objects non-suppressed by the mask. Furthermore,
a real-time mapping system would require a SLAM system
such as ORB-SLAM [51] which might reduce the accu-
racy of COLMAP. Similarly, our dataset is fully based on
Kitchen sequences and it does not incorporate another en-
vironments introducing important dataset bias in the trained
models. However, our automatic labeling pipeline could be
easily used to extend the dataset in other scenarios.

7. Conclusions
We introduced a novel multi-label, metric and spatial-

oriented perception of affordances. First, we present a
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method for extracting grounded affordances labels based on
egocentric interaction videos through a common metric rep-
resentation of all the past interactions in a common refer-
ence. We use this pipeline to build the most complete af-
fordance dataset based on the classic EPIC-Kitchen dataset.
This constitutes EPIC-Aff, the largest semantic segmenta-
tion dataset of affordances grounded on the human interac-
tions. We also motivate a method for grounded affordance
detection with pixel precission using multi-label predictors,
which enhances the perception and the representation of the
environment. Furthermore, we show that the metric repre-
sentation obtained can be used to build detailled affordance
maps and to guide the user to perform task-oriented naviga-
tion tasks.
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