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Input: Speaker’s Transcribed Speech
Speaker with John …and it’s just so amazing to watch him work.”“Working

Output: Listener Motion

Finetuned Large Language Model

Figure 1: Large language models transfer to listener motion prediction. Given a video of a listener and speaker pair, we extract text
corresponding to the spoken words of the speaker. We fine-tune a pretrained large language model to autoregressively generate realistic 3D
listener motion in response to the input transcript. Our method generates semantically meaningful gestures (e.g. an appropriately timed
smile inferred from “amazing”) that synchronously flow with the conversation. We can optionally render the output of our approach as
photorealistic video. Video: https://youtu.be/djpSOhdIU8M

Abstract

We present a framework for generating appropriate facial
responses from a listener in dyadic social interactions based
on the speaker’s words. Given an input transcription of the
speaker’s words with their timestamps, our approach autore-
gressively predicts a response of a listener: a sequence of
listener facial gestures, quantized using a VQ-VAE. Since
gesture is a language component, we propose treating the
quantized atomic motion elements as additional language
token inputs to a transformer-based large language model.
Initializing our transformer with the weights of a language
model pre-trained only on text results in significantly higher
quality listener responses than training a transformer from
scratch. We show that our generated listener motion is fluent
and reflective of language semantics through quantitative
metrics and a qualitative user study. In our evaluation, we
analyze the model’s ability to utilize temporal and semantic
aspects of spoken text.

*denotes equal contribution

1. Introduction

Human face-to-face communication is multifaceted and
multimodal [13, 28]. In particular, the flow and effectiveness
of face-to-face dyadic interactions critically depend on non-
verbal motions and responses from both participants in the
conversation [28, 30, 10]. This paper focuses on the non-
verbal facial feedback listeners provide to speakers during a
dyadic conversation [34, 49, 18].

When listening to a speaker, we produce gestures in
response to several multimodal communication channels,
including speech, non-verbal gestures, and lexical seman-
tics (the meaning of words) [28]. Previous studies have
shown that speech and gesture are informative of listener
responses [34, 49]. Here we ask how far we can get with
lexical semantics alone. This question is significant given
the abundant availability of textual dialogue data, in contrast
to the limited availability of conversational motion datasets.
To study the transferability of large language models to the
dyadic conversational motion domain, we propose the task
depicted in Figure 1 of predicting listener motion from the
raw text transcribed from the speaker’s words.

Since gesture is a conversational communication chan-
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Figure 2: Listener motion prediction model. The model takes as input text tokens (blue), along with their timestamps, and predicts tokens
representing atomic listener motion elements (orange) that we discretized with a VQ-VAE. We feed in a fixed-size history window of text
tokens before the listener response’s onset. Then we generate one discrete gesture token at a time while providing text tokens as the speaker
speaks (i.e. according to word timestamps). t denotes the number of frames that have elapsed since the start of motion generation. Each
discrete motion token represents 8 frames of continuous motion.

nel, our central insight is to transfer knowledge from pre-
trained large language models to the gesture generation task.
We propose to treat discrete atomic motion elements as
novel language tokens. We first learn a data-driven dictio-
nary of discrete atomic gesture elements by training a VQ-
VAE [45] to capture the full spectrum of videotaped listener
responses [34]. We then fine-tune a pretrained large language
model to autoregressively predict these novel motion tokens
given temporally-aligned speaker text (see Figure 2). We
ensure that each motion token is only generated based on
previously spoken words by interleaving the input speaker
text tokens with the autoregressively predicted motion tokens.
Hence, our causal model can produce listener responses in
real-time as it does not rely on future speaker words.

Our text-conditioned model outperforms baselines in both
quantitative metrics and human evaluation. Notably, it per-
forms competitively with prior work that uses audio and
visual input for listener generation. The generated listener
responses are consistently on-par with ground truth listener
facial gestures, as our perceptual study demonstrates.

Given these results, we ask why a text-conditioned model
performs well on an inherently multimodal task. We focus
our analysis of the model on the two main qualities we
expect from realistic listener non-verbal feedback: (1) tem-
porally synchronous responses, such as head nods, and (2)
semantic, emotionally meaningful responses, such as smiles
or looks of puzzlement [9]. We find that a text transcrip-
tion of a speaker’s utterance carries some temporal signal
of when a response is in order. Punctuation, capitalization,
and temporal breaks in word delivery are hints about sen-
tence structure that embed this rhythmic information. We
further demonstrate that lexical semantics is crucial for pro-
ducing the correct emotional response, especially when the

speaker’s facial expression does not reflect the emotional
affect of their words. Finally, we note that, as expected, our
model cannot capture responses for which the facial affect
or motion of the speaker is crucial.

2. Related Work

Conversational dynamics Works on animating conversa-
tional avatars traditionally involved crafting rule-based de-
signs on lab-captured motion data [8, 20, 24, 3, 42], which
often limit the variety of captured gestures, or rely on sim-
plifying assumptions for motion generation that do not hold
for in-the-wild data. As a result, several data-driven ap-
proaches were proposed for tasks such as predicting the head
pose of the speaker and listener [21], turn taking [27, 1],
and single-frame facial expressions that summarize the se-
quence [25, 35]. While these methods focus on a narrow
aspect of modeling social dynamics, our approach captures
the natural complexity of interactions by considering the full
range of facial expressions and head rotations.

More recently, there have been works on modeling a
speaker’s fine-grain motion generation conditioned on au-
dio [26, 19], [12] text, or both audio and text [29]. However,
all these works focus on modeling monadic conversational
settings where the goal is to output speaker motion that di-
rectly matches the input signals. In contrast, [15, 26, 34, 49]
model cross-person, dyadic interactions by predicting the lis-
tener’s 2D [15] or 3D motion [26, 34, 49]. Yet all these prior
works condition the listener’s response on the speaker’s mo-
tion and audio. In addition, [49] relies on a one-bit semantic
affect conditioning that signifies whether the synthesized lis-
tener should have a positive, negative, or neutral response. In
contrast, we focus on demonstrating that semantically mean-
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ingful and temporally realistic responses that correspond to
a given speaker are possible from a text-only context.

Most related to our work is [18], which explicitly models
the semantics within a conversation. By prompting GPT3 [6]
with a predefined goal and text of the speaker, [18] obtains
visual details of the listener from which they train a model
to retrieve listener clips that most closely match this de-
scription within their dataset. Rather than taking the full
input text at once, our model ingests time-aligned text and
autoregressively outputs corresponding 3D listener motion.
Additionally, we generate raw 3D motion rather than pick-
ing from existing clips, which allows us to derive motion
that does not exist in the training set. All these differences
allow us to model both semantics and temporally realistic
responses in dyadic conversations.

Text driven motion synthesis Several prior works consid-
ered text-conditioned 3D motion generation [37, 43, 44, 22,
47]. [43, 44] leverage existing pretrained large language
models to produce semantically meaningful embeddings as
input to their system. In contrast to these methods, we con-
sider text-conditioned motion in conversational settings. We
explore the potential for using pretrained large language
models to discover semantic and temporal information from
a speaker’s transcript. We demonstrate that from text alone,
we can generate temporally aligned motion indicative of
synchronous responses in conversational settings.

Recent work showed that knowledge from large language
models can transfer to other tasks by finetuning pretrained
models [33, 40, 32]. We leverage this insight and demon-
strate that finetuning on a pretrained large language model
transfers well to conversational motion generation.

3. Listener Motion Generation with LLMs
Given the speaker’s transcribed speech in a dyadic conver-

sation, we aim to generate corresponding listener facial mo-
tions. Our system consists of two components: (1) a model
that converts listener motion into a sequence of discrete to-
kens and (2) an autoregressive model that predicts future
motion tokens conditioned on previously generated motion
tokens and previously spoken words.

3.1. Problem Definition

Let F = {f1, f2, ..., fT } represent the listener’s face
across T frames during one of the speaker’s turns in the
conversation. Let W = (w1, w2, ..., wN ) be a sequence of
text tokens corresponding to the words spoken during the
time spanned by frames 1 to T . Let M = (m1,m2, ...,mN )
be the corresponding timestamps, where mi ∈ {1, 2, ..., T}
denotes the timestamp of the frame corresponding to the
end of the interval in which token wi was spoken. For each
pair of frames t1 < t2, we denote by Wt1:t2 the sequence of
words spoken between frames t1 and t2.

Additionally, we consider some historical text con-
text corresponding to words the speaker said ear-
lier in their turn, before frame 1. Let Whistory =
(whistory

1 , whistory
2 , ..., whistory

N ′ ) be the sequence of text to-
kens spoken during the H seconds of the speaker’s turn
before frame 1.

Our generator G takes as input W , Whistory, and M
and predicts F. Specifically, the t-th predicted face in the
sequence is given by

f̂t = G(Whistory,W1:t,M1:t,F1:t−1).

To estimate 3D facial expressions and orientations from
video frames of human conversations, we represent the face
of the listener in every frame using a 3D Morphable Face
Model (3DMM) [2, 36, 7, 31]. 3DMMs are parametric facial
models that allow us to directly regress disentangled coeffi-
cients corresponding to facial expression, head orientation,
and identity-specific shape from a single image [50]. We
obtain facial expression coefficients βt ∈ Rdm , where dm
is the dimension of the expression coefficient, a normalized
3D head pose Rt ∈ SO(3), and shape coefficients that we
discard to obtain an identity-agnostic representation. Our fa-
cial representation at time t, ft ∈ Rdm+3, is a concatenation
of expression and orientation (in Euler angles):

ft = [βt, Rt]. (1)

3.2. Discretizing Listener Motion

Predicting the sequence of facial expressions F is chal-
lenging because the coefficients of ft are real-valued and
require regression-based methods. Following recent work
in motion generation [34, 47], we use a VQ-VAE [45] to
encode a sequence of facial expressions into a sequence of
discrete tokens. We can then predict these discrete tokens
via straightforward classification-based methods.

The VQ-VAE consists of an encoder neural network, a
decoder neural network, and a set of codebook embeddings
C ∈ RVvq×dc , where Vvq is the size of the codebook and dc
is the dimension of the embeddings. Each codebook embed-
ding corresponds to a unique discrete token in the codebook.
The encoder takes as input the sequence of facial expressions
FL = (f1, f2, ..., fT ), normalized by the mean and standard
deviation across all training examples, and produces as out-
put a sequence of latent features Z = (z1, z2, ..., zT/r),
where r is the downsampling rate of the encoder and each
zi ∈ Rdc . The quantizer Q is a deterministic, parameter-
free function that converts each vector of this sequence to a
codebook token:

Q(zi) = arg min
1≤j≤V

||zi −Cj ||2

We denote by qi = Q(zi) the ith VQ token. The de-
coder takes as input a sequence of codebook embeddings
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(C1,C2, . . . ,CT/r) and, after reverse normalization by
mean and standard deviation, produces as output a continu-
ous sequence of facial expressions F̂L = (f̂1, f̂2, . . . , f̂3).

Architecture and Training The architectures of the VQ-
VAE encoder and decoder mainly consist of convolutional
and residual layers and are shown in supplemental. We train
the VQ-VAE with a combination of four losses:

Lembed =

T/r∑
t=1

||zt − sg[Cqt ]||2

Lreconstruct =

T∑
t=1

Lsmooth
1 (f̂t, ft)

Lvelocity =

T−1∑
t=1

Lsmooth
1 (f̂t+1 − f̂t, ft+1 − ft)

Here sg denotes the stop-gradient operator, and Lsmooth
1

denotes the L1 smooth loss function. The total training loss is
a weighted sum of these four losses. We also use exponential
moving average and codebook reset when training.

3.3. Text-conditioned Motion Generation

Our autoregressive motion generation model G outputs
listener facial responses in two steps. First, we predict a
series of discrete codebook tokens. Second, we decode these
discrete tokens via the VQ-VAE decoder to a sequence of
3DMM coefficient vectors representing continuous motion.
Figure 2 illustrates our architecture.

We instantiate G with a language model (LM) based
on a transformer architecture [46]. Specifically, we use
GPT2 [39]. A LM takes as input a sequence of text tokens
{w1, w2, ..., wH} and outputs a distribution over the vocab-
ulary for the next token. The first layer in the LM is an
embedding Eword ∈ RVword×dw , where Vw is the vocabu-
lary size and dw is the embedding dimension, that converts
the token indices to embeddings {e1, e2, ..., eH}. We use a
positional embedding matrix P × RH×dw to add positional
information to each token’s embedding: e′i = ei + Pi.

Each of the remaining layers in the model takes a se-
quence of vectors {a1,a2, ...,aH} which can be represented
as a matrix A ∈ RH×dw and uses linear projections on A to
produce query, key, and value matrices Q,K, V ∈ RH×dw .
Let LT be a H ×H matrix in which elements on and below
the diagonal are 1, and all other elements are −∞. Then for
each position in the sequence, self-attention is computed be-
tween Q and K to compute a distribution over the sequence,
and the output representation A′ is a weighted sum of the
value vectors according to this distribution:

α = softmax
(
LT ⊙ QKT

√
dw

)
A′ = αV

Here ⊙ denotes the element-wise product. In contrast to a
bidirectional transformer where each position attends to all
others, this causal attention mechanism ensures that each
position attends only to itself and previous ones. Finally,
we apply LayerNorm and a feedforward network to A′ to
produce the input to the following layer. The final layer of
the LM is an affine projection that predicts the next token in
the sequence.

To enable the LM to generate motion VQ tokens, we
instantiate randomly initialized word embeddings EV Q ∈
RVvq×dw for each of the VQ tokens, and we replace the
output layer with a randomly initialized affine projection that
outputs logits for each of the VQ tokens. We determine the
order of the text and VQ tokens by ensuring that for each VQ
token, the previous text tokens are those whose timestamp is
less than the timestamp of the current VQ token.

Often a listener’s reaction is not only determined by what
is immediately being said but also by what has already been
said. To model this additional context in the conversation,
we also include history tokens for the text that has occurred
before the first frame at t = 1. The first N ′ tokens in the input
are the text history tokens Whistory. The listener motion
tokens q1, q2, ..., qT/r are placed in order after the history
tokens. The text tokens spoken during the segment are placed
as follows: for each t ∈ {1, 2, ..., T/r − 1}, the set of text
tokens that are placed between qt and qt+1 is Wrt:r(t+1). We
also place a space token (i.e., the textual space token from
the GPT2 tokenizer) just before each listener motion token.

As in text-only LMs, we train the model using cross-
entropy loss on the task of next-token prediction with teacher-
forcing:

L = −
T/r∑
t=1

log Pr
[
G(Whistory,W1:rt, q1:t−1) = qt

]
At test time, we use greedy decoding to predict the sequence
of motion tokens.

4. Experimental Setup
We conduct quantitative experiments to validate the ef-

fectiveness of our method in comparison with baselines (sec-
tion 5.1). We then demonstrate, via an A/B test on Mechani-
cal Turk, that our results are comparable to ground truth and
preferable to those produced by baselines (section 5.2).

We then analyze why the text-conditioned model per-
forms well on this multimodal task. We examine the two qual-
ities expected from listener non-verbal feedback: (1) tempo-
rally synchronous (sec. 6.1) and (2) semantically-meaningful
(sec. 6.2) responses. We demonstrate that text carries some
temporal information that informs when a response is appro-
priate. We further find that lexical semantics is crucial for
producing the correct emotional response. Finally, we show
that more historical text context improves performance, but
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.

L2 ↓ FD ↓ variation diversity P-FD ↓ L2 Affect (102) ↓

GT 0.11 2.59

Random Train 0.63± 0.02 30.35± 1.0 0.088± 0.005 2.26± 0.06 31.47± 1.0 11.91± 0.73

Random VQ 0.71± 0.01 29.31± 0.6 0.269± 0.004 4.83± 0.05 31.44± 0.6 10.14± 0.53

NN 0.52± 0.02 23.68± 1.1 0.087± 0.004 2.25± 0.05 24.78± 1.1 7.88± 0.56

Uncond 0.39± 0.02 21.28± 0.9 0.002± 0.000 0.42± 0.00 21.65± 0.9 7.63± 0.56

Full 0.43± 0.02 18.22± 0.7 0.116± 0.005 2.81± 0.06 19.63± 0.8 6.36± 0.47

Table 1: Results. Comparison against ground truth annotations (GT). ↓ indicates lower is better; closer to GT is better for no arrow. We
average each metric over the test set instances. Standard error is computed via bootstrap (using 10,000 samples).

too much context leads to degradation 6.3. For implementa-
tion details, see supplemental.

4.1. Dataset

As in prior work on listener motion generation [34], we
focus on the person-specific modeling setting, in which all
videos share the same listener. We evaluate on one of the
listeners (Trevor Noah) in the dataset introduced by [34].
We improve this dataset in three ways. First, we segment
the raw videos into longer segments. The original dataset
included 2-second segments, but more context is needed
here since text is a sparse signal. We train and evaluate on
segments of up to 8 seconds (not including the length of the
text history provided to the model). To identify the listener
segments, we use PyAnnote to perform speech diarization
[5, 4]. Second, to extract 3DMMs from the videos, we use
EMOCA [14, 17], a more expressive model than DECA [16],
used for the original dataset. Finally, we extract time-aligned
speech transcriptions using Whisper [38]. During training
and testing, we only include motion that starts at least 3
seconds after the start of the speaker’s turn, and only consider
segments that are at least 24 frames. This procedure results
in 2366 training, 222 validation, and 543 test segments.

4.2. Evaluation Metrics

Due to the difficulty of quantitatively evaluating real-
ism in multimodal motion generation, we use an extensive
suite of metrics that evaluate our predictions along multiple
axes. Inspired by prior work [34], we focus on assessing our
predicted listeners’ realism, diversity, and synchrony with
speaker motion.

• L2: on ground truth expression coefficients and pose

• Frechet distance (FD) for realism: Motion realism mea-
sured by distribution distance between generated and
ground-truth motion. We calculate FD [23] in the ex-
pression RT×dm and head pose RT×3 space of the full
motion sequence.

• Variation for diversity: Variance calculated across the
sequence of expression coefficients or 3D rotations.

• Diversity: Following [48], we randomly sample 30 pairs
of listener pose and expression parameters within a
sequence of motion and compute the average Euclidean
distances between the pairs to measure motion diversity
in the set.

• Paired FD for synchrony: Quality of listener-speaker dy-
namics measured by distribution distances on listener-
speaker pairs (P-FD). FD [23] on concatenated listener-
speaker motion RT×(dm+dm)/ pose RT×(3+3).

• L2 Affect for synchrony: Measures the accuracy of the
produced listener facial affect across the sequence. We
average listener facial affect over a 1-second window
and compute the L2 against ground truth in a sliding
window manner.

Together, these metrics measure both the semantic appro-
priateness and the temporal synchrony of gestures between
a speaker and listener in conversation.

Baselines We compare to the following baselines:

• NN text: A segment-search method commonly used
for synthesis. Given input speaker text, we find its near-
est neighbor from the training set and use its corre-
sponding listener segment as the prediction. We use
the all-mpnet-base-v2 model from Sentence-
Transformers [41] to encode text, commonly used for
text retrieval.1 On the validation set, this model per-
forms slightly better than GPT2-medium on L2/FD and
slightly worse on L2 Affect.

• Random: Return a randomly-chosen sequence of a
listener from the training set.

• Mean: Simple yet strong baseline exploiting prior that
listener is often still. We compute mean expression and
pose from the training set.

• Uncond: Unconditional model that learns to produce
motion sequences without text conditioning. Note that

1https://www.sbert.net/index.html
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.

PT GPT align ordered text type L2 ↓ FD ↓ variation diversity P-FD ↓ L2 Affect (102) ↓

GT 0.11 2.59

NoPT ✗ ✓ ✓ given 0.53± 0.02 22.81± 0.9 0.14± 0.005 3.21± 0.06 24.38± 0.9 8.41± 0.53

Unaligned ✓ ✗ ✓ given 0.45± 0.02 19.03± 0.8 0.11± 0.005 2.71± 0.06 20.40± 0.8 6.66± 0.51

Scrambled ✓ ✓ ✗ given 0.49± 0.02 19.96± 0.7 0.12± 0.004 2.86± 0.06 21.59± 0.8 7.37± 0.50

FixTok ✓ ✓ ✓ fixed 0.73± 0.02 37.31± 1.2 0.05± 0.003 1.58± 0.04 38.36± 1.2 13.45± 0.86

FixTok-Punc ✓ ✓ ✓ punc. +fixed 0.60± 0.02 29.07± 1.1 0.09± 0.005 2.31± 0.06 30.41± 1.1 10.18± 0.65

Full ✓ ✓ ✓ given 0.43± 0.02 18.22± 0.7 0.12± 0.005 2.81± 0.06 19.63± 0.8 6.36± 0.47

Table 2: Ablations. Each metric is averaged over the test set instances. Standard error is computed via bootstrap (using 10,000 samples).

since we use greedy decoding, this method produces
the same motion sequence for a given sequence length.

• NoPT: Our method without GPT pretrained weights.

5. Results
Through quantitative experiments, we demonstrate that

our proposed method outperforms all baselines. In a Me-
chanical Turk A/B test, we further show that our predictions
realistically correspond to the speaker and are competitive
with an existing approach for listener motion synthesis con-
ditioned on the speaker’s speech and gesture.

5.1. Quantitative Results

Table 1 shows our proposed method outperforms all other
baselines and that finetuning on GPT2 is crucial. Overall,
Full achieves the best balance of performance across all
the various metrics. According to the FD, our method pro-
duces motion that matches the distribution of the ground
truth dataset. Furthermore, the motion produced is similar
in variation and diversity to real motion. Most notably, we
generate synchronous motion, as shown by our method’s
strong performance in P-FD and L2 Affect over all baselines.
As a result, this suggests our model generates accurate facial
expressions that match the dynamics of the conversation.

Furthermore, we calculate the Shannon Index [34] on
facial gestures to measure the overall entropy of generated
expressions. Ours (2.52) is similar to the ground truth (2.68),
which shows a fair amount of diversity and demonstrates
that our predictions do not simply collapse into two modes
(smile/not smile).

While Uncond has a lower L2, it performs significantly
worse in all other metrics. This confirms that our model suc-
cessfully leverages the text input. Similarly, NoPT performs
poorly across the board, suggesting that GPT2 finetuning is
advantageous for our task.

5.2. Human Evaluation

To corroborate our quantitative results and gain insight
into how our synthesized listeners perceptually compare to

real motion , we conducted an A/B test on Amazon Me-
chanical Turk. We visualized listener motion using videos of
grayscale 3D facial meshes.

Participants watched a series of video pairs. In each pair,
our model generated one video; an ablation or a baseline
produced the other. Participants were then asked to identify
the video containing the listener that looks like they are
listening and paying more attention to the speaker. Videos of
at least 8 seconds each of resolution 849×450 (downsampled
from 1132× 600 in order to fit two videos vertically stacked
on different screen sizes) were shown, and after each pair,
participants were given unlimited time to respond. Since the
most tell-tale moments for when a listener is truly listening
are during defining moments (speaker tells a joke, shares
a sad story, etc.) that illicit strong responses, we manually
curated 47 such notable moment sequences from our held-
out test data. We then predicted a corresponding listener 3D
facial motion sequence using each method. For every test
sequence, each A/B comparison was made by 3 evaluators.

We compared our strongest baselines NN and Uncond to
our proposed model and recorded the percentage of times
participants preferred our method over the baseline models
or vice versa. Ours significantly outperformed. 70.1% of
the total 150 evaluators preferred Ours over NN, and 92.8%
preferred Ours over Uncond. These statistics reflect the
quantitative trends in Table 1. Furthermore, in a comparison
against avatars rendered from ground truth listeners, evalua-
tors preferred Ours 49.7% of the time. This highlights the
perceptual realism of our predicted listener motion.

Additionally, we compare against prior SOTA Learning
to Listen(L2L) [34] that models the temporal synchrony of a
speaker-listener dyad from speech audio and motion. AMT
evaluators preferred ours over L2L 55.7% of the time. This
suggests that our text-only approach models synchronous
motion comparable to that of an approach that explicitly mod-
els temporal synchrony through prosody, which is known
to encode the beats and pacing of a conversation through
inflections, tones, and rhythm of speech. That said, we note
that for this comparison we used the original L2L imple-
mentation, which relied on DECA [16], an older and less
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Figure 3: Where we win and where we lose. Our model responds in an emotionally-appropriate manner when lexical semantics is crucial.
For example, when it is not appropriate to smile despite a speaker’s uneasy laughter (Left). We fail to capture cases that can only rely on the
speaker’s facial motion, such as sarcastic jokes (Middle). In many cases, both the textual sentence structure and the speaker’s gesture contain
hints of when a response, such as a nod, is appropriate, allowing us to model speaker-listener synchrony despite no access to motion (Right).
See https://youtu.be/djpSOhdIU8M for a video version of these examples.
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Figure 4: Positive phrases elicit positive affect, and vice versa.
Given the top 100 most positive (left) and negative (right) phrases,
we plot a histogram of the facial affect of a listener during and 2
seconds after the stated phrase. -1 corresponds to very upset. The
ground truth distribution (top), computed over all the data, and our
predicted distribution (bottom), computed over the test data, exhibit
a robust correlation.

expressive 3DMM than EMOCA [14].

6. Analysis of the Text-based Method

Responding to a speaker nonverbally is inherently a mul-
timodal task [28]. And yet, we demonstrated that we could
design a competitive method for this task that relies on text in-
put alone. We now analyze our proposed approach to unearth
some reasons for its success. We discuss the two qualities of
non-verbal listening feedback corresponding to successful
listening feedback [8]: temporal synchrony with the speaker
and semantically-appropriate responses. We then consider
the effect of varying lengths of historical temporal context
in the input text. We conclude this section by discussing the
limitations of taking only text as input.

History Length (s)
∞

L2
 A

ffe
ct

 ↓
 

Figure 5: Effect of text history. Providing text history helps, but
too much history hurts the model in terms of affect.

Figure 6: Success in modeling humor. In contrast to L2L [34],
conditioned on speaker motion and speech, our text-based model
correctly generates laughter in response to humorous language.

6.1. Temporal Synchrony with the Speaker

To understand which parts of our model contribute to its
temporal performance, we evaluate variants of our model in
Table 2. First, we consider the possibility that the temporal
alignment and interleaving of language tokens (past listener
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and speaker text tokens) with listener motion tokens result in
more temporally-synchronous motion. Unaligned is a vari-
ant we train with all text tokens prepended together in order,
followed by the autoregressively generated motion tokens.
For Unaligned, we also remove the space before each VQ
token. While Full performs slightly better than Unaligned
in all metrics, the improvements are not significant. This
indicates that the network can reason about the temporal
interleaving of motion and language tokens without relying
on their proximity in the input. Yet, we get notably poorer
performance when we test the importance of word order by
randomizing the input text tokens Scrambled. This suggests
that our model leverages text ordering as an important signal.

We find evidence in the ground truth data that temporal
information, essential for the synchrony of a dyad, can be
learned from a text-only model. Analysis of the ground truth
listener in the dataset demonstrates that punctuation is essen-
tial in regulating when to nod. For instance, around 51% of
the statements immediately before nods include some punctu-
ation, while in the non-nodding case, only 15% of utterances
do. Similarly, smiles correlate more with “!!” punctuation
than plain faces (see supplemental for analysis ). There-
fore, we test the importance of punctuation in our model
via two variations that introduce a new, fixed text token. We
then replace all the input text with this new text token Fix-
Tok or replace all but punctuation FixTok-Punc. Note that
in both these setups, we still preserve space tokens since
we place spaces before each VQ token. We use a new text
token instead of an existing one to avoid potential biases
induced by pre-existing words or spaces. Comparing the two
in Table 1, we see that punctuation significantly improves
speaker-listener synchrony via P-FD.

We conclude that through the formalization of sentence
structure, speaker text transcriptions contain some tempo-
ral signal reflecting the nodding beat-like motions of the
speaker, thus providing a hint for when it is appropriate for
a listener to respond. This is also evident from cases where
the appropriate response could rely on either speaker motion
or sentence structure as shown in Figure 3 (right).

6.2. Semantically-appropriate Responses

In the ground truth dataset, we analytically demonstrate
common patterns from a listener’s reaction to the speaker’s
words. Figure 4 plots the listener’s facial affect (1.0 cor-
responds to very happy, −1.0 corresponds to very upset)
associated with the top 100 most positive or negative phrases
within the dataset. We calculate the average facial affect for
each phrase during the utterance and in the 2 seconds that fol-
low. The graphs exhibit a strong correlation between positive
phrases and positive listener facial reactions and vice versa.
Furthermore, Figure 4 demonstrates that our finetuned model
can capture the distribution of these associations well. Fig-
ure 6 shows an example where our model generates laughter

in response to humor–a joke that goes over the head of a
motion-and-audio conditioned baseline. In Figure 3 (left),
we show a case where our predicted listener is appropriately
serious, despite the nervous laughter of the speaker.

Most notably, the fixed token experiment confirms our
approach can properly model conversations’ semantic align-
ment. Note that the fixed token models are the only ones
with no semantic information since we replace all words
with the same token. As a result, both models perform signif-
icantly worse than even NoPT. We further analyze semantic
knowledge captured via word clouds in supplemental.

6.3. The Effect of Historical Context

We consider the importance of historical lexical semantic
context in conversation. A listener’s response often depends
on things said in the recent past. Figure 5 demonstrates
having no context at all results in worse performance. As we
increase the amount of history we feed into the network, the
predicted affect becomes more aligned with the ground truth,
with a sweet spot of 8 seconds of history. However, adding
too much context again results in poor performance.

6.4. Limitations

Given that listening is an inherently multimodal task in-
volving visual and auditory signals from the speaker, our
method is limited in that it does not take visual or audio in-
put. For instance, Figure 3 (middle) shows an example where
the speaker laughs, but the text does not contain an explicit
joke. In other cases, the speaker may prompt the listener
to nod through their motion or prosody rather than through
words. More powerful language models may also improve
our results. For instance, when prompted with humorous
text, our model does not always generate laughter. Larger
language models have demonstrated an improved capacity
to model jokes [11], so integrating them into our framework
may improve responses to such examples.

7. Discussion
We presented a transfer-based approach from pretrained

large language models to human conversational gestures
in dyadic interactions. This approach relies on the insight
that gesture can be discretized into its atomic elements and
treated as novel language tokens. We can, therefore, seam-
lessly integrate language and motion to extend state-of-the-
art methods in language modeling to this setting. Integrating
text input with other modalities for this task is a compelling
direction for future work.
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