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Abstract

We introduce AiT, a unified output representation for var-
ious vision tasks, which is a crucial step towards general-
purpose vision task solvers. Despite the challenges posed
by the high-dimensional and task-specific outputs, we show-
case the potential of using discrete representation (VQ-
VAE) to model the dense outputs of many computer vi-
sion tasks as a sequence of discrete tokens. This is in-
spired by the established ability of VQ-VAE to conserve
the structures spanning multiple pixels using few discrete
codes. To that end, we present a modified shallower ar-
chitecture for VQ-VAE that improves efficiency while keep-
ing prediction accuracy. Our approach also incorporates
uncertainty into the decoding process by using a soft fu-
sion of the codebook entries, providing a more stable
training process, which notably improved prediction accu-
racy. Our evaluation of AiT on depth estimation and in-
stance segmentation tasks, with both continuous and dis-
crete labels, demonstrates its superiority compared to other
unified models. The code and models are available at
https://github.com/SwinTransformer/AiT.

1. Introduction

A central goal of AI is to develop a unified model capable
of handling many tasks. Recent developments in large-scale
language models such as GPT-3 [5] have shown remarkable
success as general-purpose solvers for language tasks. It in-
spires to examine the feasibility of creating universal mod-
els for various computer vision tasks.

Current research is approaching the goal from a diverse
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range of perspectives. Perceiver [18] and Perceiver-IO [17]
propose to use exactly the same Transformer architecture to
handle different modalities such as natural language, com-
puter vision and StarCraft II. However, it allocates a query
for each output and ignores their dependency, making it un-
able to model interdependent outputs such as the coordi-
nates of a box. Some works attempt to address multiple
visual tasks but they are still limited to only a few. For ex-
ample, Flamingo [1] handles only tasks with language as
output; CLIP [31] and its follow-ups [48, 49, 53] tackle
only retrieval and image classification tasks; Chen et al. [8]
deal with tasks that have describable and sequential outputs.
Pix2SeqV2 [8] tries to unify different vision tasks using to-
kens. But the tokens need to be designed manually for each
task. For example, they use polygon to represent the in-
stance segmentation, which can not be applied to other tasks
such as depth estimation.

In this paper, we aim to develop a comprehensive solu-
tion to various vision tasks. To achieve this, we first iden-
tify a key challenge in the field - while the NLP tasks typ-
ically have similar inputs and outputs represented by lan-
guage tokens, the outputs of vision tasks are highly diverse.
For example, object detection produces labels and coordi-
nates, semantic segmentation generates discrete label maps
and depth estimation results in value-rich images. We tackle
this hindrance by unifying the output spaces of various vi-
sual tasks through a general tokenizer which is implemented
using VQ-VAE [36]. It transforms the task output into a set
of tokens by the encoder, which are then reconstituted into
the original output by the decoder. The task solver for each
vision task is realized using an auto-regressive encoder-
decoder model. The model takes in images as inputs and
outputs a sequence of tokens in a causal manner, which is
then converted back into the original task-specific output
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using the decoder. we comprehensively assess the impact
of various architectural designs in the VQ-VAE model. Our
findings reveal that a shallower encoder/decoder architec-
ture, with a maximum of 5 convolution layers, 2 residual
blocks, and 128 codebook entries improves inference effi-
ciency without losing prediction accuracy. As a result, the
parameters and computations of VQVAE required remain
minimal, amounting to only 2 million parameters and 0.06G
FLOPs.

To enhance its effectiveness, we propose several inno-
vative techniques that specifically address the unique chal-
lenges of visual tasks.

Firstly, we incorporate uncertainty into the decoding pro-
cess by using a soft fusion of the codebook entries. We rep-
resent a soft token by a probability vector where each value
representing the probability of membership in the code-
book. When a soft token is fed to the detokenizer or the
next token prediction network, its input embedding is com-
puted as the weighted average of the corresponding code-
book embeddings. This demonstrates that the soft token
embedding spans a continuous, interpolable space, which
may more accurately reflect visual outputs, particularly in
cases where they are continuous in nature. Additionally, the
continuous nature of the soft token enables the implemen-
tation of an auxiliary loss function, which learns the task
output end-to-end.

Secondly, to handle visual tasks that have corrupted, un-
defined, or invalid values in their annotations, we propose
mask augmentation in training. For example, depth estima-
tion is a typical task that faces this challenge, with occluded
areas not being defined [35], as shown in Figure 2. These
undefined regions can make it difficult for the tokenizer and
detokenizer to be trained, as it is not clear what should
be reconstructed in these areas. To overcome this issue,
we randomly mask segments of the input depth map dur-
ing VQ-VAE training. Unlike the undefined regions, these
manually masked sections have known ground-truth anno-
tations, which help train the VQ-VAE network to be able to
recover that ground truth for the undefined regions. Our ex-
periments demonstrate that this technique significantly im-
proves the accuracy.

Thirdly, we propose a Parallel Vision Modeling method
on dense vision tokens. Parallel Vision Modeling uses a
fixed embedding as the input of the dense token prediction
instead of the last predicted token. Obviously, Parallel Vi-
sion Modeling can accelerate the auto-regressive prediction
by predicting a bunch of visual tokens at a time, we also
show they can improve the performance effectively. This
method is similar to Perceiver-IO [17] and DETR [6], but
unlike the Perceiver-IO which only uses the cross-attention
and DETR which uses the bidirectional self-attention, Par-
allel Vision Modeling uses the unidirectional attention with
causal mask and only applied to a portion of tokens, which

is more general and can be inserted into any auto-regressive
model.

We mainly study our method on two classical vi-
sual tasks with diverse outputs: depth estimation and in-
stance segmentation, utilizing floating-point maps and bi-
nary masks as output formats. These tasks differ in the size
of their output, with depth estimation having a fixed size
and instance segmentation having a variable size. Our ap-
proach achieved competing results. In particular, it achieves
the state-of-the-art results on the NYUv2 depth estimation
benchmark [35]. The proposed framework and techniques
are versatile, and we also show more results on other tasks
in experiment.

2. Related Works

Unified Frameworks in Computer Vision Encouraged
by the success of T5 [32]/GPT [5] in NLP, the exploration
of a single unified model for various tasks in computer vi-
sion has emerged. However, most existing works[1, 48, 49,
38, 53] are focused on the training algorithm or model ar-
chitectures. This makes these models either only available
as pre-trained models [48, 49, 38] or only for VL-related
tasks [1, 53]. Perceiver-IO [18] presents a framework that
can process different vision tasks, and it adopts the learned
positional encoding or Fourier feature to unify the output of
different tasks.

Very recently, Pix2SeqV2 [8] proposed to unify different
vision tasks into tokens and the tokens in Pix2SeqV2 need
to be designed manually for different tasks. For example,
they use the polygon to represent the instance segmentation.

The most related works with ours are UViM [20] and
Unified-IO [27]. They also adopt VQ-GAN/VQ-VAE as a
general tokenizer/detokenizer and an auto-regressive Trans-
former encoder/decoder to solve different tasks. However,
they are direct applications of these techniques without an
in-depth consideration of the particularity of visual prob-
lems.

Our study, while concurrently started, takes more in-
depth consideration of the particularity of visual problems.
We propose techniques of soft token and mask augmenta-
tion, which prove beneficial generally for visual tasks or a
part of them. We also extensively investigate the architec-
ture of the VQ-VAE, which shows that this part can be made
very light-weight, and thus make the framework more prac-
tical.

Vector-Quantization Discretized token output space is
widely used in generative models, such as DALL-E[33],
VQGAN[12], and VQ-Diffusion[14], to represent high-
dimensional complex data. Models like VQ-VAE[36],
dVAE[2] define a discrete latent space with the encoder-
decoder architecture and a fixed size of codebook, The input
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Figure 1. Illustration of our unified framework. (a) VQ-VAE training to learn tokenizer and detokenizer for different tasks. (b) Mask aug-
mentation mitigates the effect when existing corrupted or non-annotated region. (c) In training, various vision task outputs are transferred
to discrete token space by a tokenizer. In this way, discrete or continuous visual tasks can be converted into one discrete classified task. In
inference, the tokens predicted by the task-solver are decoded by the detokenizer into task outputs. Soft token is applied to improve the
token representation

is mapped to the discrete tokens of the codebook. We adopt
the VQ-VAE framework to build our token space, and our
soft token approach that treats the token space as a contin-
uous one instead of the original discrete one expands the
usage of VQ-VAE.

Monocular Depth Estimation Monocular depth estima-
tion is a fundamental task for 3D perception. Deep learning
dominates the depth estimation since Eigen et al. [11] intro-
duces it into the depth task. The follow-up works include
proposing powerful network [22, 34, 23], designing novel
augmentation [19, 16], making use of the geometric con-
straints [30, 47], exploring pairwise relationship [54, 9, 21],
combing with conditional random field [25, 44, 50].

Some works [28, 51, 37, 34, 46] combine depth estima-
tion with other tasks, such as semantic segmentation, and
edge estimation. However, they design different heads and
loss functions for different tasks respectively. There are also
some methods [13, 10, 3, 4, 24] discretizing the continuous
depth and cast the depth estimation as a per-pixel classi-
fication task. Our approach represents the depth maps as
a set of tokens, and unifies it with other visual tasks, i.e.
instance segmentation, in a unified network structure and
output space. More importantly, we show that a general
framework for various visual tasks can achieve state-of-the-
art accuracy on the NYUv2 depth estimation task.

Instance Segmentation Instance segmentation aims to
predict the segments of each instance. There are many
works [15, 45, 41] studying how to represent the masks. For
example, MaskRCNN [15] used a binary mask, Dense Rep-
Points [45] adopts a set of deformable points to represent
the segments, and PolarMask [41] models the segments by
polygons. While their representation is specific to instance
segmentation, we model the instance segmentation by a set

of discrete (soft) tokens, which is more general for visual
representations.

3. Framework

The goal of this work is to unify the output space of vi-
sual tasks into discrete tokens and to build a single model
that can handle different tasks simultaneously. In this sec-
tion, we present the framework to achieve this goal, which
is shown in Figure 1. The framework consists of three mod-
ules, a tokenizer that encodes the task output to the discrete
tokens, a detokenizer that decodes tokens to the task output,
and a task-solver that predicts tokens from images. In our
approach, the encoder and decoder of VQ-VAE are used as
the tokenizer and detokenizer, and the task-solver is imple-
mented by an auto-regressive encoder-decoder model. Dur-
ing training, task annotations are first mapped by the tok-
enizer as discrete tokens and used as supervision to train the
task-solver. In inference, the tokens predicted by the task-
solver are decoded by the detokenizer into task outputs.

3.1. Tokenizer and Detokenizer

VQ-VAE is an encoder-decoder model with a set of la-
tent codes C. It was originally proposed to learn discrete
representation for natural images. In this work, we use its
encoder E and decoder D as the tokenizer and detokenizer.
In training, the input image is encoded as a set of contigu-
ous embeddings, and these embeddings are assigned to their
nearest latent codes, we denote this quantization operator as
Q. In the decoder, the corresponding codes are used as in-
puts instead of contiguous embeddings and then decoded
into the image. Therefore, the encoder, decoder, and latent
codes can be trained by minimizing the reconstruction loss
term and commitment loss term:

Lvae = ∥x−D(Q(E(x))∥2 + λ ∥E(x)−Q(E(x))∥2 (1)
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where x indicates task annotations, λ indicates loss weights.
Since we adopt discrete tokens as targets in the task-

solver, the accuracy of reconstruction has an upper-bound
on the performance of the whole framework. In addition,
both training and inference of task-solver require the tok-
enizer and detokenizer, the fast inference speed is also de-
sired.

The original network architecture of VQ-VAE is de-
signed for natural images, which have more complex tex-
tures and colors than the task output, making it not the opti-
mal design for us. Therefore, we have exhaustively studied
the effects of VQ-VAE with different design choices in our
framework.

Typical reconstruction losses (e.g. l-1 loss, MSE loss,
etc.) cannot directly reflect the realistic performance of the
task, we use standard evaluation metrics for different tasks
to measure VQ-VAE. As shown in Table 3 and Table 5. We
found that a very lightweight VQ-VAE can achieve promis-
ing results in depth estimation and instance segmentation.

In addition, compared to the standard VQ-VAE usually
adopts a large codebook size (e.g. 8192), our codebook size
|C| can be reduced to 128. We note that though larger |C|
consistently improves VQ-VAE reconstruction ability, they
show no difference when applied to task-solver (see Table
2 and Table 3). There are two speculations on the effec-
tiveness of a small codebook: 1) the output space of depth
and segmentation is simple, without the need for a large
codebook; 2) the large codebook may increase the learning
difficulty for task-solver.

There are two speculations on the effectiveness of a
small codebook and shallower encoder/decoder: 1) the out-
put space of depth and segmentation is simple, without the
need for a large codebook and complex architecture; 2) the
large codebook may increase the learning difficulty for task-
solver.

3.2. Task-solver

The task-solver is an auto-regressive encoder-decoder
network. The encoder is a Swin Transformer with 6 ad-
ditional standard transformer blocks, each block consists of
a self-attention and an FFN. The decoder has 6 blocks, each
block consists of a self-attention, a cross-attention, and an
FFN. The architecture we used is similar to [7].

Given an input image, the encoder is first applied to learn
a generic representation of all tasks. Then, based on the
given task token, the decoder is used to predict a token se-
quence in an auto-regressive manner. For different tasks,
we customize their sequence formats, as described in the
following:

Depth Estimation The task token of depth estimation is
denoted as [DEP]. It has a straightforward format, which

is a token sequence of length HW
322 , where H and W are the

height and width of input images, respectively.

Instance Segmentation The sequence format of instance
segmentation is more complicated than depth estimation,
which consists of three parts: bounding box coordinates,
class of bounding box, and a binary mask. We follow the
practice of Pix2Seq [7] for representing coordinates and the
class of a bounding box. The coordinates are manually
quantized into 2000 bins, and different classes are repre-
sented by different tokens (including a background class,
e.g. COCO dataset has 81 class tokens in total). For the bi-
nary mask, we use 4 × 4 tokens to represent one mask. It
is worth noting that since the computational complexity of
auto-regressive is proportional to the square of the output
sequence length, we have to use very few tokens to repre-
sent the mask. Nevertheless, benefitting from our powerful
detokenizer, these tokens can be decoded to a 64×64 mask.
Based on these designs, each instance is represented by a
total of 21 tokens (i.e. 4 tokens for coordinates, 1 token for
class, 16 tokens for mask), and we use [INS] as the task
token of instance segmentation, as shown in Figure 1 (c).
We append the meaningless zero mask for the noise box
and do not add loss on those mask tokens during training.

3.3. Soft Token

In a typical auto-regressive prediction procedure, the to-
ken with the maximal predicted probability is selected as
the output, and used its embedding as the input to the de-
coder for the next prediction step. This approach is called
hard-inference, formulated as:

k̂ = argmaxkP (k|t0, .., ti−1) (2)

ti = Ck̂ (3)

where ti indicates i-th predicted token embedding by auto-
regressive task-solver model, k is the code index, and Ck̂
indicates the embedding of k̂-th code in the codebook.

However, since the tokens learned by VQ-VAE are not
completely independent of each other, the correlation be-
tween the tokens may affect the token prediction accuracy,
making the hard inference probably not optimal. To lever-
age the correlation, a soft token technique is presented in
the inference: instead of directly using the embedding of a
single token, the soft token is the weighted averaged em-
bedding of different tokens by their prediction probability,
formulated as:

ti =

|C|∑
k

P (k|t0, .., ti−1)Ck, (4)

In addition to being applied in task-solver to predict the next
token more accurately, the same idea can also be used in
detokenizor to get better reconstruction results.
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Figure 2. There are some corrupted regions (black regions/pixels)
in the GT depth map. While we have ignored these regions in
training VQ-VAE as well, the reconstructed regions are still ab-
normal, which is reflected in the shadows in reconstruction results.
This phenomenon can be alleviated by adding masked augmenta-
tion.

Furthermore, the soft token results in the embedding
space being spanned to an interpolable continuous space.
Therefore, we can introduce an auxiliary loss that learns
the task-specific output targets in an end-to-end manner by
backing from the detokenzior output to the task-solver in-
put.

In Table. 1, we compare the l-2 distance between pre-
dicted token embedding and ground-truth token embedding
on NYUv2 dataset. We note that the use of soft tokens re-
duces the distance, indicating that the predicted token em-
bedding is more accurate and also reflect the better RMSE
performance. More examinations about soft token in both
instance segmentation and depth estimation are shown in
ablation study. It can consistently improve the performance
without any additional computational cost, which is a free-
lunch technique in inference.

Table 1. The l-2 distance between predicted token embedding and
ground-truth token embedding on NYUv2 dataset.

description. l-2 dist RMSE
hard inference 4.78 0.3182

soft token 4.52 0.3080

3.4. Mask Augmentation in Depth Estimation

The ground-truth depth maps in the depth estimation
dataset often have some corrupted regions that are not anno-
tated with depth information. In the conventional depth esti-

Figure 3. The difference between our proposed parallel model-
ing approach and traditional auto-regressive method. (a) For both
sparse token (S) and dense token (D), auto-regressive modeling
method using last output token with causal attention to predict next
token, leading to a misalignment between training and inference.
(b) We use parallel token (P) for dense token prediction, while
keeping the causal attention to shrink the gap.

mation frameworks, these regions are ignored during train-
ing. However, the same solution cannot be applied to our
framework. There are two challenges: First, while we have
ignored these regions in training VQ-VAE as well, the re-
constructed regions are still abnormal (see Figure 2) and
further affect the training of the task-solver and make the
final result also have many artifacts; Second, a token pre-
dicted by VQ-VAE corresponds to a 322 patch, which may
contain both normal and corrupted pixels. Therefore, it is
hard to deal with this issue by ignoring the tokens.

As shown in Figure 1 (b), we present to introduce mask
augmentation in the training of VQ-VAE to alleviate this
challenge. Specifically, we randomly mask some regions
in the input depth images and then use their original depth
information as supervision. In this way, the VQ-VAE can
complete/recover some corrupted regions with reasonable
results. Figure 2 shows the visualization. In Table 11, we
notice that applying mask augmentation can improve the
performance of depth estimation.

3.5. Parallel Vision Modeling

In traditional auto-regressive models, as shown in Figure
3 (a), at the position i, ti−1 is used as the query to pre-
dict the token ti. However, this may cause the information
leakage in training, leading to easy training but difficult in-
ference. The misalignment between training and inference
can be solved by passing a fixed embedding called parallel
token as the query to predict ti, where ti is the dense token
passed to VQ-VAE decoder afterwards, e.g. mask tokens in
instance segmentation. We also show in Table 10 and Ta-
ble 12 that the application of parallel vision modeling can
make token prediction more stable and improve the perfor-
mance significantly.

4. Experiments

4.1. Tasks and Datasets

To examine the generalizability of our framework, we
mainly study depth estimation and instance segmentation,
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which are two tasks with very different output spaces. We
also train the model on more tasks with the same method
and attach the results at the end.

Instance Segmentation The instance segmentation re-
quires predicting the location, the class, and the mask of
each instance. The COCO2017 benchmark is one of the
most challenging datasets for this task. It consists of 117K
training images, 5K validation images, and 41K test im-
ages. A total of 80 classes annotation are provided. In
our experiments, we follow the common setting of previ-
ous works [15, 45, 41] that report the performance on the
validation set for comparison.

Depth Estimation Depth estimation is a fundamental
problem in computer vision, which requires estimating the
depth for each pixel. Unlike segmentation whose output is
a binary mask, the depth map is a floating point image. In
this work, we use the NYUv2 Depth dataset, which consists
of 24K training images and 654 validation images, and the
RMSE is used as the major metric.

Semantic Segmention Semantic Segmentation need to
predict the class and its semantic mask. ADE20K [52] is
a widely-used semantic segmentation dataset with 150 se-
mantic classes and 25K images in total, with 20K for train-
ing, 2K for validation, and another 3K for testing. mIOU is
reported.

Keypoint Detection Keypoint detection is an essential
task in computer vision, which focuses on accurately pre-
dicting the spatial locations of all human body keypoints
within a given image, resulting in a floating-point co-
ordinate vector output format. In our study, we utilize
the widely-used COCO keypoint dataset, which comprises
117k training images and an additional 5k validation im-
ages. To evaluate the performance of our approach, we em-
ploy the Average Precision (AP) based on Object Keypoint
Similarity (OKS) as the primary evaluation metric.

4.2. Implementation Details

Since the input value ranges for depth estimation and in-
stance segmentation are different. We train two VQ-VAE
models for two tasks separately, and they have similar archi-
tecture. For depth estimation, the encoder consists of 5 con-
volution layers (kernel size is 3 and stride is 2) and follows
2 residual blocks. The output feature map has a downsam-
ple ratio of 32, and the channel dimension is progressively
increased from 16 to 256. The architecture of the decoder
is symmetrical to the encoder, only replacing the convolu-
tion layers with the deconvolution layer. For instance seg-
mentation, we reduce the convolution and deconvolution of

the encoder and decoder from 5 layers to 4 layers and keep
all others the same. Subsequently, the downsample ratio is
changed to 16.

In VQ-VAE training, for depth estimation, the input im-
age size used in depth is 4802, with a batch size of 8. The
Adam optimizer is used with the base learning rate of 3e-4,
β1 = 0.9, β2 = 0.999. An exponential learning rate sched-
ule is applied with the learning rate decay of 0.98 and a total
of 20 training epochs. For instance segmentation. The input
image size is 642 with a batch size of 512. The Adam opti-
mizer is used with the base learning rate of 3e-4, β1 = 0.9,
β2 = 0.999. A cosine learning rate schedule is applied with
a total of 20 training epochs. By default, the EMA model
update technique is used for all VQ-VAE models.

For the task-solver, we adopt the auto-regressive
encoder-decoder architecture, which is similar to
Pix2Seq[7]. It consists of a backbone, 6 encoder lay-
ers, and 6 decoder layers. We use the SwinV2[26] as the
backbone, which is pre-trained with SimMIM [43]. Most
experiments in the ablation study are separately trained on
depth estimation and instance segmentation.

In depth estimation, we use the AdamW optimizer with a
base learning rate of 2e-4 and 1e-4, the weight decay of 0.05
and 0.075 for SwinV2-B and SwinV2-L, respectively. The
β1 and β2 are set to 0.9 and 0.999, and drop path rate is set
to 0.1. The total training length is 25 epochs with the batch
size of 24. The step learning rate schedule is used and the
learning rate dropped to 2e-5 at the 18th epoch. For data
augmentation, the random cropping of 4802 and horizon-
tal flip with probability 0.5 are employed. We also append
random brightness contrast, random gamma, and hue satu-
ration value. Auxiliary loss is SILog loss with weight 1.0
for depth estimation.

Training of instance segmentation from scratch is expen-
sive because of the long sequence length. To reduce the
cost, we first train an object detection model and then fine-
tuning on instance segmentation. For object detection pre-
training, the AdamW optimizer with a base learning rate of
1e-3, a weight decay of 0.05, a drop path rate of 0.3, and
a layer decay of 0.85, linear decay learning rate scheduler
are applied, and a total of 100 training epochs with a batch
size of 128 are performed. For instance segmentation fine-
tuning, we only initialized the backbone and encoder with
detection pre-trained model, and randomly initialized the
decoder. In addition, AdamW optimizer with a base learn-
ing rate of 1e-4, a weight decay of 0.05, and a layer decay of
0.85, linear decay learning rate scheduler are applied, and
the total training length is 50 epochs with a batch size of 16.
Large-scale jittering with the range of 0.1 to 3.0 and crop
size of 6402 are used for both object detection and instance
segmentation. β1 = 0.9, β2 = 0.999 are used for AdamW
in all experiments. Auxiliary loss is DICE loss plus MSE
loss with weight 5.0 for instance segmentation.
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4.3. Ablation Study

We ablate the key design choices and techniques in this
section. By default, we train the model separately for
each task in the ablation study for better illustration, and
SwinV2-B is used as the default backbone. For depth esti-
mation experiments, a VQ-VAE with codebook size of 128,
downsample rate of 32 and mask ratio of 0.5 is used by de-
fault. For instance segmentation, the codebook size is 128
and the downsample rate is 16. If not specified, we use the
soft token but do not apply auxiliary loss for all ablation
experiments.

Table 2. Ablation study on codebook size of VQ-VAE on depth
and instance segmentation in reconstruction.

Width #tokens
Depth Instance Seg.
RMSE Mask mAP

1.0× 64 0.1025 88.94
1.0× 128 0.0966 89.34
1.0× 256 0.0902 90.22

Table 3. Ablation study on codebook size of VQ-VAE on depth
and instance segmentation in task-solver.

Width #tokens
Depth Instance Seg.
RMSE Box mAP Mask mAP

1.0× 64 0.3090 43.5 33.0
1.0× 128 0.3080 43.6 33.2
1.0× 256 0.3119 43.4 33.4

Table 4. Ablation study on the width of VQ-VAE on depth and
instance segmentation in reconstruction.

Width #tokens
Depth Instance Seg.
RMSE Mask mAP

0.5× 128 0.1196 88.97
1.0× 128 0.0966 89.34
2.0× 128 0.1025 90.92

Table 5. Ablation study on the width of VQ-VAE on depth and
instance segmentation in task-solver.

Width #tokens
Depth Instance Seg.
RMSE Box mAP Mask mAP

0.5× 128 0.3127 43.4 33.1
1.0× 128 0.3080 43.6 33.2
2.0× 128 0.3124 43.2 33.1

Architecture of VQ-VAE We study how different de-
signs of VQ-VAE affect performance. We first evaluate the
reconstruction performance of different codebook sizes. To
more accurately and intuitively observe the reconstruction
performance, our evaluation is performed on the validation
set of different tasks and adopts mask mAP and RMSE as

Table 6. Ablation study on increasing the number of residual
blocks on the 32× downsampling setting of depth estimation.

#Resblock
Tokenizor Task-solver

RMSE RMSE
2 0.0966 0.3080
3 0.1055 0.3123
4 0.1082 0.3136
5 0.1033 0.3118

Table 7. Ablation study on the downsample ratio of VQ-VAE on
depth and instance segmentation in reconstruction.

Downsample Ratio
Depth Instance Seg.
RMSE Mask mAP

32 0.0966 70.91
16 0.0696 89.34
8 0.0515 -

Table 8. Ablation study on the downsample ratio of VQ-VAE on
depth and instance segmentation in task-solver.

Downsample Ratio
Depth Instance Seg.
RMSE Box mAP Mask mAP

32 0.3080 42.7 30.3
16 0.3304 43.6 33.2
8 0.3514 - -

metrics. The results are shown in Table 2. We find that
although the large codebook size (e.g. 256) benefits the re-
construction performance, the small codebook size (e.g. 64)
can also yield sufficiently good reconstruction performance.
Further applying to the task-solver, we found different code-
book size has little effect on final performance (see Table 3).

Using the same evaluation method, we study the effect of
the width of VQ-VAE. Table 4 shows the reconstruction per-
formance and Table 5 shows the performance of applying to
task-solver. Similar to the observation on codebook size, we
find that the network width has little effect on the final per-
formance. We also study the network depth of VQ-VAE in
Table 6, it shows that shallower VQ-VAE can achieve both
better efficiency and accuracy.

The downsample ratio of VQ-VAE is another key that
may affect network performance. We vary the downsam-
ple ratio in [8, 16, 32]. We note that the instance segmen-
tation cannot support a downsample ratio of 8 because it
results in too long sequences. Table 7 shows the recon-
struction performance, as the downsample ratio increases,
the reconstruction performance gets worse, satisfying the
intuition. However, we find that better reconstruction per-
formance does not always lead to better performance when
applying the VQ-VAE in task-solver. In Table 8, the best
performance is achieved at downsample ratio of 32. We ex-
plain this phenomenon is that a smaller downsample ratio
facilitates reconstruction, but it also increases the length of
the token sequence, which is detrimental to the task-solver.
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Table 9. Ablation on the effectiveness of soft token.

Description
Depth Instance Seg.
RMSE box mAP mask mAP

Baseline (hard-inf) 0.3174 43.6 31.1
On. task-solver 0.3127 43.5 32.1
On. detokenizor 0.3120 43.6 32.3
On. both 0.3080 43.6 33.2
On. both + aux. loss 0.3052 43.3 34.2

Table 10. Pose estimation, instance segmentation results on COCO
val2017 and semantic segmentation on ADE20k validation sets

Method keypoints(AP) mask(AP) ADE20K(mIOU)
SimBa.(SwinV2-B) [39] 76.6 - -
UperNet(Swin-B) [40] - - 48.1
pix2seqv2 [8] O365 pretrain 68.0 37.3 -
Unified-IOXL [27] 68.1(GRIT) - -
AiT(SwinV2-B) 67.5 34.2 Unstable
AiT-P(SwinV2-B) 77.4 35.2 50.1

Table 11. Affects of mask augmentation in training VQ-VAE on
depth. The patch size of all models is set to 16.

Mask Ratio VQ-VAE task-solver
0.0 0.0831 0.3105
0.3 0.0893 0.3093
0.5 0.0966 0.3080
0.7 0.1196 0.3225

Soft Token To leverage the correlation between tokens,
we introduce the soft token techniques, which can be used to
improve the performance in the inference stage for free. We
examined this technique in Table 9. Compared with the hard
inference baseline, applying the soft token in task-solver
and detokenzior alone can bring performance gains, and
further performance improvement is achieved when used in
two stages at the same time: the depth performance is im-
proved by +0.009 RMSE and the instance segmentation is
improved by +2.1 mAP. On top of it, adding the auxiliary
loss on the output of detokenizor enlarges the gain to +0.012
RMSE and +3.1 mAP.

Mask Augmentation We evaluate the effectiveness of
mask augmentation in depth estimation. The different mask
ratios vary from 0.3 to 0.7 are used, and Table 11 shows
the results. The best performance is achieved by using the
mask ratio of 0.5, which is +0.003 better than the baseline.
In instance segmentation, it achieves almost the same re-
sults as the model without augmentation. This is because
segmentation datasets have complete annotations.

4.4. Parallel Vision Modeling

In previous sections, we mainly demonstrate the use
of auto-regressive models to unify various visual tasks.
In this section, we show the AiT with Parallel Vision
Modeling(AiT-P) can help to improve the performance sig-
nificantly.

Table 12. Results of depth estimation task on NYUv2 [35]. Both
AiT and AiT-P are our methods, where AiT indicates auto-
regressive prediction, and AiT-P indicates Parallel Vision Mod-
eling.

Method RMSE ↓ δ1 ↑ δ2 ↑ δ3 ↑ REL ↓ log10 ↓
DORN [13] 0.509 0.828 0.965 0.992 0.115 0.051

BTS [22] 0.392 0.885 0.978 0.995 0.110 0.047

AdaBins [3] 0.364 0.903 0.984 0.997 0.103 0.044

DPT [34] 0.357 0.904 0.988 0.998 0.110 0.045

LocalBins [4] 0.357 0.907 0.987 0.998 0.099 0.042

P3Depth [29] 0.356 0.898 0.981 0.996 0.104 0.043

BinsFormer [24] 0.339 0.921 0.989 0.998 0.096 0.041

NeWCRFs [50] 0.334 0.922 0.992 0.998 0.095 0.041

BinsFormer [24] 0.330 0.925 0.989 0.997 0.094 0.040

SwinV2-B [42] 0.303 0.938 0.992 0.998 0.086 0.037

SwinV2-L [42] 0.287 0.949 0.994 0.999 0.083 0.035

UViM[20] 0.467 - - - - -

Unified-IOXL[27] 0.385 - - - - -

AiT (SwinV2-B) 0.305 0.934 0.991 0.998 0.087 0.037

AiT (SwinV2-L) 0.284 0.949 0.993 0.999 0.079 0.034

AiT-P (SwinV2-B) 0.301 0.940 0.992 0.998 0.085 0.036

AiT-P (SwinV2-L) 0.275 0.954 0.994 0.999 0.076 0.033
AiT-P (SwinV2-L)

w/o soft token 0.282 0.951 0.994 0.999 0.080 0.034

As shown in Table 10 and Table 12, the AiT-P performs
better than the pure auto-regressive counterpart along a se-
ries of tasks, around 0.01 RMSE (0.275 vs. 0.284) on depth,
10 AP gain(77.4 vs. 67.5) on COCO keypoints validation
and 1 AP(35.2 vs. 34.2) gain on COCO instance segmenta-
tion. This indicates a strong potential than the pure auto-
regressive models. We find the AiT-P has higher loss than
AiT because of removing information leakage from training
and causes more stable training. Also the parallel prediction
can eliminate cumulative error in auto-regressive predic-
tion. With the help of Parallel Vision Modeling, our model
can achieve or close the gap with the SOTA task-specific on
many tasks.

Our techniques such as Soft Token also benefit the paral-
lel decoder, as shown in Table 12. This implies the general-
ity of the proposed techniques.

4.5. Comparison with Other Unified Frameworks
and State-of-the-arts in Depth Estimation

UViM and Unified-IO are the most relevant works to
ours. We compare the performance with these methods
on the overlap task, i.e. NYUv2 depth estimation. The re-
sults are shown in Table 12. Our auto-regressive approach
achieves 0.284 RMSE, which is 0.183 and 0.101 better than
UViM and Unified-IO. Moreover, our parallel approach fur-
ther improves the performance to 0.275 RMSE. This re-
sult surpasses previous state-of-the-arts by 0.012 RMSE.
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Figure 4. Visualization on instance segmentation task of our methods.

Figure 5. Visualization of depth estimation task of our methods.

While UViM and Unified-IO mainly conceptually propose
unified frameworks for various visual tasks, we push more
solid steps through in-depth study of the general visual task-
solver.

4.6. One Model for Multiple Tasks

We train the instance segmentation and depth jointly
using a shared task-solver with AiT model. Table 13
shows that the joint training with shared model weights has
marginal performance gradation compared to using separate
task solvers.

5. Conclusion
In this work, we investigate the unification of output

spaces for various vision tasks by a set of visual tokens, and
further develop a unified auto-regressive encoder-decoder
model. Three new techniques are proposed which take the
particularity of visual tasks into account to improve the sys-
tem: 1) Soft token can leverage the correlation between
tokens to improve performance in the inference stage and

Table 13. Joint training of depth estimation and instance segmen-
tation using a single task-solver. The performance of joint training
is slightly worse than using separate task-solvers for each task.

Description.
Depth Instance Seg.

RMSE Box mAP Mask mAP

separate training 0.3052 43.3 34.2
joint training 0.3103 42.2 34.1

enables end-to-end learning for the final visual targets; 2)
Mask augmentation is used to alleviate the issue of cor-
rupted/undefined areas of visual tasks, e.g. depth estima-
tion. 3) Parallel Vision Modeling is specific designed for
dense vision token only and still remains the auto-regressive
capability for sequence generation. With these three tech-
niques, our general method sets a new state-of-the-art on
the NYUv2 depth dataset, as well as achieves competitive
accuracy on many other tasks. We hope our methods serve
as an important step to match the performance of the unified
model with that of the best traditional model.
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