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Abstract

Low-light video enhancement in the visible (VIS) range
is important yet technically challenging, and it is likely to
become more tractable by introducing near-infrared (NIR)
information for assistance, which in turn arouses a new
challenge on how to obtain appropriate multispectral data
for model training. In this paper, we defend the feasibility
and superiority of NIR-assisted low-light video enhance-
ment results by using unpaired 24-hour data for the first
time, which significantly eases data collection and improves
generalization performance on in-the-wild data. By ac-
counting for different physical characteristics between un-
paired daytime and nighttime videos, we first propose to
turn daytime NIR & VIS into ”nighttime mode”. Specif-
ically, we design a heuristic yet physics-inspired relight-
ing algorithm to produce realistic pseudo nighttime NIR,
and use a resampling strategy followed by a noiseGAN for
nighttime VIS conversion. We further devise a temporal-
aware network for video enhancement that extracts and
fuses bi-directional temporal streams and is trained using
real daytime videos and pseudo nighttime videos. We cap-
ture multi-spectral data using a co-axial camera and con-
tribute Fulltime Multi-Spectral Video Dataset (FMSVD),
the first dataset including aligned 24-hour NIR & VIS
videos. Compared to alternative methods, we achieve sig-
nificantly improved video quality as well as generaliza-
tion ability on in-the-wild data in terms of both evaluation
metrics and visual judgment. Codes and Data Available:
https://github.com/MyNiuuu/NVEU .

1. Introduction

Visually pleasing videos under well-illuminated condi-
tions are essential for human perception as well as high-
level computer vision tasks. In practice, however, many
videos are captured under sub-optimal conditions due to en-
vironmental constraints, leading to poor visibility, structural
degradation, and unpredictable noise interference.

So far, a large number of algorithms have been proposed
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Figure 1: Light source and distribution differences be-
tween daytime and nighttime. During daytime, both NIR
and VIS come from sunlight and skylight, which share sim-
ilar spatial distribution (a), and the VIS and NIR images are
bright and more uniform (b). During nighttime, the camera
is equipped with NIR LEDs in a co-located setting (c), thus
the intensity distribution of nighttime NIR images depends
heavily on object distance and surface direction. The VIS
images are much darker due to weak illuminants like moon-
light and manmade lamps (d).

to enhance images/videos in the visible (VIS) range. Su-
pervised methods [41, 59, 62, 5, 61, 4, 70] provide remark-
able performance by denoising and enhancing the low-light
inputs. However, in-the-wild image pairs for supervised
training are laborsome to obtain, which basically needs dif-
ferent camera settings for low-light/normal image pairs of
completely static objects. Capturing video pairs for moving
objects is more involved, which requires complex systems,
such as the coaxial imaging system with ND filters [24] and
repeatable mechatronic motion tracks [58], making the pro-
cess harder and less practical. Existing unsupervised meth-
ods [18, 25, 44] need no image pairs for training, but their
capability in tackling noise tends to be undermined.

In addition to the severely degraded VIS image, it is
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sometimes convenient to obtain another bright NIR im-
age, by enabling auxiliary illuminants. Thus, VIS-NIR fu-
sion [51, 26, 12] has become a promising method for low-
light imaging. Compared to pure VIS-based methods, rich
and detailed information is introduced from correspond-
ing NIR images. Several supervised learning based meth-
ods [26, 67] have been proposed to enhance VIS images by
fusing photographs of extra wavelengths.

Unquestionably, adding assistance images of additional
wavelengths is likely to robustify the enhancement task and
provide superior performance, but it also makes data col-
lection more challenging. Given the practices of data col-
lection in the VIS range, it is obvious that capturing realis-
tic paired data in VIS-NIR domain is extremely difficult, if
not infeasible. Existing methods including DVN [26] and
DRF [67] simply synthesize training pairs from clean im-
ages or use static images to ease data collection, which yet
inevitably leads to generality issues on real data.

In this paper, we propose to consider a paradigm that
only requires unpaired real data, which is much easier to
collect since we do not have to assure the same scenes for
low-light and normal images/videos. As a result, we can
easily capture large-scale real data (even in video form) for
training and testing. The complex lighting and noise dis-
tributions covered in the dataset also intuitively assure bet-
ter generality on in-the-wild data. For camera settings, we
consider the most practical monocular systems which can
be achieved through either co-axial systems or filters.

Apparently, by using a synchronized co-axial camera,
it is possible to take aligned VIS and NIR videos in day-
time and nighttime, respectively. Nevertheless, the differ-
ences in light source and brightness level lead to obvious
domain gaps between daytime and nighttime VIS/NIR im-
ages (Fig. 1). Specifically, daytime VIS and NIR images
are bright, and they share the same illumination distribution
implied by the sunlight and skylight. In contrast, nighttime
VIS frames suffer from poor visibility, structural degrada-
tion, and unpredictable noise interference due to low pho-
ton counts. Although nighttime NIR frames are free from
those issues because of auxiliary NIR illuminants, they still
have wide domain gaps from daytime NIR in terms of light
distribution, considering that the auxiliary illuminants (like
LEDs) are usually equipped around the camera lens in a
nearly co-located setting, as in most security cameras.

Based on these 24-hour data, we propose the first NIR-
assisted low-light video enhancement paradigm using un-
paired videos, which can be divided into two stages (Fig. 2):

1) Day-to-night video synthesis. Given the different
characteristics between daytime and nighttime videos, we
first propose to turn daytime videos into ”nighttime mode”.
For NIR day-to-night synthesis, we design a novel relight-
ing (RL) algorithm. The algorithm takes a daytime NIR
nday together with an inferred depth map as input, and out-

Stage One Stage Two

Loss

RL

RST

Figure 2: The two-stage framework of our method. RL
and RST represent relighting algorithm and resampling
trick, respectively.

puts its nighttime version (n̂night) by approximating the ef-
fects of co-located illumination. During this process, it con-
siders the difference in light distribution between daytime
and nighttime by formulating two factors: physical distance
and surface angle to the camera. For VIS day-to-night syn-
thesis, each daytime VIS frame vday is first processed by a
resampling trick (RST). We then simply leverage existing
noise GAN techniques [6, 66, 23] to add realistic pseudo
noise on each frame. The noise GAN is first trained on real
nighttime VIS to learn the camera noise pattern.

2) Improved VIS-NIR fusion with pseudo data pairs. We
design and optimize an enhancement network G using real
daytime VIS and pseudo nighttime NIR & VIS. The net-
work extracts and fuses the feature of three continuous
frames and outputs the enhancement result for the middle
frame.

We demonstrate the effectiveness of our model on in-the-
wild video datasets collected by our camera system, show-
ing significantly improved video quality compared to exist-
ing alternative methods. We also show the superior general-
ization ability through testing on another third-party dataset.
Our contribution can be summarized as follows:

• For the first time we show that through physics-aware
modifications on 24-hour unpaired data, an NIR-
assisted low-light enhancement model can be trained
with superior performance and generalization ability.

• A heuristic yet effective relighting method for realistic
NIR day-to-night synthesis by modeling the distance
and surface angle to the camera.

• A temporal-aware video enhancement network, which
is trained on real daytime VIS and pseudo nighttime
NIR & VIS synthesized by our method.

• Fulltime Multi-Spectral Video Dataset (FMSVD), the
first dataset including in-the-wild aligned NIR and VIS
videos during both daytime and nighttime.

2. Related Work
Low-light Enhancement. Traditional enhancement meth-
ods were mostly based on histogram manipulation [8, 22,
33, 53] or Retinex theory [32, 27, 60, 15, 19, 36]. In recent
years, many learning-based methods have been proposed
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Figure 3: Samples from our dataset. From top to down: nighttime NIR, nighttime VIS, daytime NIR, daytime VIS.
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Figure 4: Left: camera system to collect FMSVD. Right:
spectrum response of camera and curve of 850 nm LED.

Table 1: Configuration of FMSVD.

Daytime Nighttime Total
Scenes 29 35 64
Frames 18381 22982 41363
Frame/Sce. 633.83 656.63 646.30
Format 240×320, PNG
Settings FPS: 24, Exposure: 2ms
Camera JAI FS-3200T-10GE-NNC

and attracted increasingly wide interest [41, 59, 62, 18, 25].
Supervised settings have also been extensively explored for
enhancing RAW images [5, 61] and videos [4, 24, 70, 58].
These methods often rely on paired datasets from numerical
simulation [63, 72] or approximate capture [24, 58], which
inevitably leads to generalization issues on challenging real
data. Unsupervised methods [25, 18, 44] were further pro-
posed to simplify data collection, but usually fail to resolve
obvious noise caused by low-light conditions.
NIR and RGB Image Fusion. Traditional image fusion
methods were often based on spatial transformation tech-
niques such as wavelet transform [34], contourlet trans-
form [9], and edge-preserving filter-based transform [43].
In recent years, deep learning have attracted great attention
in this field [35, 68, 69, 56]. Xiong et al. [67] proposed a
new flash technique for low-light imaging which uses deep-
red light for assistance. Jin et al. [26] proposed to fuse NIR
images into low-light RGB images and synthesized data for
the supervised enhancement of single images.
NIR-to-RGB Translation. NIR-to-RGB Translation [38,
54, 57] aims to colorize NIR images into RGB images.
Limmer et al. [38] first trained a deep multi-scale convo-

lutional neural network that performs direct and integrated
transfer between NIR and RGB pixels. To deal with un-
paired data, Nyberg et al. [48] and Mehri et al. [45] learned
the mapping with an unsupervised Generative Adversarial
Network (GAN) [16] based on CycleGAN [75]. Wu et
al. [64] proposed a supervised method for NIR2RGB video
translation, yet the training data is captured in daytime, and
the gap in illumination distribution between nighttime arti-
ficial LEDs and daytime illuminants still exists.
VIS-NIR Datasets. Various camera systems have been de-
signed to capture VIS-NIR image pairs for further analysis
and applications [14, 17, 55, 13, 31]. There are mainly three
types of hardware: 1) cameras with IR-cut filters that switch
between VIS and NIR [64, 42]. 2) single-chip sensor that is
sensitive to NIR and VIS in different parts of the filter ar-
ray [47]. 3) coaxial cameras that capture multi-spectral pho-
tographs in one shot, which is utilized to build our dataset.
Sadeghipoor et al. [50] contributed a dataset including 50
VIS-NIR image pairs. Brown et al. [3] further proposed
MSIFT containing 477 VIS-NIR images. Lv et al. [42] built
a dataset with 714 aligned VIS-NIR images. These datasets
are relatively small and limited to static scenes. VSIAD [64]
is a large-scale dataset that contains NIR & VIS videos, but
precludes low-light videos during nighttime. DVD [26] is
the first VIS-NIR single-image dataset for static low-light
scenes, which is not available yet.

3. FMSVD
We introduce Fulltime Multi-Spectral Video Dataset

(FMSVD), the first dataset that includes aligned in-the-wild
NIR and VIS videos during both daytime and nighttime.

3.1. Hardware Configuration

The camera system used to collect data is illustrated in
Fig. 4. We choose a multi-sensor camera JAI FS-3200T-
10GE-NNC together with two 850 nm infrared lights. As
shown in Fig. 4, the camera is equipped with 3 CMOS im-
age sensor: Sensor1 with response in 400 nm ∼ 700 nm
range, Sensor2 in 700 nm ∼ 800 nm range, and Sensor3 in
800 nm ∼ 1000 nm range. We only adopt Sensor1 to cap-
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Figure 5: Illustration for daytime and nighttime NIR light distribution. (a) In daytime, the sunlight and skylight are
infinite, and scene objects almost share the same intensity regardless of distance towards the camera. (b) In nighttime,
because of the near-field characteristics of NIR LEDs, the light intensity decreases as the distance from the camera grows.
(c) In nighttime, the local area perpendicular to the camera reflects more photons to the sensor and is therefore brighter, due
to the co-located setting of camera and light source.

ture VIS frames and Senor3 to capture NIR frames. During
nighttime, we use two 850 nm infrared LED lights for illu-
mination, since this wavelength is widely used in industry.

3.2. Collected Data

The configuration of our dataset is listed in Tab. 1. Each
frame includes a VIS image and its corresponding NIR im-
age. The NIR and VIS frames are temporally and spatially
aligned since the camera is a coaxial multi-sensor camera.
There are a total of 64 scenes (41363 frames) in our dataset.
Note that there is no paired video between daytime and
nighttime because scenes are dynamic. The FPS of each
video is set to 24 with an exposure time of 2ms. All im-
ages are stored in PNG format after the ISP process through
Rawpy, with a resolution of 240 × 320. Fig. 3 presents
some data samples from our collected dataset. More visual
samples are in supplementary materials.

4. Method

4.1. Day-to-night Video Synthesis

In stage one, we turn daytime NIR & VIS into ”nighttime
mode”. For NIR, we consider the difference in light distri-
bution via the proposed relighting algorithm. For VIS, we
consider the difference in brightness and noise interference.

4.1.1 Day-to-night NIR Synthesis.

Motivation. During daytime, the light of NIR images
comes from sunlight and skylight, which provides enough
photons for high-quality videography (Fig. 5(a)). During
nighttime, though the camera is equipped with co-located
NIR LEDs to assure enough illumination, the light distri-
bution is apparently different from the infinite illuminants
of daytime. First, the light intensity decreases as the dis-
tance between the object and the camera grows due to the
near-field characteristics of NIR LEDs (Fig. 5(b)). Second,
given the same distance, the local surface perpendicular to
the camera reflects more photons to the sensor and is there-
fore brighter, because of the co-located setting of camera

and light source (Fig. 5(c)). Typical daytime and night-
time NIR samples can be found in Fig. 3. Following these
principles, we design the relighting algorithm that simulates
pseudo nighttime NIR images from real daytime NIR by re-
distributing the light intensity value of each pixel.

Theoretically, a rigorous physics-based relighting pro-
cess can be modeled as follows: 1) Obtaining reflectance
component through Intrinsic Image Decomposition [37, 7,
39], which is a prerequisite for the following two steps. 2)
Adjusting the light intensity of each pixel in reflectance ac-
cording to the inverse-square law of near-field point source.
3) Calculating shading under the nighttime illuminant ac-
cording to a reflectance model [1, 30]. However, existing
intrinsic decomposition methods mainly focus on indoor
images, and outdoor scenes are extremely hard to perform
even with hyper-spectral data [71].

Without estimating the exact reflectance, modeling the
light intensity decay is rather a practical process. Therefore,
instead of strictly following physical rules, we empirically
design a heuristic algorithm to model distance and surface
angle effect, as will be introduced in the following parts.
We also formulate and analyze the rigorous physics-based
relighting process in the supplementary material .
Relighting algorithm. To start with, we predict a depth
map using a monocular depth estimation network Gdepth.
We use MonoViT [73] as our depth estimation network be-
cause of its state-of-the-art performance and generalization
ability. The network takes a daytime VIS frame vday as in-
put, and outputs a depth mapD ∈ RH×W for further usage:

D = Gdepth (vday) , (1)

where bigger value in each position of D represents closer
distance to the camera. We then normalize D to (0, 1) and
modulate the corresponding daytime NIR frame nday as:

D̂(i, j) = D(i, j)−MIN

MAX −MIN
, (2)

ndisday = nday ⊙ D̂, (3)

where i ∈ {1, 2, ...,H}, j ∈ {1, 2, ...,W}, and ⊙ repre-
sents the Hadamard product. We set MAX and MIN to
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Algorithm 1 Calculating Perpendicular Scale Map
Input: Depth Map D of size H ×W , patch size k.
Output: Perpendicular Scale Map P
1: P ← zero matrix of size H ×W
2: for i← 1 to H do
3: for j ← 1 to W do
4: A ← k × k subarea centered at (i, j).
5: dh ← ∂

∂xA, dv ← ∂
∂yA.

6: P(i, j)← dh+dv

k×k .
7: end for
8: end for
9: P ← 1− P−min(P)

max(P)−min(P) .
10: return Perpendicular Scale Map P
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Figure 6: (a) The architecture of our enhancement model.
(b) Structure of Swin-attention Block.

the maximum and minimum value of all depth maps in each
scene instead of each frame to preserve temporal consis-
tency. Based on the original NIR frame, the value of each
pixel in ndisday fades as the distance from the camera grows.
This process roughly reflects the near-field characteristic of
nighttime auxiliary illuminant, yet in a linear decay model,
rather than quadratic in the ordinary sense.

To further consider the surface angle effect, we calculate
the perpendicular scale map P according to D̂, and intro-
duce it as a modulated residual:

n̂night = ndisday + λ · ndisday ⊙ P, (4)

where λ is the hyperparameter for tuning the weight of P .
The pseudo code for calculating P is shown in Alg.1. The
idea is to walk through every pixel in D̂ and calculate the av-
erage differential (both horizontal and vertical) of the k×k-
sized subarea centered on it. A smaller average differential
indicates that the subarea is more closed to be perpendicular
to the camera and vice versa.

4.1.2 Day-to-night VIS Synthesis

In contrast to the gap of illumination distribution between
daytime and nighttime NIR, the core gap between daytime
and nighttime VIS lies in the light intensity and noise level.
We first model the brightness difference through the resam-
pling trick, then leverage a noise GAN to match the noise
distribution of real nighttime VIS, following existing unsu-
pervised denoising fashions [6, 66, 23].

Resampling trick. The idea of resampling trick derives
from the data normalization used in many computer vision
tasks. One of the most famous examples is to normal-
ize each image from ImageNet [11] with the three-channel
mean of [0.485, 0.456, 0.406], and standard variation of
[0.229, 0.224, 0.225]. After normalization, the data distri-
bution approximately becomes N (0, 1). Similar to that, we
first calculate the three-channel mean and standard varia-
tion of daytime VIS and nighttime VIS respectively, then
normalize the daytime VIS according to its own mean and
standard variation:

v̌cday =
vcday − µc

day

σc
day

, (5)

where c ∈ {R,G,B} stands for color channels. µc
day and

σc
day represent the mean and standard variation of channel c

in daytime VIS, respectively. After that, we re-sample (de-
normalize) each image according to the mean and standard
variation of nighttime VIS to obtain the pseudo output:

ṽcnight = v̌cday · σc
night + µc

night. (6)

Noise GAN. Inspired by recent unsupervised image denois-
ing algorithms [6, 66, 21, 23], we leverage a noise GAN to
mimic real noise patterns of nighttime VIS. The Generator
Gnoise takes ṽnight as input and predicts a noise residual ŝ.
ŝ is then directly added to ṽnight and forms the final output:

ŝ = Gnoise(ṽnight), (7)
v̂night = ṽnight + ŝ. (8)

The architecture and training procedures of Gnoise are sim-
ply based on [23], and details can be found in supplemen-
tary materials.

4.2. Video Enhancement Model

Now that we can generate realistic pseudo nighttime
videos, our next step is to train a network that performs
video enhancement given nighttime NIR and VIS.
Network Architecture. Fig. 6 presents the architecture of
our enhancement network G, which operates on three con-
tinuous frames to consider temporal consistency. Specifi-
cally, G takes xt−1

night, x
t
night, and xt+1

night as input, where
xTnight is the concatenation of n̂Tnight and v̂Tnight:

xTnight = concat[n̂Tnight, v̂
T
night]. (9)

The input of each timestamp is first encoded by the fea-
ture encoder Enc, which consists of several convolution
layers and Swin-attention Blocks [40]. Since deep features
from adjacent frames may not be spatially consistent with
the present frame, it is beneficial to use deformable con-
volution which is able to dynamically adjust the receptive
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Table 2: Quantitative results against alternative methods. ✓ (✗) for ’Data Pair’
means the method needs (does not need) data pairs. ✓ (✗) for ’NIR’ means the method
takes (doesn’t take) NIR as input. The best and second best results are in red and blue.

FMSVD Third-PartyData Pair NIR Methods PI↓ NIQE↓ HSE↑ PI↓ NIQE↓ HSE↑
EnG 9.440 17.005 3.16 8.486 14.098 3.50
Z-DCE 9.332 16.740 3.00 8.185 13.621 3.16✗
SCI 9.888 17.756 2.67 8.666 13.778 3.00✗

✓ Ours 4.786 5.469 4.50 2.819 3.666 4.33
Jiang et al. 5.022 5.935 1.83 4.595 5.319 2.00
URetinex 8.200 14.484 2.83 7.488 11.993 2.33✗
UTVNet 7.039 12.205 2.83 6.806 11.429 2.50
DRF 4.989 6.123 2.16 3.437 3.995 2.50

✓

✓ DVN 8.282 9.998 1.83 6.959 7.080 1.00

Figure 7: Camera to capture
third-party dataset, with two
850 nm NIR LEDs and a filter
wheel to switch between VIS
(400 nm to 700 nm) and NIR (>
800 nm).

field to handle various geometric transformations and spa-
tial misalignment. Thus, we devise two successive fusing
layers F to fuse encoded features of different timestamps
via a Deformable Convolutional Block [10, 76] followed by
three Residual Blocks [20]. The more detailed structure of
G can be found in supplementary materials.
Loss Function. The perceptual loss [28] has been widely
used in image reconstruction tasks due to its ability to re-
cover details and preclude over-smooth results compared to
pixel-wise losses. Based on it, we design a simple satura-
tion loss to produce more perceptually satisfying results as
well as powerful modeling capabilities for wider scenarios:

Lsat =

I∑
i=1

∥∥ψi

(
v̂tday

)
− ψi

(
fsat(v

t
day

)∥∥
1
, (10)

where v̂tday is the output ofG, and vtday is the corresponding
ground truth from daytime VIS. ψi denotes the activation
map at the i-th layer of the pre-trained VGG-19 network
[52]. Particularly, we chose 5 layers including relu1−1,
relu2−1, relu3−1, relu4−1, and relu5−1 from the VGG-
19 network. fsat is a non-linear function that modifies the
saturation level of vday . Specifically, we first turn vday into
HLS color space (hday), transforming the saturation chan-
nel hsday according to the preset non-linear curve:

fsat(h
s
day) = (−(1−

hsday
255

)ϕ + 1)× 255, (11)

then turn it back to RGB color space.

4.3. Implementation Details.

We implement the training part of our model with Py-
torch [49]. We use Adam optimizer [29] with β1 =
0.5, β2 = 0.999, and randomly crop the input images to
64×64. To train the video enhancement network G, we set
batch size to 4 and learning rate to 2e-4. We use Adam op-
timizer with β1 = 0.5, β2 = 0.999 to optimize G, and ϕ for

the saturation loss is set to 2. λ is set to 0.1, and k is set
to 13 for the relighting algorithm. The total training itera-
tions is 10,000. We randomly split 10 scenes from nighttime
dataset for testing. The training procedure is performed on
4 NVIDIA GeForce RTX 3090.

5. Experiments

5.1. Settings

Methods. We evaluate and compare our method with 8
state-of-the-art methods for low-light image/video enhance-
ment. EnGAN [25], Zero-DCE [18], and SCI [44] are unsu-
pervised enhancement methods that take single VIS image
as input. Jiang et al. [24], URetinex [65], and UTVNet [74]
are supervised methods that take multiple or single VIS im-
age as input. DRF [67] and DVN [26] are supervised meth-
ods that fuse additional spectral images with VIS.
Benchmarks. Since there is no publicly available multi-
spectral benchmark containing low-light and NIR input, we
thus conduct experiments mainly on our FMSVD. To fur-
ther test the generalization ability of all the methods, we
build a third-party dataset, which is collected at night with
a different camera from FMSVD (FLIR GS3-U3-15S5C
with the IR-cut filter removed). The camera system is il-
lustrated in Fig. 7. Different from FMSVD, the VIS and
NIR frames are obtained by switching on a VIS-range fil-
ter (400 nm ∼ 700 nm) and a NIR-range filter (larger than
800 nm), respectively. The dataset includes 41 static low-
light scenes, each of which contains 10 continuous aligned
VIS-NIR frames. All frames are stored in PNG format, with
a resolution of 512 × 688. For all compared methods, we
use the official codes and checkpoints, if they are available.
Note that none of the models is re-trained or finetuned, un-
less explicitly indicated. Also, our model is trained on part
of FMSVD, without any finetuning on the third party data.
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VIS NIR EnGAN[25] Z-DCE [18] SCI [44] Jiang et al. [24] URetinex [65] UTVNet [74] DRF [67] DVN [26] Ours

Figure 8: Qualitative results on FMSVD (above dash) and the third-party dataset (below dash). Zoom in for a clear view.

5.2. Main Results

Quantitative results. Comparing the visual quality of im-
ages/videos without reference is quite subjective. Here,
standard metrics PI (Perceptual Index) [2] and NIQE [46]
are adopted in quantitative experiments. Considering that
these metrics can only evaluate the quality of single images
from certain aspects, we also conduct a Human Subjective
Evaluation (HSE) which directly reflects human’s percep-
tual judgment on video results to compare the performance
of our method and other methods. Specifically, we ran-
domly select 6 videos from the test set. For each video,
it is first enhanced by these methods respectively. We then
ask 10 volunteers to independently watch the output video
of these methods and assign an integer score ranging from
1 (bad quality) to 5 (excellent quality) respectively. During
this process, the volunteers are instructed to consider: 1)
whether there exists visible noise; 2) whether the video con-
tains over- or under-exposure effects; 3) whether the video
shows color/structural distortions; and 4) the temporal con-
sistency of the video. The quantitative results on FMSVD
and third-party dataset are reported in Tab. 2. We can see
that our method achieves the best results on two datasets in
terms of both quantitative and human subjective evaluation.

Qualitative results. Visual results on FMSVD and the
third-party dataset are shown in Fig. 8. More results in
video form can be found in supplementary materials. We
can observe that: 1) methods that only take VIS as input
(EnGAN, Z-DCE, SCI, Jiang et al., URetinex, UTVNet)
fail to recover the structure loss caused by lack of pho-
tons and heavy noise. For multi-spectral fusion methods,
DRF heavily counts on NIR to recover structure informa-
tion, which promises good overall structure and noise sup-

pression, but generates results with obvious color distortion
and content loss. 2) EnGAN, Z-DCE, SCI, and URetinex
fail to eliminate (sometimes even amplify) the visible noise.
Although Jiang et al. and UTVNet consider noise interfer-
ence during the algorithm design, the denoising effects of
these methods are still far from being satisfactory. DVN
successfully suppresses the visible noise, but suffers from
over-fitting issues and gives perceptually inferior results. 3)
Color bias exists in previous methods such as EnGAN (or-
ange), Jiang et al. (green), and DRF (color distortion). In
contrast, our method successfully recovers the structure loss
in RGB frames via retrieving the complementary informa-
tion from NIR. Our method also suppresses visible noise
and produces results with no obvious color distortion.
Visual results for pseudo nighttime NIR. Fig. 9 shows vi-
sual results for pseudo NIR images generated by our pro-
posed relighting algorithm. Although our method is heuris-
tic, it reflects the core observations in physics, and the re-
sults look visually pleasing. More results and a compari-
son with quadratic decay and Lambert based shading can
be found in the supplementary materials.

5.3. Ablation Study

We perform several ablation studies to demonstrate the
effectiveness of each component of our model. Differ-
ent variants are tested on both FMSVD and the third-party
dataset, including model without relighting algorithm (w/o
RL), without the noise GAN (w/o NG), without resampling
trick (w/o RST), without saturation loss (w/o fsat), and re-
placing relighting algorithm with CycleGAN [75] to pro-
duce pseudo nighttime NIR (*Cycle). The results are re-
ported in Tab. 3 and Fig. 10. From the results, we can
observe that without the relighting algorithm, though our
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Figure 9: Visual results for pseudo NIR. (a) original daytime NIR. (b) pseudo nighttime NIR. (c) depth map from Gdepth.

VIS NIR w/o Relighting w/o noiseGAN w/o Resampling w/o fsat *CycleGAN *DRF *DVN Ours

Figure 10: Visual results for ablation studies on FMSVD (above dash) and third-party dataset (below dash).

Table 3: Quantitative ablation results on FMSVD and the
third-party dataset. The best results are in bold.

Methods FMSVD Third-Party
PI↓ NIQE↓ HSE↑ PI↓ NIQE↓ HSE↑

w/o RL 5.052 5.783 4.16 3.039 3.796 3.83
w/o NG 5.367 8.837 3.16 4.511 6.809 3.33
w/o RST 5.679 6.250 2.83 3.226 4.088 3.00
w/o fsat 5.111 5.864 4.33 2.823 3.571 4.16
*Cycle 5.146 6.147 2.66 3.197 3.772 2.83
*DRF 5.195 6.536 3.83 2.944 4.234 3.67
*DVN 5.214 6.186 3.67 3.128 3.990 3.16
Ours 4.786 5.469 4.50 2.819 3.666 4.33

model can give relatively acceptable results when NIR has
uniform distributions like daytime (third row in Fig. 10), it
starts to produce obvious artifacts and color distortion when
nighttime NIRs have large gaps from daytime NIR in terms
of light distribution (first and second row in Fig. 10). With-
out noise GAN, our model fails to suppress the obvious
noise from input, leading to unsatisfying results. Without
resampling trick, our model cannot enhance the low-light
frames to adequate lighting conditions. Our model also out-
puts plain results without the saturation loss. If we replace
relighting algorithm with CycleGAN [75], the model pro-
duce results with color distortion and structure discrepancy.
Retraining multi-spectral methods with our data. We
conduct experiments in which we use paired data gener-
ated by our stage one pipeline to retrain multi-spectral fu-
sion methods including DRF [67] (*DRF) and DVN [26]
(*DVN). The results are shown in Tab. 3 and Fig. 10. On
the one hand, DRF [67] and DVN [26] produce obviously
better visual results on FMSVD and have better general-

ity on the third-party dataset after retraining on paired data
generated by our algorithm. On the other hand, the results
still suffer from color bias and artifacts, demonstrating the
superiority of our enhancement network.

6. Conclusion
We proposed the first NIR-assisted low-light video en-

hancement paradigm which makes use of in-the-wild un-
paired 24-hour VIS-NIR videos from our proposed Full-
time Multi-Spectral Video Dataset (FMSVD). To address
the light distribution gaps between daytime and nighttime,
we performed NIR day-to-night synthesis through a heuris-
tic yet effective relighting algorithm, and VIS day-to-night
conversion via the resampling trick and a noise GAN. A
video enhancement model was then optimized using pseudo
data and real data. We evaluated our model on both FMSVD
and the third-party dataset, demonstrating superior video
quality as well as generalization ability through both evalu-
ation metrics and human subjective judgment.

For future works, we will explore: 1) Advanced algo-
rithm (hardware) for more accurate depth estimation to syn-
thesize NIR (e.g., multi-view stereo, Time-of-Flight cam-
era). 2) Adopting multiple NIR images with different wave-
lengths for more robust assistance.
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