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Figure 1. Domain Adaptive Few-Shot Open-Set Learning (DA-FSOS) tackles the challenges of both Domain Adaptive Few-Shot Learning
(DA-FSL) and Few-Shot Open-Set Learning (FSOS) by integrating them into a unified framework. In training phase, the model observes
a fully-supervised source domain S and a sparsely-supervised target domain T , where the labels of both domains are disjoint. However,
during testing, the model encounters a few-shot support set of new known classes from T , while the test query set contains unlabeled sam-
ples from both the known and previously unknown classes. Project page: https://github.com/DebabrataPal7/DAFOSNET

Abstract
Few-shot learning has made impressive strides in ad-

dressing the crucial challenges of recognizing unknown
samples from novel classes in target query sets and manag-
ing visual shifts between domains. However, existing tech-
niques fall short when it comes to identifying target outliers
under domain shifts by learning to reject pseudo-outliers
from the source domain, resulting in an incomplete solution
to both problems. To address these challenges comprehen-
sively, we propose a novel approach called Domain Adap-
tive Few-Shot Open Set Recognition (DA-FSOS) and intro-
duce a meta-learning-based architecture named DAFOS-
NET. During training, our model learns a shared and
discriminative embedding space while creating a pseudo-
open-space decision boundary, given a fully-supervised
source domain and a label-disjoint few-shot target domain.
To enhance data density, we use a pair of conditional ad-
versarial networks with tunable noise variances to aug-
ment both domains’ closed and pseudo-open spaces. Fur-
thermore, we propose a domain-specific batch-normalized
class prototypes alignment strategy to align both domains
globally while ensuring class-discriminativeness through
novel metric objectives. Our training approach ensures that
DAFOS-NET can generalize well to new scenarios in the
target domain. We present three benchmarks for DA-FSOS
based on the Office-Home, mini-ImageNet/CUB, and Do-
mainNet datasets and demonstrate the efficacy of DAFOS-
Net through extensive experimentation.

1. Introduction
The development of deep learning techniques has led

to significant advancements in visual recognition tasks by
leveraging their ability to learn data-driven features from a
vast amount of training examples [14, 21]. However, la-
beling is a laborious and costly task, which is why few-shot
learning (FSL) [33, 22] aims to recognize target classes with
limited supervision by learning transferable features from a
label-disjoint source domain that has sufficient supervision.

Despite progress [40], FSL models encounter difficulties
in two critical scenarios: i) when the under-represented tar-
get domain classes are drawn from a different distribution
than the source domain. One solution to this is Domain
Adaptive Few-Shot Learning (DA-FSL), which adapts dis-
joint classes from the fully-supervised source and sparsely-
supervised target domains during training [41, 34, 10], and
ii) Few-Shot Open-Set Learning (FSOS) [25], which as-
sumes no domain gap between source and target but com-
bines FSL with Open-Set Recognition (OSR) [12, 1] to de-
tect novel class samples as outliers during testing. However,
it is desirable for a generic FSL system to handle domain
discrepancy and reject outliers during inference in a unified
manner for practical applications. To this end, we introduce
a novel scenario, called Domain Adaptive Few-Shot Open-
Set Learning (DA-FSOS), which is illustrated in Fig 1.

DA-FSOS is a method that addresses a challenging prob-
lem: how to learn from supervision in one domain while
adapting to a different domain with non-overlapping known
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classes and potential test-time outliers under a few-shot set-
ting. During training, the method uses supervision from the
source domain and a few-shot training set from a disjoint
set of classes of the target domain. However, during testing,
the method is expected to handle unlabelled samples from
a new set of known and open-set classes from the target
domain, adding an extra challenge. DA-FSOS can be ap-
plied to self-driving cars, where learning to identify known
classes and reject outliers from abundant gaming data, the
real-world objects of interest (known and unknown) on the
road can be identified. Also, to detect novel animal species,
unknown land cover objects, unknown viruses in medical
imaging, etc., DA-FSOS can become instrumental.

DA-FSOS combines several techniques to tackle these
challenges, including domain adaptation, few-shot learning,
and open-set recognition. The setting is designed to handle
unconstrained domain differences, extremely limited super-
vision in the target domain, and the absence of prior knowl-
edge regarding the target open space in test time.

While DA-FSL and FSOS techniques can be combined,
they may not be sufficient to effectively solve the DA-FSOS
problem as they rely on different assumptions individually
(see Section 4). Similarly, combining an FSL technique
with open-set DA [29] or a DA-FSL model with the OSR
approach may not be suitable since DA variants assume la-
bel space consistency between domains, which is not the
case for DA-FSOS. Therefore, it is necessary to develop a
model specifically designed to solve DA-FSOS.

Our proposed DAFOS-NET: In this paper, we present
a novel model called DAFOS-NET that addresses the DA-
FSOS problem by integrating three crucial considerations.
Our approach aims to learn a prototype-based classifier that
can reject target outliers during testing, and we propose a
meta-training method that simulates the test scenario by di-
viding the available training classes from both domains into
known and pseudo-unknown categories in each episode.

To address the issue of overfitting caused by limited
target supervision, we propose a data augmentation tech-
nique in DAFOS-NET. Unlike previous FSOS methods
that only augment known classes from the source domain
[27], our approach involves augmenting both known and
pseudo-unknown classes from both source and target do-
mains using a pair of class and domain conditional adver-
sarial networks (cGANs). To maintain feature consistency
when generating known samples, we apply a low noise vari-
ance for the respective cGAN. However, to increase the
scatter when generating pseudo-unknown samples, we use a
high noise variance. To prevent mode collapse during train-
ing, we introduce a regularizer that ensures the outputs of
the two cGANs are consistently different.

We also introduce Global Cross-Domain Prototype
Alignment (GCDPA) strategy by exploiting domain-
specific batch-norm statistics to bring the domains closer

for the smooth transfer of source knowledge into the tar-
get. However, we must ensure that the adaptation does
not cause misalignments between the domains. To main-
tain class discriminativeness, we introduce a class compact-
ness loss for the known class samples. Simultaneously, a
novel prototype diversification loss objective is introduced
to maximize the gap between the known-class prototypes
and a combination of in-domain pseudo-unknown samples
with the across-domain class prototypes.

Finally, we propose a learning-based approach to auto-
matically predict the domain and inlier/outlier class labels
for the test samples. This approach eliminates the need for
manual threshold selection [25] and improves the ability to
solve generalized DA-FSOS by selectively considering ei-
ther source or target prototypes based on the predicted do-
main labels for classifying the test queries.

In summary, our novel contributions are as follows:
1. We introduce DA-FSOS, a practical problem setting that
generalizes FSOS and DA-FSL, and to solve that, we pro-
pose an end-to-end solution called DAFOS-NET.
2. DAFOS-NET integrates four novel ideas: i) An episodic
training strategy to develop a domain-agnostic open-set
classifier. ii) A generative feature augmentation scheme
that produces diversified known and pseudo-unknown class
samples for both domains from few-shot training samples.
iii) A metric objective that ensures class compactness and
discriminativeness for both domains. iv) A prototypical
batch-norm alignment-based global domain adaptation.
3. We present the standard and generalized DA-FSOS
training and evaluation protocols. Accordingly, we evalu-
ate our approach on DomainNet[31], miniImageNet-CUB
[39, 38], and Office-Home [37] datasets and achieve an av-
erage gain of 15% closed accuracy and 17% AUROC.

2. Related works
Few-shot learning: Given the significance of FSL, vari-
ous techniques have been introduced in computer vision and
natural language processing. Among them, meta-learning
has received substantial attention, owing to the advantages
of the episodic training strategy in facilitating learning to
learn. The metric learning-based meta-learning [33, 38, 19]
focus on distance metric learning for nearest neighbour
(NN) search, aiming to learn a discriminative embedding
space from low-shot support samples. Model-based FSL
[32, 9] leverage novel optimization algorithms, rather than
gradient descent, to fit in the few-shot regime. Addition-
ally, several FSL models rely on data augmentation [42, 5]
and self-supervision [18, 6] to improve performance. For a
comprehensive survey of FSL, see [40, 30, 36]. However, it
is essential to note that FSL is typically a closed-set learn-
ing problem where the classes in the support and query sets
are identical, and it may not account for extreme domain
differences between training and testing.
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Figure 2. The model architecture of DAFOS-NET. In each episodic training, Support SS(KS)/ST (KT ) and Query samples QS(KS ∪
US)/QT (KT ∪UT ) from Ds and Dd with KS /KT known and US /UT pseudo-unknown classes are considered from S and T . The domain
and class conditional GANs (GLθ, DLϕ) and (GHθ, DHϕ) separately synthesize features for the known and pseudo-unknown classes. The
augmented support sets SfS ∪ SlS and SfT ∪ SlT are used to produce the class prototype embeddings P ′

S and P ′
T for both the domains,

which are aligned through the learnable domain-specific batch-norm parameters (γS , βS) and (γT , βT ). Finally, a pair of domain-agnostic
classifiers (Oζ ,Oη) are deployed for the purpose of domain and inlier/outlier class predictions for the query samples.

Few-shot open-set learning: FSL struggles to handle un-
known class samples during testing. A common but sub-
optimal approach is to use closed-set FSL models for outlier
rejection by setting a confidence threshold. However, find-
ing the optimal threshold is challenging. To address this
issue, researchers have focused on dedicated FSOS tech-
niques, such as forming Gaussian clusters from a few train-
ing samples [25] or optimizing confidence for outlier detec-
tion [17]. However, these methods struggle with outliers
that resemble known class samples. Recent advances in
FSOS, including the binary closed-open discriminator opti-
mized episodically [28] and the use of generative augmenta-
ton [27], have shown promising results in handling outliers.
Nonetheless, these methods can not handle domain shifts
between the training and test sets. Our augmentation strat-
egy differs from both of [27, 28], as we seek to generate
pseudo-known and unknown samples of both the domains,
as opposed to those single domain FSOS methods.
Domain adaptive few-shot learning: In cross-domain
few-shot learning, global or class-conditional domain shifts
may occur between the disjoint base and novel classes. One
straightforward approach is to combine an off-the-shelf FSL
technique with a cross-domain alignment objective [11].
However, direct domain alignment [2] may not always be
preferable due to the label shift between the source and tar-
get domains. To address this issue, [41, 34] proposed a
method to align the domains while preserving global class
discrimination. Alternatively, [10] utilized cross-domain
mix-up samples to learn generalized features. Lastly, [13]
extended this setup beyond natural image classification by
using a meta-learning-based approach. In contrast, we
propose a simple and efficient batch-norm-based global
cross-domain prototype alignment strategy while maintain-
ing class separation through dedicated metric losses.

3. Proposed methodology

3.1. Problem definition and notations

Under our DA-FSOS setting, we have access to a large
training set Ds from a set of source classes Cs in a source
domain S, a few-shot sample set Dd from a set of target
classes Cd in a target domain T (P (S) ̸= P (T )), and a test
set Dt from another set of Ct classes in T . It is important to
note that Cs ∩ Cd = ∅, Ct ∩ Cd = ∅, and Cs ∩ Ct = ∅.
Additionally, the classes in Ct consist of known and un-
known classes, respectively. During testing, the few-shot
support set D′

t contains samples for a subset of C′
t ⊂ Ct

known classes, while the remaining Ct − C′
t classes in Dt

are unknown during training. Our goal is to use Ds and Dd

to learn an open-set classifier that can distinguish the sam-
ples from Dt into one of the known classes or an unknown
common class with respect to D′

t.
In our setting, each episode consists of a set of known

and pseudo-unknown classes denoted by KS and US from
S, where KS ,US ∈ Cs. Similarly, from T , the set of known
and pseudo-unknown classes are represented as KT and
UT , where KT ,UT ∈ Cd. KS ̸= US and KT ̸= UT

To form the source support, we use mS samples from
each class in KS , denoted by SS = {(xs

i , y
s
i )}

|KS |∗mS
i=1 .

Similarly, we use mT samples from each class in KT
to form the target support set, denoted by ST =

{(xt
i, y

t
i)}

|KT |∗mT
i=1 . Our support set formation follows the

K-way m-shot learning protocol, where mS + mT = m,
|KS | = |KT | = |K| and |US | = |UT | = |U|. Here, |K|
represents the cardinality operator of K. Also, we employ
more supervision in S and limited samples in T for episodic
training of DA-FSOS. Thereby, mS > mT . We represent
the query sets by QS(KS ∪ US) and QT (KT ∪ UT ).
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3.2. Model and training overview: DAFOS-NET

Architecture overview: Referring to Fig 2, DAFOS-NET
is composed of several components. First, there is a pre-
trained feature extractor, denoted as fφ, that encodes the
original images along with their augmented versions. In
addition, there are two conditional GANs, represented as
(GLθ, DLϕ) and (GHθ, DHϕ), each consisting of a gen-
erator and discriminator sub-network. These cGANs fur-
ther augment the closed classes and the pseudo-open-space
for both domains at the feature level, using two noise dis-
tributions, N (0, σL) and N (0, σH), where σH >> σL.
The variance for the closed-set classes, σL, is kept low to
discourage the generation of sparse features. On the other
hand, a high variance, σH , is used to synthesize more di-
verse pseudo-open-space features.

Finally, we introduce two classifiers: a domain classi-
fication network denoted as Oη , that predicts whether a
sample belongs to the source or target domain, and an in-
lier/outlier classification network, denoted as Oζ , that aids
in making better decisions. To ensure that the domains are
aligned globally, we introduce the domain-specific batch-
norm layer into DAFOS-NET. Specifically, we learn trans-
lation and scaling parameters for feature normalization on
a per-batch basis for each domain, which are denoted as
(γS , βS ) and (γT , βT ), respectively.
Training overview: Our training involves loss optimiza-
tion based on samples from both domains. For 1-shot
meta-training, we take each domain data in tandem in each
episode. To begin with, we use fφ to generate feature em-
beddings for the support and query sets of both domains in
SfS/fT and QfS/fT . We train the cGANs for synthesizing
domain-specific features according to the KS/KT known
classes and the US/UT pseudo-unknown classes, respec-
tively (Eq. 1). However, training cGANs from limited sam-
ples is challenging due to the lack of sufficient gradients to
train the generators. To address this issue, we use DAW-
SON [24], an optimization-based meta-learning method, to
bridge GANs’ likelihood-invariant training and obtain gra-
dients in the low-shot regime. Specifically, we use first-
order optimization-based meta-learning [26].

The discriminator DLϕ penalizes the generator GLθ for
producing slightly fake known features SlS/SlT , given the
low noise variation σL, such that the union of SfS/fT and
SlS/lT better estimates the density for the known classes
of S and T . Similarly, DHϕ penalizes GHθ, which con-
siders a higher noise variance σH , for producing highly
fake pseudo-unknown features ShS/ShT . To avoid possible
mode collapse for the samples from both the cGANs, we in-
troduce a novel regularizer that penalizes the generation of
similar features for identical noise vectors (Eq. 2). Moving
forward, we calculate the class prototypes P ′

S and P ′
T given

SfS ∪ SlS and SfT ∪ SlT , respectively (Eq. 3). For domain
alignment, we propose aligning the styles of PS and PT by

normalizing the prototype features with respect to (γS , βS)
and (γT , βT ), and minimizing the global distance between
all the normalized source and target prototypes (Eq. 4).

To ensure the discriminativeness of the embedding
space, we propose a supervised contrastive loss LC|S∪T
(Eq. 5) to minimize the vectorized euclidean distance
(Qdist) between a query sample and its respective proto-
type, which leads to more compactness, where, Qdist =
{(Qdist1 , · · · ,Qdistn), (Qdist = ∥QfS/fT − PS/T ∥22)}.
Additionally, we introduce a novel prototype diversification
objective LPD (Eq. 6) that ensures the similarity between
a prototype and its positive class samples is at least a mar-
gin α higher than the similarity between that prototype and
all the class prototypes from the other domain and the in-
domain pseudo-unknown class samples. Finally, we opti-
mize the classification losses for (Oζ ,Oη) given Qdist (Eq.
7-8). In each episode, we train the model end-to-end con-
cerning all the losses (Eq. 9) and discuss them below.

3.3. Loss functions, training, and inference
The cGAN training losses: In Eq. 1, we present the
min-max loss objectives, Lh and Ll, for the feature-
generating cGANs that operate in pseudo-open and closed
spaces. The real data for hallucinating closed space is
SfS/fT (KS/KT ), and the same for the open space is
QfS/fT (US/UT ). The synthesized features from the
closed and open space cGANs for both S and T are repre-
sented by SlS/lT and ShS/hT , respectively. To ensure that
the pseudo-open and closed feature synthesis does not over-
lap, we incorporate a novel regularizer (Eq. 2) in Lh.

Lh = min
GHθ

max
DHϕ

Es∼QfS/fT (US/UT )[logDHϕ(s|US/UT )]

+ Ezh∼N (0,σH)[log(1−DHϕ(GHθ(zh|US/UT )] + LAOCMC

Ll = min
GLθ

max
DLϕ

Es∼SfS/fT
[logDLϕ(s|KS/KT ))]

+ Ezl∼N (0,σL)[log(1−DLϕ(GLθ(zl|KS/KT ))]; (1)

Anti open close mode collapse loss: To ensure a controlled
generation of diverse open and closed space features for
both the domains by GHθ and GLθ, respectively, using in-
puts zl ∈ N (0, σL) and zh ∈ N (0, σH), it is essential to
avoid generating identical sh ∈ Sh and sl ∈ Sl for similar
zl and zh inputs to the cGANs. To this end, we propose the
anti-open-close mode collapse loss (LAOCMC) during the
optimization of the open-space cGAN parameters (Hθ,Hϕ)
in Lh, which is as follows,

LAOCMC = min
GHθ,DHϕ

1 + log
1− (cos(zl, zh)) + ϵ

1− (cos(sl, sh)) + ϵ
(2)

Ideally, the set of values for zl is a subset of those of zh,
which means that there is a high likelihood of generating
the same mode for sh and sl when (zh, zl) is sampled from
the overlapping region of N (0, σL) ∪ N (0, σH), where
cos(zl, zh) ≈ 1. To prevent this, LAOCMC is used to regu-
late the generation of such features by adjusting GHθ such
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that cos(sl, sh) tends to zero instead. A small constant ϵ is
used to handle numerical instability. Alternatively, in the
mode collapse case, cos(sh, sl) → 1 for cos(zh, zl) → 1 so
the error remains large, and needs to be penalized.
Class and domain conditional prototype computation:
To compute the known-class prototypes for the classes in
KS and KT , we use augmented support sets SfS/fT ∪
SlS/lT separately for both domains. Specifically, we com-
pute the prototypes {P ′k

S/T }
|KS |/|KT |
k=1 for each of the kth

known classes, where mk
S/T is the number of support sam-

ples corresponding to the kth class for (S, T ).

P
′k
S =

1

mk
S

|KS |∑
k=1

Sk
fS ∪ Sk

lS ; P
′k
T =

1

mk
T

|KT |∑
k=1

Sk
fT ∪ Sk

lT ; (3)

Global cross-domain prototype alignment loss: To glob-
ally align S and T , we propose to align the style infor-
mation of both domains by learning domain-specific batch-
norm (DSBN) parameters (γS , βS) and (γT , βT ), respec-
tively. Furthermore, given the rescaled source and target
domain prototypes based on the batch-norm parameters, we
seek to minimize the global average distance between all S
and T prototype embeddings, which is expressed as,

LAlign =

|KS |∑
k=1

(γS × P ′k
S + βS)

|KS |
−

|KT |∑
k=1

(γT × P ′k
T + βT )

|KT |
; (4)

Our objective is to achieve rapid domain alignment by
aligning only the prototype vectors instead of the entire
dataset. As the known-class compactness loss brings the
query and support samples closer to the prototypes, aligning
the prototypes implicitly aligns the domain distributions. In
contrast, the original DSBN in [4] generates pseudo-labels
from T and performs a two-stage approach for class-level
domain alignment, which is suboptimal for DA-FSOS.
Known-class compactness loss: To maintain a concise and
discriminative representation of each known class, mini-
mizing the distance between the known support and query
samples and the corresponding class prototypes is crucial.
As described in Eq. 5, we enforce each q ∈ QfS(KS) ∪
SfS ∪ SlS to be in close proximity to the respective pro-
totype in PS , and similarly for the target domain T . The
compactness loss for both domains is denoted as follows,

LC|(S∪T ) = Eq∈Qf (K)∪Sf∪Sl

[
− log

e−d(q,Pl)∑K
k=1 e

−d(q,Pk)

]
(5)

d is the squared Euclidean distance and P l is the class pro-
totype for q. We ignore the domain labels in Eq. 5 .
Prototype diversification loss: In DAFOS-NET, we strive
to achieve not only within-category compactness, as en-
sured by Eq. 5, but also a margin of separation between
open and closed spaces and class-discriminative feature
space for both domains, which can be challenging to main-
tain due to domain adaptation. To address this, we propose
a margin-based metric objective that enforces a significant

distance between the prototypes in PS and the samples in
QfS(US)∪ShS from the same domain, as well as the cross-
domain prototypes from PT . This requirement applies vice
versa for T , resulting in highly discriminative feature space
for both domains.

LPD =

|KS |∑
k=1

[∥Pk
S − qPos|S∥22 − ∥Pk

S − qNeg|S∥22 + α]
+

+

|KT |∑
k=1

[∥Pk
T − qPos|T ∥22 − ∥Pk

T − qNeg|T ∥22 + α]
+
; (6)

Here, qPos|S ∈ QfS(KS)
k refers to the positive queries

from the source domain for the kth class prototype anchor
Pk
S , while its negative queries are denoted by qNeg|S ∈

QfS(US) ∪ ShS ∪ PT . Ideally, we seek to ensure that
the difference between (anchor, +ve) should be less by a
margin α than the difference between (anchor, -ve). Also,
[z]+ = max(z, 0).
Outlier detection and domain prediction loss: We sub-
sequently pass each query’s distance (Qdist) from the pro-
totypes to Outlier detector, Oζ and domain predictor Oη .
Oζ in Eq. 7 meta-learns to classify QfS(KS) ∪ QfT (KT )
queries as known and query samples from QfS(US) ∪
QfT (UT ) ∪ ShS(US) ∪ ShT (UT ) as outlier.

LOUT = Eq∈{QfS∪QfT ∪ShS∪ShT }

− 2∑
i=1

tilog(Oζ(Qdist)i)


(7)

Where, ti ∈ {0, 1} represents known or outlier label.
Similarly, Oη in Eq. 8 learns to classify QfS(KS∪US)∪

ShS(US) queries as source and QfT (KT ∪UT )∪ShT (UT )
queries as target.

LDC = Eq∈{QfS∪ShS∪QfT ∪ShT }

− 2∑
i=1

cilog(Oη(Qdist)i)


(8)

Where, ci ∈ {0, 1} indicates S or T domain label.
Total loss: To the end, we estimate the overall loss function
to optimize fφ in Eq. 9. We follow an alternate optimization
strategy between the cGANs and fφ.

LFE = λ1 ·LC +λ2 ·LPD+λ3 ·LAlign+λ4 ·LOUT +λ5 ·LDC

(9)
Where, the λs are weight factors of loss components.

Inference: In normal DA-FSOS, we utilize the outputs of
Oζ to determine whether a sample is an inlier or outlier. For
inlier samples, we estimate the class label based on their
similarity with the prototype vectors calculated from D′

t.
However, for generalized DA-FSOS, the query sample

may come from any of the classes in Cs ∪ Cd ∪ Ct. To han-
dle this situation, we leverage both Oζ and Oη to determine
both the domain and class labels for the test query. Subse-
quently, we choose the prototypes from the corresponding
domain to classify the potential known-class queries.
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4. Experimental evaluations
Datasets, preprocessing, and network details. We evalu-
ated the performance of DAFOS-NET on three benchmark
datasets: Office-Home [37], DomainNet [31], and mini-
imageNet/CUB [38, 39]. Office-Home contains 65 classes
and four domains. For our experiments, we selected the
Real-World and Clipart domains, and used the fol-
lowing class split: Cs = 25, Cd = 10, C′

t(known) = 15,
Ct − C′

t(unknown) = 15. The DomainNet dataset contains
345 classes and six domains. We considered the follow-
ing source-target combinations: Real to Clipart, Real
to Painting, and Clipart to Painting. The class
split we used was Cs = 125, Cd = 75, C′

t(known) = 80,
Ct − C′

t(unknown) = 65. For the mini-imageNet and CUB
datasets [7], we used Cs = 100, Cd = 50, C′

t(known) = 25,
Ct − C′

t(unknown) = 25. Notably, CUB dataset has fine-
grained separation among known / unknown classes. For all
datasets, we resized the images to 84×84 pixels. We con-
sider two image-level augmentations, i) Weak [2] (Flipping
the images, rotation, resizing), and ii) Strong [8]: intensity
transformation with a random magnitude in [0, 0.5].

In DAFOS-NET, we utilize ResNet-18 [14] for fφ, and
construct the generators GHθ and GLθ with four linear lay-
ers. Final batch norm layer in fφ is replaced by the DSBN
layer. For all classifiers and cGAN discriminators, we use
four linear layers followed by the respective output layers.
In total, DAFOS-NET contains 5.8M parameters, and train-
ing involves 0.08 GFLOPS computations. (Fig 3 (d)).
Training and evaluation protocols. During meta-training,
we use the Adam optimizer [20] with a learning rate of
0.0001 and a batch size of 8. After cross validation, we
set α = 0.5 in Eq. 6 (see Supplementary). The weights
in Eq. 9 are cross-validated. For evaluation, we use the
widely-used 5-way 1-shot and 5-way 5-shot training proto-
cols consistent with previous works in DA-FSL and FSOS
[27, 41]. We present the average top-1 accuracy for 500 test
episodes to record results over three independent runs.

To comprehensively evaluate DAFOS-NET perfor-
mance, we utilize standard OSR metrics, which include
closed-set classification accuracy (Acc) and Area Under
ROC Curve (AUROC) [3]. Specifically, Acc measures
the percentage of correctly classified known class samples,
while AUROC evaluates model’s ability to identify outliers.

4.1. Comparison with the state-of-the-art

In Table 1, we evaluate several state-of-the-art (SOTA)
methodologies from various paradigms under the DA-FSOS
settings and compare them against DAFOS-NET.

We observe that PrototypicalNet [33] and MetaoptNet
[22], which were originally developed for FSL, perform
poorly in outlier recognition, especially under domain shift.
As a result, their Acc and AUROC values are considerably
worse than DAFOS-NET. While OpenMax [1], an OSR

method, shows better outlier detection ability in AUROC
than its Acc value, it performs poorly overall because its
Weibull models are not effective in approximating distribu-
tion density from limited samples.

FSOS methods, including PEELER [25], SnaTCHer
[17], OCN [28], and MORGAN [27], are moderately effec-
tive in rejecting fine-grained outliers, but they lack transfer-
able knowledge in T . AdaMatch [2], a domain adaptation
method, and other DAFSL methods, namely, DAPN [41]
and NSAE [23], perform better in detecting known classes
and generalize well over T , but they fail to recognize fine-
grained outliers in T , for example in the CUB dataset con-
sisting of different Birds categories.

Moreover, we incorporate Domain Adaptive Loss from
DAPN [41] in optimizing MORGAN to adapt an FSOS
framework over T , and we observe better closed and open
performance compared to their vanilla counterparts. We
define this combined framework as MORGAN+DAPN.
Nevertheless, overall, DAFOS-NET outperforms all other
methodologies for both 1 and 5-shot settings due to its effec-
tive margin-aware outlier rejection and distribution align-
ment strategies. For instance, DAFOS-NET beats its next
best alternative by 15.57% Acc and a significant margin
of 12.42% AUROC for 1-shot evaluation over the Office-
Home dataset. We observe similar dominant performance
by DAFOS-NET for both 1 and 5-shot evaluations over
Mini-imagenet to CUB and DomainNet datasets, reporting
the new state-of-the-art. Finally, we evaluate the sensitivity
of DAFOS-NET to the number of shots and the degree of
openness and compare it against MORGAN+DAPN in Fig
3 (a, b). The results demonstrate that DAFOS-NET outper-
forms MORGAN+DAPN in handling a larger set of open
classes, with a consistent improvement of 15% AUROC.

4.2. Generalized DA-FSOS comparison

We conducted a thorough comparison of our proposed
DAFOS-NET against MORGAN, DAPN, combination of
MORGAN+DAPN for the generalized DA-FSOS setting.
This setting is evaluated over all the source and target do-
main classes (refer to Table 2). For all three datasets,
DAFOS-NET outperforms MORGAN+DAPN by a signifi-
cant margin. For instance, for DomainNet, DAFOS-NET
has improvements of 14.69% in closed-set accuracy and
21.79% on the AUROC values over MORGAN+DAPN.
Similar trends are observed for the other two datasets.

To assess the importance of the domain classifier Oη in
classifying S∪T queries, we conducted further evaluations.
We found that the model without Oη showed a significant
drop in Acc and AUROC performances by almost 6%, av-
eraging over both domains. This finding validates that the
inclusion of Oη reduces the training bias of DAFOS-NET,
while MORGAN+DAPN is much affected by overfitting.
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Table 1. The 5-way (K = 5) 1 and 5-shot DA-FSOS performance comparison of the proposed DAFOS-NET and SOTA Methods.
Office-Home MiniImageNet to CUB DomainNet

Model Venue Paradigm Real-World to Clipart Real to Clipart Real to Painting Clipart to Painting
Acc(%) AUROC(%) Acc(%) AUROC(%) Acc(%) AUROC(%) Acc(%) AUROC(%) Acc(%) AUROC(%)

1-shot Evaluation
PrototypicalNet [33] NIPS-17 FSL 25.17 19.23 31.44 25.12 28.15 23.02 29.81 23.51 27.59 22.18

Metaoptnet [22] CVPR-19 FSL 33.71 26.62 42.46 34.22 35.16 27.19 38.63 26.02 37.21 29.56
OpenMax[1] CVPR-16 OSR 12.19 14.77 21.88 24.02 14.68 16.25 15.71 16.38 15.66 17.01
PEELER [25] CVPR-20 FSOS 14.55 16.18 25.47 27.82 18.81 20.28 21.06 22.67 22.64 23.04

SnaTCHer [17] CVPR-21 FSOS 20.36 22.15 31.33 32.18 23.79 25.17 24.43 25.64 25.18 24.56
OCN [28] WACV-22 FSOS 22.64 21.32 35.98 33.27 24.11 23.92 26.24 25.17 27.65 26.64

MORGAN [27] WACV-23 FSOS 33.92 35.15 40.62 37.45 33.15 32.43 34.89 33.45 39.22 38.07
AdaMatch [2] ICLR-22 DA 30.31 27.29 45.82 36.26 34.53 30.36 33.27 29.71 30.84 26.34

DAPN [41] WACV-21 DA-FSL 31.86 25.28 47.82 38.76 38.44 29.73 41.65 33.21 43.49 35.27
NSAE [23] ICCV-21 CDFSL 34.26 28.17 42.67 34.59 36.33 28.25 39.17 31.07 40.14 33.19

MORGAN + DAPN - - 36.22 38.12 41.12 40.46 36.58 34.41 38.75 36.19 41.77 39.45
DAFOS-NET [Ours] - DA-FSOS 51.79±0.67 50.54±0.54 49.25±0.62 50.17±0.28 52.42±0.37 54.84±0.36 55.06±0.34 54.16±0.33 56.21±0.21 57.26±0.49

5-shot Evaluation
PrototypicalNet [33] NIPS-17 FSL 29.61 24.75 35.87 31.27 31.67 23.43 32.28 25.96 31.28 24.98

Metaoptnet [22] CVPR-19 FSL 36.51 28.63 46.36 35.97 38.45 30.77 41.73 32.29 40.42 32.37
OpenMax[1] CVPR-16 OSR 15.74 16.28 26.43 29.32 16.26 17.38 17.46 18.23 20.21 19.45
PEELER [25] CVPR-20 FSOS 20.16 22.24 30.71 33.41 22.52 24.14 23.24 27.08 24.82 25.12

SnaTCHer [17] CVPR-21 FSOS 23.12 25.12 34.28 35.13 26.13 27.16 26.71 28.16 28.41 26.72
OCN [28] WACV-22 FSOS 24.28 23.98 37.42 34.21 25.86 25.62 27.87 26.23 31.35 29.89

MORGAN [27] WACV-23 FSOS 35.31 37.43 42.04 39.82 36.25 34.44 38.32 36.44 42.05 39.86
AdaMatch [2] ICLR-22 DA 36.67 30.48 46.15 39.19 37.91 31.21 35.37 31.34 33.57 28.38

DAPN [41] WACV-21 DA-FSL 34.55 27.32 49.55 41.23 40.47 31.42 44.29 35.68 45.57 38.75
NSAE [23] ICCV-21 CDFSL 37.84 29.65 46.33 36.67 39.11 29.32 42.32 34.42 43.14 35.23

MORGAN + DAPN - - 39.52 40.68 45.55 44.26 40.64 41.45 40.27 39.26 45.81 42.26
DAFOS-NET [Ours] - DA-FSOS 54.44±0.29 57.72±0.18 58.51±0.32 59.73±0.43 55.09±0.64 60.67±0.48 59.03±0.25 56.08±0.67 59.66±0.28 60.55±0.31

Figure 3. AUROC variation due to a) support size, b) open classes for 5-way evaluation on DomainNet (Real to clipart) (c) Loss
comparison due to optimizing DAFOS-NET by Reptile [26], MAML [9] d) Trade-off between AUROC and GFLOPS by SOTA models.

Table 2. Generalized DA-FSOS comparison, where a query is sam-
pled from S + T in meta-testing (K = 5,m = 5)

Dataset Acc(%) AUROC(%) Acc(%) AUROC(%)
MORGAN DAPN

Office-Home (R → C)* 32.37±0.71 30.65±0.09 30.09±0.28 27.16±0.67
MiniImageNet to CUB 36.18±0.37 34.89±0.82 31.54±0.43 26.08±0.58
DomainNet (R → C)* 32.25±0.52 35.53±0.71 29.25±0.31 28.67±0.45

MORGAN+DAPN DAFOS-NET
Office-Home (R → C)* 36.23±0.17 38.47±0.47 49.24±0.59 52.25±0.83
MiniImageNet to CUB 42.26±0.15 41.06±0.31 52.79±0.62 52.35±0.35
DomainNet (R → C)* 38.23±0.06 37.38±0.29 52.92±0.46 59.17±0.18

*R: RealWorld domain, C: Clipart domain

4.3. Ablation analysis

i. Ablation on the loss components. We conducted experi-
ments to assess the individual contributions of the loss com-
ponents in DAFOS-NET and report their performance in
Table 3. Optimizing solely with LC , resulted in poor open-
set performance since the model failed to distinguish out-
liers from known samples. Conversely, optimizing solely
with LPD, leading to suboptimal Acc as the queries were
not heavily pulled towards their respective prototype. How-
ever, combining LC and LPD resulted in improved Acc
and AUROC compared to their individual presence. LAlign,
significantly improved Acc by aligning S and T , enabling
the model to estimate T domain known samples better fol-
lowing the S domain compaction. Furthermore, the addi-
tion of LOUT , enhanced AUROC performance due to its

Table 3. Performance comparison due to loss components for 5-
way 5-shot evaluation on DomainNet (Real to clipart).

Loss function Acc(%) AUROC(%)
LC 45.38±0.56 41.64±0.38
LPD 43.48±0.47 52.09±0.35

LC + LPD 47.76±0.71 56.27±0.59
LC + LPD + LAlign 52.46±0.48 58.29±0.31

LC + LPD + LAlign + LOUT 53.79±0.43 59.38±0.35
Without LAOCMC regularizer 54.32±0.49 58.45±0.36

Intermediate DSBN layers 51.56±0.29 53.09±0.64
LC + LPD + LAlign + LOUT + LDC + LAOCMC 55.09±0.64 60.67±0.48

ability to distinguish pseudo-unknown queries. We have al-
ready discussed the importance of LDC for generalized DA-
FSOS. Finally, regularizing with LAOCMC helped generate
discriminative adversarial open samples, thereby boosting
AUROC by almost 2%. Also, applying DSBN at the final
layer of fφ instead of all intermediate layers (at all the batch
norm layer positions of ResNet-18) helps to boost perfor-
mance due to reduced S and T domain alignment.
ii.Optimization stability of cGANs. DAFOS-NET lever-
ages a dual-GAN approach to generate adversarial known
and outlier samples concurrently. Second-order optimiza-
tion based on MAML [9] for this dual-GAN results in oscil-
lations and longer convergence time compared to first-order
optimization based on Reptile [26], as demonstrated in Fig.
3 (c). The first-order optimization method promotes train-
ing stability while dealing with limited training samples.
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Table 4. Performanace comparison due to different augmentations
for 5-way 5-shot evaluation on DomainNet (Real to clipArt)

Augmentation type Acc(%) AUROC(%)
W/o augmentation 50.32±0.48 43.06±0.41

Image level augmentation 51.88±0.76 48.62±0.31
Image + Feature level augmentation 55.09±0.64 60.67±0.48

Table 5. Analysis of noise variance (σL, σH) values on
GLθ, GHθ over DomainNet (Real to clipArt) [5-way 5-shot]

σL σH Acc(%) AUROC(%) KL divergence
0.4 0.8 56.05±0.16 57.38±0.29 0.57
0.5 0.8 56.11±0.51 56.43±0.51 0.59
0.7 0.8 57.02±0.48 54.15±0.23 0.58
0.3 0.9 55.09±0.64 60.67±0.48 0.45
0.1 1.0 53.37±0.68 62.61±0.17 0.31
0.4 1.2 58.68±0.24 55.54±0.34 0.58

iii. Importance of the proposed augmentations: In Ta-
ble 4, we examine the impact of image space enhance-
ment using weak [2] and strong augmentations [8] and
find that it results in a notable 5.6% improvement in AU-
ROC. Additionally, enhancing data density through dual-
GAN generated adversarial closed-open features leads to a
boost of 4.78% in Acc and 17.61% in AUROC compared
to the model without any augmentation. Jointly maximiz-
ing image and feature space augmentation schemes results
in a better approximation of the known class distribution,
thereby minimizing the few-shot risk.
iv. Sensitivity to (σH, σL): Table 5 presents the impact of
varying the standard deviations of two noise vectors on the
quality of samples generated by both the cGANs. To mea-
sure the similarity between adversarial known samples and
their real counterparts, we report the Kullback-Leibler (KL)
divergence. Samples with slightly higher KL divergence
[15] produce greater variety and enhance the density of the
known classes. In this regard, we observed three cases,
which are also illustrated in the Supplementary: a) in-
creasing σL and keeping σH constant resulted in higher
Acc and KL divergence, as many discriminative adversar-
ial known features were generated. However, AUROC de-
creased due to some limited pseudo-unknown queries be-
ing misclassified as known samples. b) decreasing σL and
increasing σH reduced Acc and KL divergence, as adver-
sarial known samples were generated with a distribution
similar to that of real known samples. AUROC increased
due to an enriched open space. c) extending σH beyond 1
with constant σL created a potential risk of mixing pseudo-
unknown samples with other known class samples, result-
ing in false positives for Acc. The best performance was
achieved by combining σL = 0.3 and σH = 0.9.
v. Comparison among domain adaptation losses: We
compared three methods, Domain Adaptive Loss [41],
vanilla Batch Normalization [16] and Domain-Specific
Batch Normalization (DSBN) in [4] against our GCDPA
loss. Distribution alignment through [41] enhances model
robustness, but batch-norm [16] helps to converge faster.
However, due to globally aligning domains through pro-
totypes by GCDPA loss, DAFOS-NET converges faster

Table 6. Analysis of different domain adaptation losses on Do-
mainNet (Real to clipArt) for 5-way 5-shot evaluation.

Adaptation Method Acc(%) AUROC(%) Convergence
Domain Adaptive Loss [41] 49.37±0.23 50.28±0.35 450 epochs
Batch Normalization [16] 49.02±0.33 48.45±0.23 265 epochs

Domain-Specific Batch Norm [4] 48.18±0.36 46.76±0.51 288 epochs
Global Cross-Domain Prototype Alignment 55.09±0.64 60.67±0.48 180 epochs

Figure 4. t-SNE visualization a) without and b) with adaptation.

and generalizes better than DSBN-based variant [4], which
aligns domains based on individual query samples. As
per Table 6, the distribution alignment [41] resulted in a
5.72% lower Acc and 10% lower AUROC compared to our
GCDPA-based adaptation. Time analysis also indicates that
our approach achieves convergence quicker than [41, 4].
vi. t-SNE visualization of metric space. The t-SNE [35]
visualization in Fig 4 illustrates the learning of DAFOS-
NET with and without adaptation. For visual clarity, we
presented seven categories from the Real and Clipart
domains of DomainNet: Axe, Bus, Bucket, Clock, Flower,
Foot, and Strawberry. The visualization reveals that the cat-
egories in S form compact clusters due to optimizing by
LC . Furthermore, thanks to LAlign, T categories maintain
comparable semantic relationships while reducing domain
shifts for each known class. For illustration simplicity, we
did not evaluate the impact of LPD in Fig 4 since we are
considering the same set of classes from S and T .

5. Takeaways
In this paper, we introduce a new problem setting for

domain adaptive few-shot open-set learning and propose a
novel architecture called DAFOS-NET to address it. Our
approach ensures the modeling of a discriminative and
domain-invariant embedding space while being able to re-
ject outliers during testing. To achieve this, we propose a
generative augmentation strategy for both the known classes
and pseudo-open space for both domains, a domain-centric
batch-norm parameter learning-based GCDPA loss, and a
prototype diversification objective to ensure discriminative-
ness, in our meta-learning algorithm. We evaluate our
proposed method on benchmark datasets from the domain
adaptation literature in both the standard and generalized
DA-FSOS settings. Our results demonstrate that DAFOS-
NET significantly outperforms all competitors in both set-
tings. We hope that our research can be applied to various
domains such as edge AI, medical imaging, remote sensing,
and other safety-critical areas that deal with domain shifts,
low-shot learning, and open-set learning in a joint fashion.
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