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Abstract

Mitochondria, as tiny structures within the cell, are of
significant importance in studying cell functions for biolog-
ical and clinical analysis. And exploring how to automat-
ically segment mitochondria in electron microscopy (EM)
images has attracted increasing attention. However, most
of existing methods struggle to adapt to different scales
and appearances of the input due to the inherent limita-
tions of the traditional CNN architecture. To mitigate these
limitations, we propose a novel adaptive template trans-
former (ATFormer) for mitochondria segmentation. The
proposed ATFormer model enjoys several merits. First, the
designed structural template learning module can acquire
appearance-adaptive templates of background, foreground
and contour to sense the characteristics of different shapes
of mitochondria. And we further adopt an optimal transport
algorithm to enlarge the discrepancy among diverse tem-
plates to activate corresponding regions fully. Second, we
introduce a hierarchical attention learning mechanism to
absorb multi-level information for templates to be adaptive
scale-aware classifiers for dense prediction. Extensive ex-
perimental results on three challenging benchmarks includ-
ing MitoEM, Lucchi and NucMM-Z datasets demonstrate
that our ATFormer performs favorably against state-of-the-
art mitochondria segmentation methods.

1. Introduction
Studying the morphology of mitochondria is vital for

understanding cell physiology, and changes in their shape
are tightly linked to neurodegeneration, lifespan and cell
death [6, 4, 19, 36]. As representative membrane-bound or-
ganelles, mitochondria provide power for cells as the main
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Figure 1. Comparison of the previous methods and our method. (a)
Most existing methods use the traditional CNN architecture to ex-
tract features, with a simple and weight-fixed classifier at the end
of the network for per-voxel classification, resulting in incomplete
or missing activation. (b) We propose a set of learnable vectors as
adaptive templates of background, foreground and contour, which
interact with multi-scale features to aggregate structure-aware in-
formation. Then, these templates are used as appearance-adaptive
scale-aware classifiers to generate more accurate activation for mi-
tochondria of different scales.

place to perform aerobic respiration [49, 36, 5, 52], how-
ever, their micrometer size makes it challenging to conduct
observational analysis. Electron microscopy (EM), as one
of the practical tools for investigating the morphology of
structures at the sub-cubic millimeter scale [38, 41], en-
ables neuroscientists to obtain images with higher resolu-
tion. Due to its large data size and numerous cluttered
irrelevant organelles, manual labeling is extremely time-
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consuming and labor-intensive, which leads to the persistent
desire for automatic segmentation algorithms of mitochon-
dria.

With significant advances in deep learning (DL), DL-
based methods have paved the way for new research direc-
tions toward automated mitochondria segmentation. As a
representative work, Liu et al. [24] produce segmentation
results of mitochondria after the detection process inspired
by Mask R-CNN [15], while Cellpose [40] adopts a stan-
dard U-Net [37] to generate final predictions. Notably, the
above methods only utilize 2D networks to learn the rep-
resentation of volumetric EM images, neglecting the asso-
ciation between slices in 3D space. To alleviate this issue,
recent works design the fully automated pipeline for seg-
mentation based on 3D convolutional network [54, 52], in
which several consecutive slices are leveraged as input to
achieve promising results.

Recently, some methods in biomedical image analy-
sis [9, 14, 2, 13, 16] introduce the transformer [46] architec-
ture for feature encoding. However, they still use the con-
ventional decoder for upsampling and a convolution-based
classifier for prediction, thus fail to explore the full potential
of transformers, leaving two issues to be solved: (1) Unsuit-
able to handle large appearance variations. When deal-
ing with diverse input images during inference, it is hard to
handle large variations in appearance by adopting a weight-
fixed classifier as shown in Figure 1(a). Especially in real
EM images, mitochondria exist in a variety of appearances,
such as rings, threads, dumbbells, etc. Thus it is essential to
empower the classifier to be appearance-adaptive to sense
the characteristics of different types of mitochondria. (2)
Unaware of scale variations. Existing methods leverage
a conventional CNN-based classifier for dense prediction,
which cannot adapt to large-scale variations and fully ex-
ploit the hierarchical information to recognize objects with
significantly different sizes in 3D space accurately. There-
fore, it is crucial to design scale-friendly classifiers in order
to achieve a better performance with more accurate segmen-
tation of mitochondria of all sizes.

In this paper, we propose a novel Adaptive Template
Transformer (ATFormer) to obtain adaptive scale-aware
classifiers tailored for mitochondria segmentation, includ-
ing a structural template learning module and a hierarchical
attention learning mechanism. In the structural template
learning module, to obtain appearance-adaptive classi-
fiers and capture structure-aware information, we design
three groups of learnable templates aiming to three specific
categories (background, foreground and contour). Each
category corresponds to several complementary templates
rather than a single one. Benefiting from the strong abil-
ity of transformers, we can obtain appearance-adaptive tem-
plates by cross-attention with voxel embeddings. Besides,
to avoid the possibility of different templates perceiving

repetitive area information, we further propose a regular-
ization term with an optimal transport algorithm to enlarge
the discrepancy among diverse templates. In the hierarchi-
cal attention learning mechanism, in order to attain scale-
aware classifiers from coarse to fine level, we elegantly de-
sign several attention gates which enhance the context ex-
traction by self-attention and transport multi-level features
into each layer of the structural template learning module,
making templates absorb hierarchical information. In this
way, the structural templates then aggregate explicit suffi-
cient semantic information and evolve into adaptive scale-
aware classifiers, so that our network can further strengthen
the integrity region with finer activation of the whole mito-
chondria of different scales.

To sum up, our contributions can be summarized as fol-
lows:

• We propose a novel adaptive template transformer (AT-
Former) for mitochondria segmentation in EM images.
Specifically, we design the structural template learning
module to acquire adaptive templates of background,
foreground and contour for dense predictions, and the
hierarchical attention learning mechanism to make the
templates adapt to mitochondria of different scales.

• To make the distribution of adaptive templates more
discrete and diverse, we further adopt a regularization
term with an optimal transport algorithm for full acti-
vation.

• Extensive experimental results on three challenging
benchmarks including MitoEM, Lucchi and NucMM-
Z demonstrate that our proposed method performs fa-
vorably against state-of-the-art mitochondria segmen-
tation methods.

2. Related Work
2.1. Mitochondria Segmentation

Mitochondria segmentation is of enormous biological
importance for the study of cellular functions and subcel-
lular activities. Rather than early works utilizing traditional
image processing techniques [47, 29, 39], recent DL-based
methods [34, 8, 32, 17] have shown significant performance
improvement on mitochondria segmentation. For example,
Oztel et al. [34] first segment mitochondria based on a 2D
convolutional network and then aggregate results in the ax-
ial dimension. U3D-BC [52] utilizes a 3D U-Net [10] ar-
chitecture with supervisions of foreground and contour and
a post-processing step to produce final instance segmenta-
tion, while Res-UNet [20] designs a network consisting of
anisotropic convolution blocks to boost the segmentation
performance. However, these existing methods leverage a
simple weight-fixed classifier for all images during infer-
ence, leading to incomplete activation of mitochondria with
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significant appearance/scale variations. We hereby propose
our ATFormer to obtain adaptive scale-aware classifiers for
accurate predictions of different types of mitochondria.

2.2. Vision Transformer

Transformers are first introduced in [46] for machine
translation. Since transformers have achieved remarkable
success in NLP tasks [18, 56], many efforts have been made
to introduce transformers to vision tasks including image
classification [46, 50, 45, 31] and biomedical image seg-
mentation [14, 26, 25, 42, 51, 43]. SegFormer [55] uti-
lizes a hierarchical transformer encoder for feature extrac-
tion and a lightweight MLP-decoder to fuse features for
semantic segmentation. UNETR [14] is the first to utilize
ViT [12] for feature extraction in biomedical image analy-
sis. Swin UNETR [44] further adopts a Swin transformer as
the encoder in a U-shaped network for medical image seg-
mentation. Tailored for mitochondria segmentation, we de-
sign three groups of learnable templates based on the trans-
former architecture to capture specific semantic information
and introduce a hierarchical attention learning mechanism
to aggregate multi-scale features, in this way, these tem-
plates evolve into input-specific classifiers for dense predic-
tion.

3. Method
In this section, we first present the overview of the pro-

posed ATFormer in Sec. 3.1. Then we describe the details
of the structural template learning module in Sec. 3.2 and
the hierarchical attention learning mechanism in Sec. 3.3.
Finally, in Sec. 3.4 the training and inference procedure are
discussed.

3.1. Overview

As shown in Figure 2, given a 3D image block I ∈
RH×W×D, where H , W , and D refer to the height, width
and depth of the input, respectively. The bottom-level fea-
ture map X extracted from the backbone encoder is fed
into the upsampling module together with skip connections,
which outputs hierarchical voxel embeddings F = {fl}4l=0

to be modified through attention gates. Then the structural
template learning module integrates the modified hierarchi-
cal features F̃ with the help of an OT regularization term
to generate diverse adaptive templates, which are used as
classifiers to produce background, foreground and contour
activation maps. Finally, we aggregate activation maps with
the same semantics and implement mitochondrial instance
segmentation by a post-processing step.

3.2. Structural Template Learning Module

To make our model adapt to inputs of different appear-
ances, our structural template learning module (STLM) can

learn input-specific templates, which absorb and integrate
information of background, foreground and contour. In
specific, we introduce a set of initial templates with ini-
tial weight value satisfying the xavier distribution as T =
{T⋆} = {{t⋆i }τi=1}, where ⋆ ∈ (B,F,C) denotes the cat-
egory of each template (background, foreground and con-
tour), t⋆i ∈ R1×d represents a classifier that determines
whether voxels of the feature map belong to the i-th tem-
plate of category ⋆, τ denotes the template number of each
category.

For each layer in the structural template learning mod-
ule, these templates, which are learnable parameters, are
first feed into a self-attention layer, where all keys, queries
and values arise from initial templates, to incorporate the lo-
cal context of mitochondria. The updated templates then go
through the cross-attention layer to extract specific seman-
tics from the input voxel embedding, where queries arise
from the templates, and keys and values arise from the in-
put voxel embedding f ∈ Rh×w×d×c, where h, w, d and c
refer to the height, width, depth and channel number of the
feature map, respectively. Formally,

Qn = TWQ,Kn = fWK ,Vn = fWV , (1)

where n ∈ [1, . . . , N ] and WQ ∈ RC×Ck , WK ∈ RC×Ck ,
WV ∈ RC×Cv are linear projections. The attention
weights are calculated based on the dot-product similarity
between each query and key:

m⋆
i,j =

exp
(
β⋆
i,j

)∑hwd
j=1 exp

(
β⋆
i,j

) , β⋆
i,j =

Q⋆
iK

T
j√

Ck

, (2)

where the attention weight m⋆
i,j indicates the probability of

the spatial feature belonging to the i-th template of the cat-
egory ⋆. The attention weights of all hwd positions make
up a type of prediction, which has high response values at
voxels belonging to the corresponding template. We denote
the activation maps of each template category ⋆ as:

M⋆ =

 m⋆
1,1 m⋆

1,2 · · · m⋆
1,hwd

...
...

m⋆
τ,1 m⋆

τ,2 · · · m⋆
τ,hwd

 . (3)

OT Regularization Term. Without additional constraints,
the ambiguous activation in M⋆ will cause the confusion
problem of different templates within the same category,
perceiving repetitive area information. To alleviate this
problem, as shown in the right of Figure 2, we introduce a
regularization term to assign the group of semantically con-
sistent voxels to the same template. Specifically, we formu-
late the template assignment problem as the optimal trans-
port (OT) problem [48]. The goal of the OT problem is to
find an optimal transportation plan P∗ at a global minimal
transportation cost, which can be solved in polynomial time
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Figure 2. Framework of our proposed adaptive template transformer (ATFormer). It includes a structural template learning module
(STLM) which learns a set of adaptive templates with specific semantic information, and a hierarchical attention learning mechanism
(HALM) which aggregates multi-level voxel embeddings to adapt to mitochondria of all scales. The figure on the right illustrates the
template learning layer in STLM.

by linear programming. In the template learning decoder,
M⋆ ∈ Rτ×hwd can serve as a preliminary assignment of
each voxel. Then we can obtain the optimal assignment
across all transportation plans by following the optimiza-
tion function.

P∗ = max
P∈P

Tr
(
P⊤M⋆

)
+ ϵH(P), (4)

where H(P) = −
∑

ij Pij logPij is the entropy function,
and ϵ is the parameter that controls the smoothness of the
assignment. We follow [1, 7] to enforce an prior partition
µ by constraining the assignment matrix P to belong to the
transportation polytope:

P =

{
P ∈ Rτ×hwd

+ | P1 = µ,P⊤
1 =

1

hwd
· 1

}
, (5)

where 1 denotes the vector of all ones in the appropriate
dimension. The optimal transport plan P∗ can be obtained
via a fast variant of Sinkhorn-Knopp [11]. P∗ has the ad-
vantage of less ambiguous activations, which can further
enlarge the discrepancy of diverse templates. We minimize
the binary cross entropy loss between P∗ and the output
mask of the structural template learning decoder M⋆ to on-
line refine foreground/background maps as following:

Lot =− 1

τhwd

τ∑
i=1

hwd∑
j=1

P∗
ij logM

⋆
ij

+
(
1−P∗

ij

)
log

(
1−M⋆

ij

)
.

(6)

Then, according to Eq. (2) and the values from the fea-

ture map, we can further obtain the updated templates:

t⋆i = FFN(Att (Q⋆
i ,K,V)) = FFN

hwd∑
j=1

m⋆
i,jVj

 ,

(7)
where it should be noted that each cross-attention layer and
FFN is wrapped by a residual connection followed by layer
normalization as in the transformer architecture.

3.3. Hierarchical Attention Learning Mechanism

To enable our learned adaptive templates to be scale-
aware and aggregate long-range information, we further
propose an efficient hierarchical strategy with attention
gates to utilize multi-scale features of both low and high
resolution to boost the activation ability of templates. Given
the output embedding fl from the upsampling module,
where l ∈ [0, . . . , 3] (from the lowest to the highest level in
order), the original feature is flattened, then pass through an
attention gate before entering STLM. Each attention gate
is composed of two consecutive layers including a multi-
head self-attention (MSA) layer and a feed forward network
(FFN) as follows:

f ′l = MSA(LN(fl)) + fl, (8)

f̃l = FFN(LN(f ′l)) + f ′l, (9)

where LN(·) denotes layer normalization [3] following the
transformer architecture.

Then, the modified feature map was transferred into
the corresponding template learning layer in STLM as de-
scribed in Sec. 3.2, to interact with template groups by
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cross-attention. This operation will be repeated four times
to produce the final adaptive templates:

Tl+1 = STLMl+1(Tl, f̃l), (10)

where STLMl+1 denotes the corresponding layer in
STLM. Please not that f0 refers to the bottom-level feature
with the lowest resolution.

The obtained adaptive templates T4 = {{t̂⋆i }τi=1} are
used as classifiers to interact with the final voxel embedding
f4 from the upsampling module, generating the activation
maps of all three categories. The formula is as follows,

Ŷ = {{ŷ⋆i }τi=1}, ŷ⋆i = MLP(t̂⋆i )f
⊤
4 , (11)

where MLP comprises of two linear layers with GELU ac-
tivation functions. For better use of the following training
and inference, we need to merge the activation maps Ŷ into
a probability map Y ∈ R3×H×W×D of background, fore-
ground and contour. In our implementation, we treat the
summation of background activation maps as background
probability and do the same operation for foreground and
contour, denoted as YB , YF and YC .

3.4. Training and Inference

Loss Function. We follow the loss function used in [52].
The binary cross entropy (BCE) is a common loss function
used in biomedical image segmentation. We impose super-
visory constraints on background, foreground and contour
predictions as:

LB = LBCE(YB ,YB),

LF = LBCE(YF ,YF ),

LC = LBCE(YC ,YC),

(12)

where YB , YF and YC are the corresponding ground-truth
of YB , YF and YC . The overall loss function L is defined
as

L = LB + LF + LC + λotLot, (13)

where λot denotes the coefficient of Lot.
Instance Inference. During inference, we obtain the pre-
dicted mask by applying an argmax operation on the prob-
ability map Y without additional computational cost. It is
noteworthy that this specific task requires the instance seg-
mentation of mitochondria as a final result, in other words,
treats each mitochondrion as a distinct individual instance,
rather than solely segmenting all foreground regions as one
entity. Therefore, we employ an efficient post-processing
step following [22] to combine semantic predictions (back-
ground, foreground and contour) in the proposed model to
generate the final instance segmentation.
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Figure 3. Illustration of instance inference. By using a post-
processing step, the semantic predictions can be transformed into
the final instance segmentation.

4. Experiments

4.1. Dataset

To demonstrate the effectiveness of our proposed model,
we conduct extensive experiments on three benchmarks:
MitoEM [52], Lucchi [30] and NucMM datasets [22].
MitoEM dataset is divided into two sub-datasets (1000 ×
4096× 4096 in voxels at 30× 8× 8 nm resolution) dubbed
as MitoEM-R and MitoEM-H, which contain mitochondria
EM images of a rat and human tissue respectively. For the
reason that the annotations of the last 500 slices are not
open-sourced, we use the first 400 slices for training and
evaluate the segmentation performance on the validation set
containing the remaining 100 slices.
Lucchi dataset is a mitochondria semantic segmentation
dataset providing segmentation results for the foreground.
In our experiments, the training and testing data volumes
are both with a size of 165× 1024× 768.
NucMM-Z dataset is a nuclei dataset with 27 small chunks
of size 64 × 64 × 64 voxels from the zebrafish volume for
training and another 27 volumes of the same size for testing.
We use this dataset to evaluate the generalizability of our
method.

4.2. Implementation Details

We adopt Pytorch [35] to implement the proposed
method. 4 NVIDIA TITAN RTX (24GB) GPUs are used
for training. For the MitoEM dataset, we use the architec-
ture of 3D U-Net [10] as backbone with the input size of
32 × 256 × 256 following [52]. During the training stage,
our model is trained with the batch size of 8, using the
Adam optimizer [27] with an initial learning rate of 0.0001
for 100,000 iterations. We set the number of templates in
each category as τ = 3. In the final loss function, we set
λot = 0.5. For the Lucchi dataset with only foreground
ground-truth, we discard the use of the contour template,
only train our model with foreground and background tem-
plates for the semantic mask output, following the training
details in [52]. For the NucMM dataset, we directly input
image volume into the model for the reason that all image
volumes are isotropic voxels after sampling.
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Method
MitoEM-R MitoEM-H

mAP AP50 AP75 APs APm APl mAP AP50 AP75 APs APm APl
U2D-B [52] 28.4 40.2 35.5 10.4 62.8 48.1 36.8 62.3 59.7 40.8 81.4 71.1
U3D-A [52] 26.5 38.4 32.8 40.8 23.5 65.3 42.1 65.5 61.7 56.4 77.4 61.7
U3D-BC [52] 45.6 57.3 52.1 29.0 75.1 49.0 45.5 66.2 60.5 48.9 82.0 61.8
Nightingale [33] - - 71.5 0.7 40.4 78.7 - - 62.5 3.4 47.8 73.4
CLMS [21] - 89.5 87.0 20.3 74.3 91.3 - 82.8 78.7 29.6 77.8 83.0
UNETR† [14] 70.3 89.7 83.1 17.3 81.7 87.3 61.4 83.1 73.9 23.8 73.2 75.8
Swin UNETR† [44] 73.7 95.0 90.4 30.1 84.3 93.4 62.0 87.9 80.3 57.7 83.1 79.2
ResUNet [20] 75.1 94.8 91.7 27.7 85.0 94.9 65.7 88.5 82.8 52.2 84.4 82.6
ATFormer(ours) 78.2 96.2 92.8 38.7 85.8 96.3 68.2 89.7 84.1 57.9 85.2 83.9

Table 1. Comparisons of different methods on the MitoEM-R and MitoEM-H [52] validation set, where † denotes the performance of our
reproduction of the corresponding model.

Method Jaccard DSC
Lucchi [28] 75.5 86.0
Liu [23] 86.4 92.6
Yuan [57] 86.5 92.7
Wei [52] 88.7 -
Casser [8] 89.0 94.2
ResUNet [20] 89.5 94.5
ATFormer (Ours) 90.2 94.8

Table 2. Semantic segmentation results on the Lucchi [30] testing
set.

Method AP50 AP75
Cellpose [40] 79.6 34.2
StarDist [53] 91.2 32.8
U3D-BC [52] 78.2 55.6
U3D-BCD [22] 97.8 80.9
ATFormer (Ours) 98.2 83.6

Table 3. Instance segmentation results on the NucMM-Z [22] test-
ing set.

4.3. Evaluation Metrics

For a fair comparison, we adopt 3D mAP, AP50 and
AP75 metric [52] on the MitoEM dataset. Please note that
mAP is a more stringent metric than AP50 and AP75, for
the reason that it takes into account the AP with iou greater
than 75%. Besides, for better illustration of performance
on mitochondria of different scales, we also show the re-
sults on APs, APm and APl which represents 3D AP75 of
small, medium and large instances, respectively, divided by
the volume threshold of 5K and 15K voxels. On the Luc-
chi dataset, we adopt metrics of jaccard-index coefficient
(Jaccard) and dice similarity coefficient (DSC) to evaluate
the effectiveness of semantic segmentation ability. For the
NucMM-Z dataset, we use the same metrics as MitoEM
dataset.

(a) Image (b) Ground Truth (d) ATFormer (ours)(c) ResUNet

Figure 4. Qualitative comparison of different methods on the
MitoEM-R and MitoEM-H validation set.

4.4. Main Results

4.4.1 Quantitative Evaluations

Our method outperforms the state-of-the-art methods for se-
mantic and instance segmentation of mitochondria. For bet-
ter demonstration, we reproduce the performance of SOTA
methods in biomedical image analysis for the mitochondria
task. From the retrained results of UNETR [14] and Swin
UNETR [44], it can be observed that simply adopting the
transformer architecture for feature extraction does not pro-
duce ideal predictions of mitochondria, which demonstrates
the effectiveness of our custom design for this task. As
shown in Table 1, on the MitoEM-R dataset, our method
achieves a mean AP of 78.2%, AP50 of 96.2% and over-
all average AP75 of 92.8%, outperforming the second top-
ranked methods by 3.1%, 1.4% and 1.1% respectively. With
superior AP75 performance, it is noteworthy that the im-
provement on mAP is more significant, due to the fact that
mAP is a more stringent evaluation metric that requires
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Large Small

Figure 5. Visualization of reconstruction results from instance seg-
mentation of our ATFormer on the MitoEM-R validation set.

more complete segmentation results to be a true positive.
This demonstrates the ability of our method to more fully
activate the intact region based on the readiness to localize
the mitochondrial location.

Besides, for mitochondria of different scales, our AT-
Former demonstrates strong performance on all sizes of
targets, thanks to the proposed adaptive scale-aware tem-
plates, improving performance on APs, APm and APl by
8.6%, 0.8% and 1.4%, respectively, over the second-place
method on MitoEM-R. We can also observe that our method
achieves a new SOTA performance with mAP of 68.2% and
AP75 of 84.1% on the MitoEM-H validation set, with better
recognition of mitochondria of all scales.

In Table 2, we further evaluate the effectiveness of AT-
Former for the semantic segmentation task on the Lucchi
dataset, with a clear performance gain on two metrics. As
shown in Table 3, our proposed method performs favorably
against benchmark results on the NucMM-Z dataset [22].
It can be observed that while existing methods can easily
obtain the target location, segmenting the nucleus at a finer
level is more challenging. Under these circumstances, our
method is better able to fully activate the foreground with
strong adaptability to various targets, achieving a perfor-
mance improvement of 2.7% on AP75.

4.4.2 Qualitative Results

As shown in Figure 4, ATFormer shows improved segmen-
tation performance for mitochondria under different cir-
cumstances. In specific, our method outperforms others
in most scenarios, especially when the mitochondria oc-
cupy a relatively large space as shown in the 1st row. AT-
Former demonstrates a precise detection of foreground and
contour against the surrounding background, which indi-
cates the effectiveness of our proposed method. Besides,
for two adjacent mitochondrial instances, ATFormer shows
the excellent capability of separating them in such a situa-
tion as shown in the 2nd and 3rd row. Compared with ex-
isting models, ours exhibits higher boundary segmentation
accuracy as it accurately identifies the boundaries between
nearby instances. Besides, we demonstrate the results of
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Figure 6. Comparisons of performance with different number of
templates and input feature level of HALM on the MitoEM-R val-
idation set in terms of mAP and AP75.

dense instance segmentation of mitochondria in 3D space
as shown in Figure 5. The results show that our ATFormer
is able to distinguish adjacent instances and acquire ideal
predictions.

4.5. Ablation Study

Can the adaptive templates improve model perfor-
mance? Yes. The scale distribution of mitochondria can
be hugely different, simply utilizing fixed classifiers for seg-
mentation isn’t sufficient enough for identifying some larger
mitochondria. Thus in this case, adaptive scale-aware tem-
plates that adapt to the input can be more effective for this
task. As shown in Table 4, with the utilization of adap-
tive templates, further improvements can be observed, e.g.,
5.2% in AP75, compared with the 1st row and 3rd row. Dur-
ing experiments, we notice that the number of templates in
each category also affects the performance, as shown in Fig-
ure 6(a). It can be observed that our performance peaks at a
template number of 3, however, continuing to increase the
number causes a slight performance drop. We speculate that
the reason is that as the number of templates increases, the
OT regularization term keeps forcing each template within
the same category to focus on a different region, which
is contrary to the distribution of mitochondria, leading to
model performance degradation.
Is the background information effective for mitochon-
dria segmentation? Yes. It is undeniable that the fore-
ground region is more significant for our desired segmen-
tation goals, however, background information plays an in-
tegral role in highlighting mitochondria of interest in a re-
verse manner. From the 2nd row and 3rd row in Table 4, the
introduction of the background template achieves a certain
performance lift, which favorably manifests the foreground-
background disambiguation effect. Activation maps in Fig-
ure 7(e) further prove our point.
How much does the OT regularization term contribute?
As shown in Table 5, we construct some comparative ex-
periments to explore the effectiveness of the OT regulariza-
tion term. The removal of optimal transport means a naked
structural template learning decoder without additional con-
straints. It can be seen that there is a drop in performance
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Figure 7. Visualization of segmentation results and activation maps of adaptive templates on the MitoEM-R validation set.

Templates mAP AP75foreground contour background
× × × 69.8 87.6
✓ ✓ × 76.3 91.9
✓ ✓ ✓ 78.2 92.8

Table 4. Ablation on different templates on the MitoEM-R valida-
tion set.

without the OT constraint, for the reason that the templates
within the same category perceive information from repet-
itive regions, which are susceptible to the ambiguous acti-
vation of attention maps. Thus it is necessary to adopt the
OT regularization term to enlarge the discrepancy among
different templates.

Does the task of mitochondria segmentation require the
hierarchical attention learning mechanism? Yes. The hi-
erarchical attention learning mechanism aggregates multi-
level features to enable our adaptive templates to be aware
of scale variations. As shown in Figure 6(b), there are sig-
nificant performance gains on both metrics when utilizing
multi-level features compared to when using only the bot-
tom embedding, demonstrating the effectiveness of HALM.
Besides, we conduct ablation experiments on attention gates
as shown in Table 5, illustrating that attention gates do bring
a performance gain by self-attention mechanism to capture
long-range contextual information. Together with the struc-
tural template learning module, HALM enables our model
to generate adaptive scale-aware classifiers to segment var-
ious mitochondria at a finer level.

mAP AP75
ATFormer (ours) 78.2 92.8
−attention gate 76.6(−1.6) 92.1(−0.7)

−optimal transport 77.5(−0.7) 92.4(−0.4)

−both 2 components above 76.2(−2.0) 91.8(−1.0)

Table 5. Ablation on the OT regularization term and attention gates
on the MitoEM-R validation set.

4.6. Explainable Visualization Study

We show more qualitative visualization results on the
MitoEM dataset [52] in Figure 5 and 7, demonstrating ro-
bustness to mitochondria with large variations in appear-
ance and scale. As shown in the activation maps of Fig-
ure 7, the adaptive templates successfully activate the region
of the corresponding semantic category at a fine-grained
level, producing accurate semantic and contour predictions,
which significantly benefit the instance segmentation re-
sults. In addition to the strong ability of separating adjacent
individuals apart as shown in the 1st row, our ATFormer
also demonstrates a significant long-range modeling capa-
bility. For example, as shown by the ground truth in the
4th row, two bright green foregrounds in the red box are
labeled as the same label. Although far apart in this slice,
they do both belong to the same instance in 3D space due to
the complex shape of mitochondria. Our ATFormer is able
to determine that these two belong to the same instance ac-
curately, thanks to the long-range modeling capability and
strong adaptability of our method.

We further demonstrate the capability of adaptive tem-
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Figure 8. Failure case.
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Figure 9. Visualization of activation maps with the aid of OT.

plates with activation maps of foreground for clarity as
shown in Figure 9. With the help of the OT regulariza-
tion term, the different templates within the same category
focus on significant distinct areas. Besides, as shown in
Figure 9, if the activation of a single template (Template
β) is incomplete, other templates (Template α and γ) can
be used to complement the activation, jointly producing in-
tact semantic segmentation as shown in Figure 9 (c). This
demonstrates the need for our multi-template design. Our
method utilizes multiple adaptive templates to absorb con-
textual information, which is more robust to mitochondria
of different sizes, thus yielding more precise segmentation.
Failure case and limitation analysis. Though achieving
promising performance, our approach also struggles with
challenging scenarios (e.g., over-adjacent instances, and un-
expected stains during imaging) as shown in Figure 8. We
believe that the patterns of these failure cases also shed light
on the possible direction of our future research. The over-
all methods in the field are non-end-to-end, which generally
require post-processing steps to produce instances. End-to-
end instance segmentation without post-processing remains
a direction worth exploring.

5. Conclusion

In this paper, we introduce a novel adaptive template
transformer (ATFormer) for mitochondria segmentation in
EM images. Specifically, we design a structural template
learning module to acquire appearance-adaptive templates
and a hierarchical attention learning mechanism to aggre-
gate multi-scale information for adapting to mitochondria
with large variations in appearance and scale. Besides, an
OT regularization term is proposed to enlarge the discrep-
ancy among diverse templates for full activation. Exten-
sive experimental results demonstrate the effectiveness of
our proposed ATFormer for mitochondria segmentation.
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[29] Aurélien Lucchi, Pablo Márquez-Neila, Carlos Becker, Yun-
peng Li, Kevin Smith, Graham Knott, and Pascal Fua. Learn-
ing structured models for segmentation of 2-d and 3-d im-
agery. IEEE transactions on medical imaging, 34(5):1096–
1110, 2014. 2
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