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Abstract

With sufficient paired training samples, the supervised
deep learning methods have attracted much attention in im-
age denoising because of their superior performance. How-
ever, it is still very challenging to widely utilize the super-
vised methods in real cases due to the lack of paired noisy-
clean images. Meanwhile, most self-supervised denoising
methods are ineffective as well when applied to the real-
world denoising tasks because of their strict assumptions
in applications. For example, as a typical method for self-
supervised denoising, the original blind spot network (BSN)
assumes that the noise is pixel-wise independent, which is
much different from the real cases. To solve this problem, we
propose a novel self-supervised real image denoising frame-
work named Sampling Difference As Perturbation (SDAP)
based on Random Sub-samples Generation (RSG) with a
cyclic sample difference loss. Specifically, we dig deeper
into the properties of BSN to make it more suitable for real
noise. Surprisingly, we find that adding an appropriate per-
turbation to the training images can effectively improve the
performance of BSN. Further, we propose that the sampling
difference can be considered as perturbation to achieve
better results. Finally we propose a new BSN framework
in combination with our RSG strategy. The results show
that it significantly outperforms other state-of-the-art self-
supervised denoising methods on real-world datasets. The
code is available at https://github.com/p1y2z3/SDAP.

1. Introduction

Image denoising is a hot topic in low-level vision tasks,
aiming to obtain high-quality images from noisy versions.
In recent years, learning-based methods have been widely
used in image denoising with their superior performance.
Thanks to the construction of paired image datasets, the su-
pervised approaches [44, 2, 28, 11, 33, 34] can be efficiently
implemented. In these approaches, it is a common practice
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Figure 1: Real-world image denoising results on DND [27].

to synthesize paired datasets directly using a specific noise
model, such as the signal-independent additive white Gaus-
sian noise (AWGN) model.

However, the real images are captured by cameras with
image signal processing (ISP) pipelines [4]. The noise is
usually signal-dependent and spatially correlated in the real
world. Moreover, ISP includes many non-linear operations
that can complicate the noise distribution. Due to the in-
fluence of ISP pipelines within the camera, the noise distri-
bution of real images is difficult to predict. Therefore, it is
difficult and challenging for us to model the noise for real
images. To overcome the problem of directly and explic-
itly modelling noise distribution, paired real-world datasets
have been constructed by researchers. However, collecting
paired noisy-clean images is difficult and time-expensive.

Recently, a series of unsupervised and self-supervised
methods have been introduced. These methods do not re-
quire paired datasets for training, and thus further avoid-
ing the difficulty of collecting real-world paired datasets
for denoising. Among them, Noise2Void [20] proposes
Blind-Spot Network (BSN) that can be trained with only
single noisy images. Unfortunately, BSN has strict assump-
tions, which can only be applied to pixel-wise independent
noise. AP-BSN [22] applies pixel-shuffle downsampling
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(PD) strategy [47] to BSN, remove the spatial correlation in
the real-world noise, and thus the real image can also meet
the conditions for BSN to some extent. However, real noisy
datasets usually have relatively limited numbers of samples.
AP-BSN directly adopts the strategy of PD, which can only
obtain s2 sub-images for a noisy image (the stride factor of
PD is s). This will inevitably lead to the insufficient sam-
ples, and make the training of BSN less effective. There-
fore, the optimal performance of BSN cannot be achieved.

We observe that adding some perturbations to the train-
ing images can greatly expand the training data, which im-
proves the performance of BSN. Further, we consider the
samples difference as the perturbation. To obtain more ran-
dom perturbations and more sub-samples, we propose ran-
dom sub-samples generation (RSG) strategy to break the
fixed sampling pattern of PD. Based on this, we propose
a new cyclic sampling difference loss for BSN and a new
BSN framework in combination with our RSG strategy. In
summary, our contributions include:

• We provide a new idea about adding perturbations to
the training data to improve the BSN performance.
Then, we suggest that the sub-samples difference gen-
erated by sampling can be considered as perturbations
for higher performance.

• We propose a new self-supervised framework for real
image denoising with random sub-samples generation
and cyclic sampling difference loss.

• Our method performs very favorably against state-of-
the-art (SOTA) self-supervised denoising methods on
real-world datasets.

2. Related Work

The image denoising task aims to restore a clean image
from its noisy counterpart. There are two main types of
non-learning-based image denoising: filtering-based meth-
ods and model-based methods. Filter-based methods in-
volve using some artificially designed low-pass filter to re-
move image noise. Taking advantage of the condition of
having many similar image blocks in the same image, noise
can also be removed by the local similarity of image, such as
NLM [5], BM3D [12], etc. Model-based methods involve
modeling the distribution of natural images or noise and
then using the model distribution before obtaining a clear
image with an optimization algorithm, such as WNNM
[13]. The learning-based methods are effective ways to re-
duce image noise. Usually, it can be divided into traditional
and deep network-based methods. In recent years, due to
the continuous development of the deep learning technol-
ogy, deep network-based methods have achieved superior
denoising results compared to previous methods, and thus

they have become the mainstream denoising methods. Gen-
erally, deep network-based methods can be further classi-
fied according to their training manners.

2.1. Supervised Image Denoising

Most of the early works [24, 44, 31, 45, 46] assume
that the noise is independent and uniformly distributed, and
additive Gaussian white noise (AWGN) is usually used to
model image noise and synthetic paired datasets. These
methods achieve SOTA results on AWGN denoising tasks.
However, the noise model in the real world is complex and
unknown. Models trained with synthetic datasets are diffi-
cult to be applied to the real world. Recently, most of the
methods [14, 2, 19, 41, 43, 6, 42, 29, 9] use produced real-
world paired datasets for training. Due to the differences in
camera parameters, these methods may not be widely used
in the real world.

2.2. Pseudo-Supervised Image denoising

The supervised denoising methods require paired noisy-
clean images, while the pseudo-supervised denoising meth-
ods relax the data requirements. Noise2Noise [23] proposes
that pairs of noisy images can be used to train the network
when the noise mean is zero. When some unpaired noisy-
clean images are available, some methods [8, 7, 15, 18]
learn the noise distribution of noisy images by generative
adversarial networks (GAN). Then, clean images are used
to generate pseudo-paired noisy-clean images to train the
denoising network. However, these methods are still diffi-
cult to be applied because the scene distribution of noisy im-
ages often does not match the available clean images [18].

2.3. Self-Supervised Image Denoising

The self-supervised denoising methods require single
noisy images for training. Noise2Void [20] finds that mask-
ing a portion of pixels in noisy images for pairing can
train the denoising network, and thus proposes a BSN for
self-supervised denoising. Laine19 [21] and D-BSN [36]
further optimize the BSN and improve its performance.
Noise2Same [37] and Blind2Unblind [35] propose new de-
noising losses for self-supervised training through mask-
based blind-spot methods. Neighbor2Neighbor [17] sam-
ples the noisy image into two similar sub-images to form a
noisy-noisy pair for training. CVF-SID [25] can disentangle
the clean image, signal-dependent and signal-independent
noises from the real-world noisy input via various self-
supervised training objectives. AP-BSN [22] combines PD
and BSN to process real-world sRGB noisy images and em-
ploys asymmetric PD stride factors for training and infer-
ence. However, current self-supervised methods for real
noise removal usually still require a large number of noisy
images and are challenging to train with less training data
to achieve superior performance.
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3. Proposed Method
3.1. Revisiting Noise2Void

Noise2Void (N2V) [20] requires only single noisy im-
ages for training, and it assumes that the noise n is pixel-
wise independent (the noises at different pixel positions are
independent) given the clean image x. y is the noisy image,
i.e. y = x + n. Due to the local correlation of the pixels
within an image, clean central pixels can be estimated from
the surrounding noisy pixels. Therefore, using the pixel of
the noisy image as a target for its surrounding pixels will not
obtain the noisy pixel. Thus, N2V can train the denoising
network in a self-supervised approach. Specifically, N2V
loss LN2V can be written as follows:

LN2V = Ey{∥f(yr)− yc∥22}, (1)

where f(·) is the normal denoising network, yr is the patch
of y centered on yc with the same dimensions as the network
receptive field. Note that yr does not contain yc.

To facilitate the implementation of training with LN2V ,
N2V proposes BSN B(·) capable of masking centroids. The
noisy images used to train the BSN must satisfy the BSN as-
sumption that the noise is pixel-wise independent and zero-
mean. BSN can be trained by optimizing the following loss
LBSN :

LBSN = Ey{∥B(y)− y∥22}. (2)

LN2V and LBSN are equivalent for training BSN. For
a known noise model (e.g. AWGN model), we can syn-
thesize an infinite number of different noisy images. Thus,
BSN can be easily trained. In contrast, since real image
datasets often have a limited number of captured images,
it is difficult to train BSN directly for real image denois-
ing. Moreover, real images do not satisfy the pixel-wise
independent noise assumptions of BSN. Therefore, the lim-
itations of LBSN are significant, and it is not appropriate to
use real images directly for BSN.

3.2. AP-BSN and Its Limitation

To make BSN better for the spatially correlated real im-
age noise, AP-BSN [22] introduces PD [47] to break the
spatial correlation among real noisy pixels, leading to near
pixel-wise independent noise. Therefore, the real image af-
ter PD can be considered to meet the BSN assumption [22],
and thus can be used as the input for BSN. The original AP-
BSN loss is written as

∥∥PD−1(B(PD(y)))− y
∥∥
1
, where

PD is the PD operator and PD−1 is the inverse operator.
To facilitate the analysis, we further write it as:

LAP−BSN = Ey{∥B(PD(y))− PD(y)∥1}. (3)

It can be observed that the pattern of pairing is fixed in
Eq. (3) (i.e. fixed PD(y) to PD(y)). We consider that the

Dataset Set12 BSD68 Urban100

Fixed seed 28.91/0.8192 27.26/0.7477 27.66/0.8172
Random seed 29.36/0.8399 27.72/0.7728 28.81/0.8632

Table 1: The effect of different BSN training strategies on
PSNR (dB)/SSIM.

training of fixed patterns does not affect the performance of
BSN when the sample number is large enough. In contrast,
it is well known that insufficient sample number may lead to
overfitting [39]. Overfitting of noisy-clean pairing training
can only have a superior effect on the training datasets and
fail on other datasets. However, BSN requires noisy-noisy
pairs for training. The overfitting of BSN will make the de-
noising result fit the noisy image and affect the denoising
performance. For synthetic noise, because the noise mod-
elling can generate an infinite number of noisy images, BSN
can avoid fitting the noise, resulting in a clean image. But
when BSN is used for real noise, real datasets tend to have
a much smaller sample number than synthetic datasets. In
this case, BSN may fail to get high-quality clean pixels.

To verify the effect of the number of training images on
the denoising results, we train BSN with synthetic images.
In this way, we can synthesize any number of noisy im-
ages. We employ DIV2K dataset [32] and add Gaussian
noise with a level σ = 25 to synthesize noisy images. Two
ways are adopted to train BSN with LBSN : (1) adding noise
with fixed seed in each epoch, and (2) adding noise with
random seed in each epoch. Then, we perform denoising
experiments on the test datasets generated with Gaussian
noise (Set12 [44], BSD68 [30], and Urban100 [16]). Table
1 shows the PSNR(dB) and SSIM results in the test datasets
for different training strategies. We observe that when a lim-
ited number of noisy images (noisy images with fixed seeds)
are used to train the BSN , the denoising performance de-
grades significantly. Therefore, the introduction of PD is
practical. Still, considering that the training data of real
images are often limited, the direct use of LAP−BSN may
affect the denoising performance for real image denoising.

3.3. Perturbation in BSN

In order to solve the above problems, we suggest adding
perturbations to Eq. (3) to increase the number of training
data and avoid fitting to the fixed pattern. We should ensure
that the sub-images as inputs or targets remain consistent
with the BSN assumption after adding perturbations. This
is necessary for training the BSN using these sub-images
for denoising purposes. A simple solution is using AWGN
as the perturbation. Suppose ϵ, ϵ1, and ϵ2 are all perturba-
tions of a Gaussian distribution with mean 0 and variance
σ2
ϵ . We propose three perturbation BSN losses LPBSN1,2,3
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Figure 2: Ablation study of σϵ in LPBSN1,2,3 for training on the SIDD validation dataset [1].
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Figure 3: Ablation study of σϵ in LPBSN2 for training in
different images.

as follows:

LPBSN1
= Ey{∥B(PD(y)+ϵ)− PD(y)∥1},

LPBSN2
= Ey{∥B(PD(y))− (PD(y)+ϵ)∥1},

LPBSN3
= Ey{∥B(PD(y)+ϵ1)− (PD(y)+ϵ2)∥1}.

(4)

We test the effect of different variances of ϵ or (ϵ1, ϵ2)
in Eq. (4) on the BSN training, and the results are shown
in Figures 2 and 3. We observe that adding suitable per-
turbations can achieve improvements in BSN performance.
Therefore, each of the losses in Eq. (4) fits our vision and
can obtain a better BSN by training. In Section 4.3, we an-
alyze the influence of perturbations in detail. The results
in Figure 2 show that different perturbation levels’ effects
on BSN performance vary. The results in Figure 3 show
that the appropriate optimal perturbation for different levels
of noisy images also varies. Therefore, it is a challenge to
choose the appropriate perturbation.

3.4. Sampling Difference as Perturbation

PD can produce a series of similar sub-images (PD1(y),
PD2(y), ..., where PDi(·) denotes the i-th sub-image ob-
tained after PD). Since the PD sampling process does not

(a) PD (b) RSG
Figure 4: Results of sampling by different methods. The
second row is the sampling difference obtained by subtract-
ing the two sub-samples in the first row.

overlap, the pixels in the sub-images that are at the same
position are not located at the same position in the original
image. As a result, there are certain differences between
these sub-images, which we refer to as sampling difference.

Based on the previous analysis, it is evident that adding
perturbation for training can enhance the performance of
BSN, but how to add the appropriate perturbations is a chal-
lenge. Since there exists a sampling difference among the
sub-images acquired through sampling, this difference can
be viewed as a type of perturbation. First of all, according
to [22], the sub-images obtained through PD sampling are
naturally in line with the BSN assumption. Next, the dif-
ference between PD1(y) and PD2(y) can be considered as
the perturbation, so we do not need to add additional pertur-
bations as in Eq. (4). Therefore, PD1(y) and PD2(y) can
be used as the input and target in the BSN training, respec-
tively. Finally, we propose a new sampling difference BSN
loss LSDBSN as follows:

LSDBSN = Ey{∥B(PD1(y))− PD2(y)∥1}. (5)

3.5. Random Sub-Samples Generation

The sampling difference generated by the PD strategy
can be obtained by subtracting the two sub-images gener-
ated by the PD. The sub-images and the sampling difference
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Figure 5: Example of generating sub-samples with RSG.

(a) SDAP (b) SDAP (E)
Figure 6: Visual comparison between SDAP and SDAP (E).

generated by PD are shown in Figure 4a. It can be observed
that the sampling difference generated by PD is similar to
the gradient map. Meanwhile, the PD strategy with a stride
factor of s can only generate s2 fixed sub-images for the
same image, which still faces the data-hungry issue for BSN
training. To obtain more sub-samples and make the sam-
pling difference closer to random perturbation, we propose
the random sub-samples generation strategy (RSG).

The diagram of sub-images generation with the RSG is
shown in Figure 5. Assume that the noisy image (y) length
and width are H and W , respectively. The details of RSG
are described below:

1. Divide. The image y is divided into HW/s2 non-
overlapping cells with size s× s. Then, we stretch the
cells into vectors of length s2. For better visualization,
we set s = 2 in Figure 5.

2. Shuffle. Randomly shuffle the elements within each
vector. Since this process is strictly random, the sub-
samples obtained are different each time.

3. Reform. Take the elements at the same position of
each vector to form s2 new vectors of length HW/s2.

4. Reshape. Reshape each vector into a sub-sample of
size [W/s]×[H/s]. In this way, s2 similar sub-samples
(RSG1(y), RSG2(y), ... , RSGs2(y)) are obtained.

To maximize the variance of each sub-sample, our sam-
pling is non-overlapping.

The sub-samples generated by the RSG strategy and their
sampling difference is shown in Figure 4b. It can be ob-
served that the use of RSG does make the sampling differ-
ence more random. Furthermore, we provide detailed anal-
ysis for this phenomenon. Both PD and RSG sample the
image directly, so the calculation of the sampling difference
can be considered as the deviation in the direction of the
line connecting the sampling pixels of the two sub-samples.
Since each pixel of the PD sub-sample has a fixed position
in the original image, the difference has a fixed offset di-
rection. Due to random sampling, the sampling difference
of RSG sub-samples are not fixed in the direction of each
pixel deviation, making the difference more random. In ad-
dition, as can also be seen from Figure 5, PD is equivalent to
obtaining four fixed sub-images of yellow, blue, green and
red. While RSG obtains random sub-images of 1⃝ 2⃝ 3⃝ 4⃝
with different results for each sampling, which can provide
a large number of samples for training. Therefore, RSG
strategy can also be considered as a solution to the data-
hungry issue of training BSN with real noisy images.

3.6. Cyclic Sampling Difference BSN Loss

According to Eq. (5), only two sub-samples are needed.
However, because multiple sub-samples are generated by
RSG, using the whole sub-images instead of only two sam-
ples in training can better utilize the features of the gen-
erated sub-samples, leading to higher performance. More-
over, if only two sub-samples are used for training, the loss
of each training iteration will fluctuate seriously, and the
training of BSN cannot converge. To preserve the stability
of training and to make full use of each sample, we intro-
duce the strategy of cyclic and RSG to propose a new cyclic
samples difference BSN loss LCSDBSN :

LCSDBSN =

s2∑
i=1

∥B(RSGi(y))−RSGi+1(y)∥1︸ ︷︷ ︸
cross−pairing

(RSGs2+1(y) = RSG1(y)).

(6)

Since the sub-samples are generated randomly, the train-
ing data is also random. The target corresponding to each
input in LCSDBSN is different. Therefore, two sub-samples
are avoided to form a fixed mapping during the cycle. This
cyclic loss has the following merits: 1) it imposes con-
straints on the full pixel of the original noisy image; 2) it
ensures that all the sub-samples generated by RSG are well
exploited; 3) it makes the training of BSN more robust. Fig-
ure 7 visually illustrates our training scheme with the cyclic
sampling difference BSN loss.

3.7. Proposed SDAP Framework

For the training stage, we first sample the noisy images
into s2 sub-samples by RSG. Then, we denoise sub-samples
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Figure 7: Overview of our proposed SDAP framework.

by BSN. The loss is calculated by cross-pairing the sub-
samples after denoising with those before denoising. Fi-
nally, the above steps are iterated, and the loss function is
updated to optimize the BSN until it converges. The train-
ing process is shown in the left half of Figure 7.

For the testing stage, due to the randomness of the sin-
gle RSG, the test results are not fixed. Since the sampling
pattern of PD is fixed, the test results are stable for testing.
Therefore, for default setting, we directly adopt the strategy
of PD. We denoise the sub-images after PD and then stitch
them to obtain the final denoised image.

The PD strategy is introduced in the testing stage to
break the spatial correlation of real-world noise. However,
this also makes the pixels of the denoised image discontinu-
ous and produces checkerboard artifacts as shown in Figure
6a. To make the denoised image have better visual perfor-
mance, we propose to denoise the initial denoised image
again by BSN to remove the unpleasing artifacts. This per-
formance enhancement method is denoted by “SDAP (E)”
and is shown in the right half of Figure 7. The comparison
of the final visual effect is shown in Figure 6b. The results
show that our proposed test strategy can remove checker-
board artifacts and make the images more natural. More
details about PD and RSG for testing are provided in Sup-
plementary Material.

4. Experiments
4.1. Implementation Details

We use the general BSN architecture [36, 22] in our
method. According to [22], we empirically set the stride
factor s of RSG to 5 for training. To ensure the stability of
the test, we still use the PD with stride factor 2 for testing
and ablation study. During the training, we use Adam as the
optimizer with default settings. The initial learning rate is
0.0001, batch size and patch size are set to 16 and 160×160
respectively, and epochs are taken as 15. 25600 patches are
used in one epoch. To fine-tune the network, BSN contin-
ues to be optimised for 10 epochs. Meanwhile, we decay the
learning rate by a factor of 10, reduce batch size to 8, and

adjust patch size to 250×250. We use PyTorch to implement
our BSN and train it on an NVIDIA RTX 3090 GPU.

4.2. Dataset

SIDD [1]. The SIDD dataset uses five representative mo-
bile phone cameras to capture approximately 300,000 noisy
images for 10 scenes under different lighting conditions and
obtain the corresponding relatively clean images by specific
statistical methods. The SIDD dataset provides an SIDD
Medium dataset of 320 data pairs for training, an SIDD
validation dataset of 1280 image blocks of size 256×256
for validation, and an SIDD benchmark dataset of 40 high-
resolution noisy images for testing.

DND [27]. The DND dataset contains 50 high-resolution
test image pairs taken by consumer-grade cameras of var-
ious sensor sizes. However, because the images are too
large, DND cropped all the images to 512×512 image
blocks, giving 1000 image blocks for testing. The DND
dataset does not provide training images, and the clean im-
ages of the test dataset are not publicly available.

Note that unless otherwise stated, we used SIDD
Medium dataset for training in the following experiments.

4.3. Analyzing Perturbation

We first validate the effect of the perturbation in
LAP−BSN for real-world sRGB image denoising. We train
the BSN by LPBSN1,2,3

with different variances of ϵ, i.e.,
σϵ ∈ {0, 5, 10, 15, 20, 25}. Meanwhile, we also replace PD
with RSG for a similar set of experiments. Figure 2 shows
the PSNR(dB) results in the SIDD validation set.

We observe that BSN performs best on SIDD validation
dataset when σϵ = 5 for both PD and RSG. After this,
the performance decreases as σϵ increases. Specifically, for
LPBSN1,2,3

, since the perturbation is added to the training
data, when the perturbation is too large, it will significantly
change the noise distribution of the training image, making
it difficult for the BSN to adapt to the original noise. There-
fore, the denoising performance of BSN decreases signifi-
cantly when σϵ > 15. Also, since RSG and perturbation
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Type of supervision Training data Method SIDD validation SIDD benchmark DND benchmark

Non-learning based -
BM3D [12] 31.75/0.7061 25.65/0.685 34.51/0.8507
WNNM [13] 26.31/0.5240 25.78/0.809 34.67/0.8646

Supervised Paired noisy-clean

DnCNN [44] 26.20/0.4414 23.66/0.583 32.43/0.7900
TNRD [10] 26.99/0.7440 24.73/0.643 33.65/0.8306
CBDNet [14] 30.83/0.7541 33.28/0.868 38.06/0.9421
RIDNet [2] 38.76/0.9132 37.87/0.943 39.25/0.9528
VDN [40] 39.29/0.9109 39.26/0.955 39.38/0.9518
Zhou et al. [47] - 34.00/0.898 38.40/0.945
DeamNet [28] 39.40/0.9169 39.35/0.955 39.63/0.9531

Pseudo-supervised
Unpaired noisy-clean

GCBD [8] - - 35.58/ 0.9217
D-BSN [36] - - 37.93/0.9373
C2N [18] 35.36/0.8901 35.35/0.937 37.28/0.9237

Paired noisy-noisy R2R [26] 35.04/0.8440 34.78/0.898 37.61/0.9368

Self-supervised Single noisy

N2V [20] 29.35/0.6510 27.68/0.668 -
N2S [3] 30.72/0.7870 29.56/0.808 -
NAC [38] - - 36.20/0.9252
Neighbor2Neighbor [17] 28.00/0.5890 27.96/0.670 31.40/0.7880
CVF-SID [25] 34.17/0.8719 34.71/0.917 36.50/0.9233
AP-BSN [22] 34.46/0.8501 34.90/0.900 37.46/0.9244
SDAP (Ours) 36.58/0.8630 36.54/0.919 37.71/0.9278
SDAP (S) (Ours) 36.71/0.8640 36.68/0.919 38.18/0.9322
SDAP (E) (Ours) 37.30/0.8937 37.24/0.936 37.86/0.9366
SDAP (S)(E) (Ours) 37.55/0.8943 37.53/0.936 38.56/0.9402

Table 2: Quantitative PSNR(dB)/SSIM Results on SIDD and DND Dataset.

have similar roles, both are designed to obtain more training
data. When the perturbation is too large, the role of RSG is
difficult to be reflected. Therefore, when the perturbation is
small, the RSG strategy outperforms the PD strategy. When
the perturbation is large, the RSG strategy and the PD strat-
egy are used for BSN to obtain similar denoising results.

In addition, we note that the most suitable perturbation
standard deviation σϵ is different for each of these images
in Figure 3. Nevertheless, when we consider the sampling
difference as the perturbation, the BSN performs the best
regardless of the data. In Section 4.5, we analyze the sam-
pling difference as perturbation in detail. Therefore, Eq. (6)
is the final loss function of our proposed method.

4.4. Denoising of Real Image

We use SIDD validation, SIDD benchmark, and DND
benchmark datasets to evaluate the performance of our
SDAP in real-world denoising tasks. For the SIDD vali-
dation dataset, because the paired noisy-clean images are
provided, we can directly test the PSNR/SSIM results. For
the SIDD and DND benchmarks, we submit the denoised
images to websites for server-side evaluation to obtain the
final results (PSNR/SSIM values). To evaluate our model
on the three different datasets, we adopt two different strate-
gies for training.

Training on SIDD Medium dataset. We train our self-
supervised method with noisy images from the SIDD
Medium dataset. Then, the obtained model is evaluated on
different datasets. This training method is represented as
“SDAP” in Table 2.

Training on test dataset. Since our method is fully self-
supervised [25], instead of using the fixed SIDD Medium
dataset for training, we can use the test images for self-
supervised training as well. Therefore, we train our method
on three test datasets in self-supervised manner, respec-
tively. The trained models are evaluated with the corre-
sponding test datasets. Since the noise distribution of train-
ing and test images are identical, this strategy can obtain a
BSN model with better performance. Fully self-supervised
training method is represented as “SDAP (S)” in Table 2.

It should be noted that “(S)” denotes the method to im-
prove the performance in training, while “(E)” denotes the
way to improve the performance in testing. Thus “SDAP
(S)(E)” is the way in which the proposed method can
achieve the best performance.

The results in Table 2 show that this method achieves
significantly better results than some traditional methods,
such as BM3D, on the SIDD Benchmark test data. Even
when compared with some supervised deep learning-based
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Noisy BM3D [12] DnCNN [44] CBDNet [14] C2N [18] CVF-SID [25] AP-BSN [22] SDAP (S)(E) (Ours)

Figure 8: Visual comparison of our method against other competing methods on the SIDD validation dataset [1].

PD RSG LAP−BSN LCSDBSN PSNR(dB)/SSIM

✓ - ✓ - 35.68/0.8382
✓ - - ✓ 36.19/0.8472
- ✓ ✓ - 36.03/0.8533

- ✓ - ✓ 36.58/0.8630

Table 3: Investigation of RSG and LCSDBSN on SIDD Val-
idation Dataset.

image denoising methods, this method achieves superior
denoising results. For example, the PSNR and SSIM re-
sults of this method are 3.40dB and 0.051 higher compared
with CBDNet. When we compared with the SOTA self-
supervised image denoising approaches, our method also
has obvious advantages. For example, compared with AP-
BSN, which has the same network structure as us, SDAP
achieves 1.78dB and 0.019 increases in PSNR and SSIM
metrics, respectively. The performance of SDAP on the
DND dataset has similar findings as those on SIDD. Fig-
ures 1 and 8 provides visual comparisons of several meth-
ods, and the results further validate the visual superiority of
our method to other methods.

4.5. Ablation Study

We examine two major determinants of our model: a)
RSG; b) LCSDBSN . If there is a “✓” in the column of
LCSDBSN (or LAPBSN ), it means that LCSDBSN (or
LAPBSN ) is used for training, and vice versa. If there is
a “✓” in the column of RSG, it means that the RSG strat-
egy is used for training, and we replace all PD in the loss
with RSG. If there is a “✓” in the column of PD, it means
that the PD strategy is used for training, and we replace all
RSG in the loss with PD.

Study of RSG. The performance of training with RSG in
Table 3 is always higher than training with PD. A compar-
ison between the first and third rows of Table 3 shows that
replacing PD with RSG increases the PSNR/SSIM result by
0.35dB/0.0151. The comparison between the second and
fourth rows shows a similar conclusion. These results ver-
ify the effectiveness for RSG.

Study of LCSDBSN . Rows 2 and 4 of Table 3 show the
effect of our proposed LCSDBSN , where our proposed loss
improves the denoising performance by 0.51dB/0.0090 in
the case of training with PD and 0.55dB/0.0097 in the case
of training with RSG. It is worth noting that, irrespective of
whether PD or RSG is used in LCSDBSN for BSN training,
the performance of BSN is superior to that achieved by di-
rectly adding Gaussian perturbations in LAP−BSN (i.e., us-
ing LCSDBSN for training is better than using LPBSN1,2,3

).

5. Conclusion
In this paper, we first analyze the reasons for the lim-

ited performance of BSN when used for real image de-
noising. Based on this, we propose to add perturbations
to the training data and consider sampling difference as
perturbation. Further, we propose SDAP framework with
random sub-samples generation and cyclic sampling differ-
ence loss. Our SDAP does not require clean images for
training and outperforms existing pseudo-supervised/self-
supervised methods. We believe that our approach can pro-
vide promising inspirations for various self-supervised real-
world denoising methods.
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