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Abstract

Video temporal grounding aims to pinpoint a video seg-
ment that matches the query description. Despite the recent
advance in short-form videos (e.g., in minutes), temporal
grounding in long videos (e.g., in hours) is still at its early
stage. To address this challenge, a common practice is to
employ a sliding window, yet can be inefficient and inflexi-
ble due to the limited number of frames within the window.
In this work, we propose an end-to-end framework for
fast temporal grounding, which is able to model an hours-
long video with one-time network execution. Our pipeline
is formulated in a coarse-to-fine manner, where we first
extract context knowledge from non-overlapped video clips
(i.e., anchors), and then supplement the anchors that highly
response to the query with detailed content knowledge.
Besides the remarkably high pipeline efficiency, another
advantage of our approach is the capability of capturing
long-range temporal correlation, thanks to modeling the
entire video as a whole, and hence facilitates more accurate
grounding. Experimental results suggest that, on the long-
form video datasets MAD and Ego4d, our method signifi-
cantly outperforms state-of-the-arts, and achieves 14.6× /
102.8× higher efficiency respectively. Project can be found
at https://github.com/afcedf/SOONet.git.

1. Introduction

Video temporal grounding [5, 6, 13, 18, 19, 29, 31, 32],
which aims to localize a specific moment in the video
corresponding to a natural language description, has found
its applications in many real-world scenarios, such as video
retrieval [11, 22], video highlight detection [23, 24], and
video question answering [9, 26].

Despite the rapid advance in recent years, existing
methods for temporal grounding usually target short-form
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outside the farmhouse.
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Figure 1. Pipeline comparison between sliding window-based
methods (top) [19, 29, 31, 32] and our SOONet (bottom). It
is noteworthy that the sliding window pipeline requires repeated
inference on overlapped clips and the final result aggregation,
while ours can deliver the result with one-time network execution.
Detailed discussion can be found in Sec. 4.5.

videos (e.g., in minutes) and characterize the input video
with a small number of frames (e.g., 128) [19, 27, 29, 30,
31, 32]. When it comes to the case of long-form video
temporal grounding (LVTG) [6, 18], however, temporally
downsampling a video (e.g., in hours) to so few frames
could cause severe information loss and further result in
drastic performance degradation [6].

A straightforward solution is to reorganize a long video
to a sequence of short videos using a sliding window and
perform temporal grounding within each window [6, 8, 18].
However, such a solution as shown in the top half of
Fig. 1 has three main drawbacks. (1) Inference inefficiency:
The overlap between adjacent windows brings redundant
computations. Besides, the large amounts of highly
overlapped predictions cause post-processing (e.g., non-
maximum suppression) time-consuming. It is noteworthy
by saying efficiency, we mean pipeline efficiency instead of
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model efficiency, which considers the total execution time
from data input to final results output, including data pre-
processing, model forward running and post-processing.1

(2) Training insufficiency: The network with a sliding
window can only scan the video contents within a local
time range at one time, yet ignore the long-range temporal
correlation. (3) Prediction inflexibility: The prediction
is restricted inside a single window, making it hard to
generalize to segments with long duration.

In this work, we propose an anchor-based end-to-end
framework, termed as SOONet, which facilitates efficient
and accurate LVTG by Scanning a long-form video Only
Once. As shown in the bottom half of Fig. 1, SOONet
follows a pipeline of pre-ranking, re-ranking, regression,
via leveraging both the inter-anchor context knowledge and
the intra-anchor content knowledge.

Specifically, we first produce non-overlapped anchor
sequence via anchor partition layer, then three procedures
are implemented to obtain final predictions: (1) Multi-scale
context-based anchor features are acquired by modeling
inter-anchor context knowledge via cascaded temporal swin
transformer blocks [12]. Meanwhile, a coarse anchor rank
is obtained via sorting the context-based matching scores
with respect to query. (2) Content-based anchor features
and a content-enhanced anchor rank can be obtained by
supplementing anchors with detailed intra-anchor content
knowledge. We pick out the top-m anchors that highly
corresponds to query from each scale to form an anchor
subset, then implement re-ranking within subset to reduce
the computational complexity. (3) Boundary regression
is adopted to achieve flexible predictions, leveraging both
inter-anchor and intra-anchor knowledge. To take full ad-
vantage of the abundant cross-modal semantic relationship
in long videos, we sample one video with a batch of queries
grounded in this video at one training step, then optimize
the full-length anchor rank and query rank simultaneously
with the help of proposed dual-form approximate rank loss,
which achieves superior cross-modal alignment.

Extensive experiments are conducted on two long-form
video datasets, i.e., MAD [18] and Ego4d [6]. Our method
significantly outperforms state-of-the-arts, and achieves
14.6× / 102.8× higher pipeline efficiency, which demon-
strate the effectiveness.

2. Related Work
2.1. Short-form Video Temporal Grounding

Existing methods mainly focus on short-form video
temporal grounding and can be categorized into proposal-
based and proposal-free methods. Methods in proposal-
based category adopt a two-stage pipeline, which first gen-
erate proposal candidates by various proposal generation

1The concrete explanations of each part can be found in Sec. 4.5.

methods, such as sliding window and proposal generation
network, then they rank these candidates and output the
proposal with the highest matching score as final prediction.
[5] propose CTRL, a pioneer work in video grounding.
CTRL produces various-length proposal candidates via
sliding window and uses the visual-textual fusion modules
combined with three operators, i.e., add, multiply and fully-
connected layer, to obtain multi-modal fused representa-
tion. MAN [30] and SCDM [27] leverage multiple cascaded
temporal convolution layers to generate proposal candidates
hierarchically. TGN [2] temporally captures the evolving
fine-grained frame-by-word interactions and uses pre-set
anchors to produce multi-scale proposal candidates ending
at each time step. Subsequently [15, 21, 33, 34] follow the
anchor-based framework and propose various multi-modal
reasoning strategies to achieve precise moment localization.
In addition, 2D-TAN [32] enumerate all possible segments
as proposal candidates and convert them into 2D feature
map, then a temporal adjacent network is proposed to obtain
multi-modal representation and encode the video context
information. Following this, [19, 20, 35] design more
complicated cross-modal reasoning strategies to learn the
video-language semantic alignment from both coarse and
fine-grained granularities.

Methods in proposal-free category predict the start and
end boundaries by computing the time pair directly, or
output the confidence scores of being the start and end
positions of target moment for each snippet in video. [28]
propose ABLR, which performs cross-modal reasoning
with a multi-modal co-attention interaction modules and
outputs target moments by feeding the multi-modal fea-
tures to regressor. Attention weight-based regression and
attention feature-based regression are considered together
to achieve precise boundary regression. Concurrently,
DRN [29] considers the data imbalance issue and only uses
the frame in ground-truth moment to mitigate the sparsity
issue. LGI [13] aligns the video and language from phrase-
level and propose a local-global interaction network that
models the cross-modal relationship considering local and
global context information simultaneously.

However, directly applying these methods on long-
form videos results in drastic performance degradation, as
temporally downsampling a long video to so few frames
causes severe temporal information loss.

2.2. Long-form Video Temporal Grounding

Recently MAD [18] and Ego4d [6] pose the challenge
of long-form video temporal grounding, and give some
baselines that integrate sliding window and temporal down-
sampling into some short video-fit methods, such as 2D-
TAN [32], VLG-Net [19] and VSLNet [31]. However, all
these methods achieve inferior performance, considering
both accuracy and efficiency. Recently [8] propose CONE,
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which pre-filters the candidate windows to address the
inference inefficiency and learns the cross-modal alignment
from proposal-level and frame-level. Nevertheless, it adopts
sparse sampling strategy at training stage, which does not
explore the potential of long-form video adequately.

3. Method
This section presents a detailed introduction to our

proposed framework. As depicted in Fig. 2, our method
takes a long-form video and a sentence query as input,
and predicts the video moment that is semantically related
to the query in an end-to-end manner. Specifically, our
framework consists of three modules: (1) Pre-ranking with
Anchor Knowledge aims to encode the inter-anchor context
by employing cascaded temporal swin transformer blocks.
Then, a coarse anchor rank is obtained by sorting the
context-based matching scores concerning the query. (2)
Re-ranking with Frame Knowledge is designed to model the
intra-anchor content knowledge, and calculate the content-
based matching scores concerning the query. The anchor
candidates are re-ranked by summing the context-based and
content-based matching scores. (3) Boundary Regression
aims to adjust anchor boundaries, leveraging both inter-
anchor context and intra-anchor content. Our method
outputs the adjusted boundaries of the top-n anchors as the
final predictions.

3.1. Feature Extractor

Given an untrimmed video V = {ft}Tt=1 and a sen-
tence query Q = {wm}Mm=1, where T and M represent
the number of frames and words respectively, the LVTG
task requires to localize the target moment (τs, τe) that
corresponds to query. To achieve this, we adopt off-the-
shelf pretrained models to extract visual features V =
{v1,v2, ...,vN} ∈ RN×D as well as textual features
Q = {qcls,q1,q2, ...,qM} ∈ R(M+1)×D. N,M represent
the numbers of extracted frame features and word features
respectively, and D represents the feature dimension. The
query feature q is extracted in different ways depended on
the type of pretrained model. For models pretrained with
multi-modalities (e.g., CLIP [16]), we take out the class
token embedding qcls as query feature. While for other
models (e.g., BERT [3]), we pass the word embeddings
through a trainable LSTM [7] layer to acquire the query
feature. We then feed the video features V and query
feature q into our network for next process.

3.2. Pre-ranking with Anchor Knowledge

Multi-scale anchor generation. Due to the computa-
tional complexity of global self-attention is quadratic to
the sequence length, the standard transformer is heavily
computational on modeling full-length frame sequences of
long-form video. To mitigate the computational burden,

we first employs a single convolutional layer to produce
non-overlapping base anchors from successive frames. The
formulation is as follow:

E0 = Conv1d(V), (1)

where E0 ∈ R
N
C0

×D, and C0 denotes the length of
base anchor. Then we adopt L cascaded temporal swin
transformer blocks with pooling layers to encode inter-
anchor context knowledge and obtain multi-scale context-
based anchor features E = [E1;E2; ...;EL], where L
represents the number of scales. Each anchor feature ei ∈
E corresponds to a unique clip proposal (tis, t

i
e). For the

anchors of l-th scale, the corresponding anchor length is

Cl = Cl−1rl, (2)

where rl denotes the receptive field of l-th pooling layer.
Temporal swin transformer block. We have incorpo-
rated the shifted window-based self-attention approach, as
proposed in Swin Transformer [12], into 1-dimensional
sequence encoding. This technique effectively implements
self-attention in local windows, while also establishes
connections between consecutive windows to bolster the
modeling capabilities. In this way, the computational
complexity is linearly scaling with the sequence length.
Specifically, each temporal swin transformer block consists
of a local-window self-attention layer (W-MSA), a shifted-
window self-attention layer (SW-MSA) and two multi-layer
perceptrons (MLP), which can be formulated as:

ẑl = W-MSA(LN(zl)) + zl,

z̃l = MLP(LN(ẑl)) + ẑl,

z̃l+1 = SW-MSA(LN(z̃l)) + z̃l,

zl+1 = MLP(LN(z̃l+1)) + z̃l+1,

(3)

where LN represents the LayerNorm [1] operation.
For each context-based anchor feature ei ∈ E, the

context-based matching score is obtained by computing the
cosine similarity between anchor feature and query feature,
then scaling it to [0, 1] via Sigmoid function:

Si
ctx = Sigmoid(

ei · q
∥ei∥∥q∥

), 1 ≤ i ≤
L∑

l=1

N

Cl
. (4)

Finally a coarse anchor rank can be acquired by sorting Sctx
in a descending order.

3.3. Re-ranking with Frame Knowledge

To mitigate the temporal information loss caused by
the anchor partition and pooling operation in pre-ranking
module, the re-ranking module models the detailed content
inside anchors and re-rank anchor candidates. Given the
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Figure 2. Overall architecture of our algorithm. The whole framework consists of three modules: the pre-ranking module aims to obtain
coarse anchor rank by modeling inter-anchor context; the re-ranking module aims to obtain content-enhanced anchor rank by supplementing
anchors with detailed content; the regression module aims to adjust anchor boundaries.

coarse anchor rank, we first collect the indices of the top-
m anchors from each scale separately to set up an anchor
subset, then for i-th anchor of l-th scale in this subset, we
fetch the intra-anchor frame features Vi = {vk

i }
Cl

k=1 and
adopt standard multi-head self-attention module (MSA) to
model the intra-anchor frame correlation:

V̂i = MSA(LN(Vi + fpos(Vi)) +Vi, (5)

where fpos is trainable positional embeddings used to inject
positional information. The content-based matching score
of i-th anchor is obtained by first computing cosine simi-
larity between each frame feature and query feature, then
pooling frame-wise similarities and scaling it to [0, 1] via
Sigmoid function:

Si
ctn = Sigmoid(Pool(

V̂i · q
∥V̂i∥∥q∥

)), 1 ≤ i ≤ mL. (6)

We sum the context-based score and content-based score
as the final matching score for re-ranking:

S = S̃ctx + Sctn, (7)

where S̃ctx ⫋ Sctx is the context-based scores of subset.

3.4. Boundary Regression

To achieve flexible localization, the boundary regression
module is employed to adjust anchor boundaries inward or
outward. For i-th anchor of l-th scale in anchor subset,
given context-based anchor feature ei and content-based
anchor feature V̂i, we fuse them with query to obtain multi-
modal fused feature, and pass it through a MLP header to

predict the start and end bias:

f i = [ei ⊙ q; Att(V̂i)⊙ q],

(δis, δ
i
e) = MLP(f i),

(8)

where ⊙ is element-wise multiplication. Att(V̂i) repre-
sents the self-attentive accumulation of V̂i:

αk
i = Wv̂k

i ,

ai = Softmax([α1
i , α

2
i , ..., α

Cl
i ]),

Att(V̂i) =

Cl∑
k=1

aki v̂
k
i ,

(9)

where W ∈ R1×D is a learnable weight matrix. Then
given the original anchor boundaries (tis, t

i
e), we add the

predicted start and end bias respectively to obtain adjusted
boundaries:

t̂is = tis + δis × (tie − tis),

t̂ie = tie + δie × (tie − tis).
(10)

Finally we output the adjusted boundaries (t̂s, t̂e) of the top-
n anchors as final predictions.

3.5. Training

Two loss terms are adopted to optimize the network: (1)
Cross-modal alignment loss Lalign, and (2) Boundary regres-
sion loss Lreg. The total loss is a weighted combination of
the two loss terms:

Ltotal = λ1Lalign + λ2Lreg, (11)

where λ1 and λ2 are hyper-parameters used to control the
contribution of Lalign and Lreg respectively.

13770



3.5.1 Cross-modal Alignment Loss

We define the cross-modal alignment loss as a combination
of context-based alignment loss Lctx and content-based
alignment loss Lctn:

Lalign = Lctx + Lctn. (12)

For Lctx and Lctn, we propose a dual-form approximate
rank loss that adopts two ApproxNDCG [14] loss terms to
optimize the anchor rank and query rank simultaneously.
We first revisit the ApproxNDCG loss and introduce the
dual-form approximate rank loss, then give out formal
definitions of Lctx and Lctn.
ApproxNDCG loss. Given large amounts of anchor can-
didates, we aim to obtain such an anchor rank: the anchor
semantically related to query should be ranked in front of
the unrelated ones. To achieve this goal, rather than point-
wise or pair-wise rank losses which are commonly used in
existing methods, we adopt the list-wise ApproxNDCG loss
to optimize the anchor rank from the global perspective:

Lar(S, y) = 1− Z−1
m

K∑
i=1

2yi − 1

log(1 + π̂i)
, (13)

where S denotes the matching scores of anchor candidates,
K is the number of anchor candidates and Zm refers to the
discounted cumulative gain of the best rank. yi represents
the matching degree between the i-th anchor and query that
equals to the temporal IoU of their bounding boxes:

yi = IoU((tis, t
i
e), (τs, τe)). (14)

π̂i is a differentiable approximation to the rank of i-th
anchor:

π̂i = 1 +
∑
u ̸=i

exp(−α(Si − Su))

1 + exp(−α(Si − Su))
, (15)

where α denotes a temperature parameter. For each anchor,
the ApproxNDCG loss compares it with all other anchors
to decide its rank, taking full advantage of the semantic
relationship in long-form videos.
Dual-form approximate rank loss. Besides the anchor
rank optimization, considering the unique characteristic of
long-form video dataset, we introduce an “one video with
batch queries” data sampling strategy that samples one
video with a batch of queries grounded in this long video at
one training step, and employ another ApproxNDCG loss
to optimize the query rank simultaneously:

Ldar(S
a, Sq, y) = Lar(S

a, y) + Lar(S
q, y), (16)

where Sa and Sq denotes the matching scores of anchor
candidates and query candidates, respectively. Now, we

define the context-based alignment loss Lctx and content-
based alignment loss Lctn as :

Lctx = Ldar(S
a
ctx, S

q
ctx, y),

Lctn = Ldar(S
a
ctn, S

q
ctn, y),

(17)

where Sa
ctx and Sa

ctn represents the full-length context-
based anchor matching scores and mL-length content-
based anchor matching scores respectively. Likewise, Sq

ctx
and Sq

ctn denotes the context-based and content-based query
matching scores respectively.

3.5.2 Boundary Regression Loss

We define the boundary regression loss as follows:

Lreg =
1

mL

mL∑
i=1

Liou((t̂
i
s, t̂

i
e)), (18)

where the (t̂is, t̂
i
e) is the adjusted boundaries of i-th anchor.

IoU loss [25] is adopted to regress the start and end bias
between anchor boundaries and groundtruth moment:

Liou((t̂
i
s, t̂

i
e)) = − ln(IoU((t̂is, t̂

i
e), (τs, τe)). (19)

4. Experiments
4.1. Datasets

We conduct experiments on two long-form video
datasets MAD [18] (avg. 110.8 min / video) and Ego4d [6]
(avg. 25.7 min / video), in which videos are much
longer than those in previous datasets, such as ActivityNet
Captions [10] (avg. 2.0 min / video) and Charades-STA [17]
(avg. 0.5 min / video).
MAD is a large-scale benchmark for long-form video
temporal grounding, which contains over 384K natural
language queries that derived from high-quality audio de-
scription of mainstream movies and grounded in over 1.2K
hours of videos with very low coverage (an average duration
of 4.1s). The length of videos in MAD ranges from 47
minutes to 202 minutes, which are orders of magnitude
longer than previous datasets.
Ego4d is an egocentric video dataset, containing 3,670
hours of daily-life activity videos collected by 931 world-
wide participants. The Ego4d-NLQ is the official subtask
of Ego4d which is to retrieve the most relevant video
moment from truncated video clips, given a natural lan-
guage question that generated via filling pre-defined query
templates. However, the average duration of video clips
is only 8.25 minutes, which is too short to be used as
LVTG evaluation benchmark. To verify the effectiveness
of our method on long-form video grounding, we introduce
a new evaluation setting and name it Ego4d-Video-NLQ,
where we replace the truncated video clips with full-length
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Table 1. Performance on the test set of MAD dataset. All of three baselines are sliding window-based methods.

Model
IoU = 0.1 IoU = 0.3 IoU = 0.5

R@1 R@5 R@10 R@50 R@100 R@1 R@5 R@10 R@50 R@100 R@1 R@5 R@10 R@50 R@100

VLG-Net [19] 3.64 11.66 17.89 39.78 51.24 2.76 9.31 14.65 34.27 44.87 1.65 5.99 9.77 24.93 33.95
CLIP [16] 6.57 15.05 20.26 37.92 47.73 3.13 9.85 14.13 28.71 36.98 1.39 5.44 8.38 18.80 24.99
CONE [8] 8.90 20.51 27.20 43.36 - 6.87 16.11 21.53 34.73 - 4.10 9.59 12.82 20.56 -

SOONet (Ours) 11.26 23.21 30.36 50.32 58.66 9.00 19.64 26.00 44.78 53.18 5.32 13.14 17.84 32.59 39.62

Table 2. Performance on the val set of Ego4d dataset, under
Ego4d-NLQ and Ego4d-Video-NLQ settings. Noted that 2D-TAN
and CONE are sliding window-based methods while VSLNet is
downsampling-based method.

Model
IoU = 0.3 IoU = 0.5

R@1 R@5 R@1 R@5

Ego4d-NLQ (avg. 8.25 min / video)

2D-TAN [32] 5.04 12.89 2.02 5.88
VSLNet [31] 5.45 10.74 3.12 6.63
CONE2 [8] 10.40 22.74 5.03 11.87
SOONet (Ours) 8.00 22.40 3.76 11.09

Ego4d-Video-NLQ (avg. 25.7 min / video)

2D-TAN [32] 1.70 4.59 0.82 2.77
VSLNet [31] 1.57 4.44 0.75 2.22
SOONet (Ours) 3.90 10.71 1.80 5.09

video, therefore the average duration of videos reaches 25.7
minutes. We report the performance on the validation set
of Ego4d, under both Ego4d-NLQ and Ego4d-Video-NLQ
settings.

4.2. Metrics

Following [8, 18], we adopt the standard metric
“Recall@n, IoU=m” (R@n-m) for evaluation. Specifi-
cally, it represents the percentage of testing samples that
have at least one grounding prediction whose IoU with
groundtruth is larger than m among top-n predictions.

4.3. Implementation Details

Following [18], we use CLIP [16] to extract visual
features and textual features for MAD dataset. We set
C0 = 10, L = 4 for multi-scale anchor generation. λ1, λ2

are set to 1 and 20 respectively. m is set to 100 for filtering.
The temperature α for Lctx and Lctn are both set to 0.01.
We train the network for 100k steps with an initial learning
rate of 0.001, and decay it by a factor of 10 after 40k steps.
When training, we set batch size as 32 (1 video with 32
queries grounded in this video at one step) and use AdamW
as the optimizer. The feature dimension D is set to 512.

2As for CONE, its code has not been released as of the completion of
this paper, so for fair comparison we only report its result on Ego4d-NLQ
provided by its original paper.

Table 3. Details about sliding windows. Numbers in brackets
stand for the window duration (or stride duration). Number of
windows is averaged over the entire validation set.

Method # Frames per Window Slide Stride # Windows

CLIP 128 (25.6s) 64 (12.8s) 566.3
VLG-Net 128 (25.6s) 64 (12.8s) 566.3
2D-TAN 75 (40s) 37.5 (20s) 89.5

For Ego4d-NLQ and Ego4d-Video-NLQ, we use the pre-
extracted SlowFast features [4] and Bert features [3] as the
visual and textual features, following [6]. We set C0 = 1,
L = 7 on Ego4d-NLQ and C0 = 6, L = 2 on Ego4d-
Video-NLQ. λ1, λ2 are set to 1 and 5 respectively. m is
set to 200. We train the network for 30k steps with an
initial learning rate of 0.0001, and decay it by 10 after 15k
steps. Early stop is adopted to mitigate overfitting. All
experiments are implemented on one A100 GPU with 80GB
memory.

4.4. Accuracy Comparison with SOTAs

We first compare our model with several state-of-the-art
methods. Tab. 1 reports the performance results on long
video dataset MAD (the average video duration is around
110.8 minutes) with three methods: CLIP [16], VLG-
Net [19] and CONE [8]. All of them are sliding window-
based methods. From Tab. 1 we can observe that our
method outperforms all other methods, achieving 2.13%
and 1.22% performance gains, in terms of R@1-0.3 and
R@1-0.5 respectively. Thanks to modeling the entire video
as a whole, our method can capture long-range temporal
correlation, and learn cross-modal alignment with abun-
dant context information, which facilitates more accurate
grounding. We also conduct experiments on Ego4d dataset
and summarize the results on Tab. 2. We first compare
performance under Ego4d-NLQ setting with three methods:
2D-TAN [32], VSLNet [31] and CONE [8]. It is noted
that, to improve the efficiency and save the memory cost,
our approach does not include fine-grained cross-modality
semantic alignment (e.g., align text and image from the
token level), which can be very computation intensive along
with the video length growing. Although such fine-grained
knowledge can be beneficial to short-form video temporal
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Table 4. Efficiency comparison on MAD and Ego4d-Video-NLQ. The total time is a summation of time of three parts: pre-processing,
model forward, and post-processing. For fair comparison, we feed one video and one query to the system at each time, and report the total
running time over the entire test set. Compared to sliding window-based methods, which require repeated inference on overlapped clips
and the final result aggregation (i.e., post-processing), our one-time execution pipeline is far more efficient.

Dataset Method Method Type
Trainable

Parameters
FLOPs

GPU
Memory

Execution Time (second)
Pre Model Post Total

MAD
CLIP [16] Slide Window 0 0.2G 2.9G 630.9s 15.7s 6741.2s 7387.8s
VLG-Net [19] Slide Window 5,330,435 1757.3G 20.0G 3350.3s 10659.0s 15546.7s 29556.0s
SOONet (Ours) End-to-end 22,970,947 70.2G 2.4G 42.4s 438.9s 23.7s 505.0s

Ego4d-
Video-NLQ

2D-TAN [32] Slide Window 86,773,761 6160.0G 3.9G 442.1s 2625.3s 1153.7s 4225.2s
VSLNet [31] Down-sampling 866,435 0.9G 2.8G 10.7s 56.9s 1.4s 69.0s
SOONet (Ours) End-to-end 25,203,779 5.4G 1.8G 16.7s 23.6s 0.8s 41.1s

grounding, we use a unified framework for both short video
and long video settings. Tab. 2 suggests that our method
achieves competitive performance on Ego4d-NLQ, even
though it tests on short-form videos (the average video
duration is 8.25 minutes). We then test the performance
on Ego4d-Video-NLQ, where the average video duration is
25.7 minutes. We re-implement the 2D-TAN and VSLNet
with the public code released by [6]: it combines the 2D-
TAN with sliding window to fit long-form video while
adopts the downsampling strategy for VSLNet to reduce
the sequence length to 128. From Tab. 2 we observe
our SOONet achieves 2.20% / 0.98% performance gains
in terms of R@1-0.3 and R@1-0.5 respectively, which
demonstrates the effectiveness of our method on long-form
video temporal grounding.

4.5. Efficiency Comparison with SOTAs

To evaluate the efficiency of our method, we compare
SOONet with 3 sliding window-based methods (i.e., CLIP,
VLG-Net and 2D-TAN) and 1 downsampling-based method
(i.e., VSLNet) on MAD and Ego4d-Video-NLQ. We report
the details about sliding windows in Tab. 3, regarding
CLIP and VLG-Net on MAD dataset, and 2D-TAN on
Ego4d-Video-NLQ dataset. Numbers in brackets stand
for the window duration (or stride duration). Number of
windows is averaged over the entire validation set. Recall
that the code of CONE is not publicly available so we
can’t make a fair comparison with it. As mentioned
in Sec. 1, the efficiency here means pipeline efficiency,
which considers the execution time of three parts: (1) Pre-
processing (denoted as Pre). For all competing methods, the
pre-processing time refers to the time of loading snippets’
features to GPU memory. It is worth noting that the
snippets’ features are offline extracted and, therefore, are
excluded from the pre-processing stage. Moreover, sliding
window-based approaches require reorganizing the snip-
pets’ features into overlapped window features, which is
more time-consuming than our method. (2) Model forward
(denoted as Model), which refers to network calculation.

Table 5. Ablation study on various modules in SOONet. PR,
RR, and BR denote Pre-ranking module, Re-ranking module, and
Boundary Regression module, respectively

PR RR BR IoU = 0.1 IoU = 0.3 IoU = 0.5
R@1 R@5 R@1 R@5 R@1 R@5

✓ 9.41 20.68 7.07 17.02 4.10 11.08
✓ ✓ 10.17 21.94 7.65 17.98 4.43 11.37
✓ ✓ 10.79 22.37 8.52 18.73 4.79 12.00
✓ ✓ ✓ 11.03 22.99 8.83 19.48 5.23 13.18

Table 6. Ablation study on dual-form approximate rank loss.

Loss
IoU = 0.1 IoU = 0.3 IoU = 0.5

R@1 R@5 R@1 R@5 R@1 R@5

Lbce 0.05 0.51 0.01 0.10 0.00 0.01
Lnce 5.26 13.65 4.09 10.90 2.32 6.73
Lar 10.08 22.02 8.15 18.47 4.80 12.04

Ldar 11.03 22.99 8.83 19.48 5.23 13.18

(3) Post-processing (denoted as Post). For sliding window-
based methods, it is necessary to first apply non-maximum
suppression (NMS) to discard a significant number of
highly overlapping predictions, and then obtain the final
segments by sorting their scores. However, our approach
minimizes the generation of numerous highly overlapped
candidates, making the NMS operation optional. In all
experiments conducted in this paper, we did not employ
NMS in our method.

Tab. 4 reports the number of parameters, FLOPs, GPU
memory usage of models and gives a detailed breakdown
of execution time. For FLOPs and GPU memory usage,
we measure them using same samples as input because
they change with the length of input video. From Tab. 4
we observe the GPU memory usages of sliding window-
based methods surpass our SOONet obviously, because
batch inference on local windows is adopted to accelerate
the model forward. For execution time, at each time we
feed one video and one sentence to the system and report
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the total execution time of each part separately over the
entire test set. From Tab. 4 we observe that compared
with sliding window-based methods, our SOONet makes
huge improvement on pipeline efficiency, achieving 14.6×
/ 58.5× / 102.8× higher inference speed, compared with
CLIP, VLG-Net and 2D-TAN respectively. It is noteworthy
that model FLOPs only affects the model forward time.
Though CLIP contains only a matrix multiplication oper-
ation that needs few FLOPs, it suffers from both the slow
pre-processing, which needs to split an entire video into lots
of overlapped windows as well as gather window features,
and the slow post-processing, which employs NMS (i.e.,
non-maximum suppression) to abandon large amounts of
highly overlapped predictions. In addition to the slow
pre-processing and post-processing, an another efficiency
bottleneck of sliding window-based methods lies in the
redundant computation on overlapped windows, which
increases the model FLOPs greatly, causing the model for-
ward part time-consuming. Compared with downsampling-
based VSLNet, our SOONet achieves competitive inference
speed whereas a far superior accuracy. Despite a bit more
FLOPs, our network spends less time on model forward
running than VSLNet. These results demonstrate the
efficiency of our method.

4.6. Ablation Studies

Effectiveness of Each Module. We conduct experiments
on MAD to verify the effectiveness of each module em-
ployed in our framework: (1) Pre-ranking with Anchor
Knowledge, (2) Re-ranking with Frame Knowledge, and
(3) Boundary Regression. We report the ablation results
on Tab. 5, where PR, RR, BR represent the three modules
respectively. Tab. 5 suggest that, equipped with Pre-
ranking module only, our method achieves 9.41% / 7.07% /
4.10% performance in terms of R@1-0.1, R@1-0.3, R@-
0.5 respectively, which is a competitive result compared
with state-of-the-arts. Benefit from the long-range context
encoding and global-view rank learning, the Pre-ranking
module explore the cross-modal semantic relationship in
long videos adequately, thus facilitates accurate ground-
ing. Upon this, integrating Re-ranking module achieves
improvements of +0.76%/+0.58%/+0.33%, because the de-
tailed frame knowledge supplement fine-grained semantics,
e.g., the scene and objects occurred in few frames, that
generally perturbed by many irrelated frames. Integrating
Boundary Regression module achieves improvements of
+1.38%/+1.45%/+0.69%, which benefits from the flexi-
ble adjustments. The combination of the three modules
achieves improvements of +1.62%/+1.76%/+1.13%, which
demonstrates the complementary of proposed modules.

Impact of Dual-form Approximate Rank Loss. To
make clear the contribution of the proposed dual-form
approximate rank Loss Ldar, we compare it with three

Table 7. Ablation study on TST number on MAD.

# TST
IoU = 0.3 IoU = 0.5 Infer

TimeR@1 R@10 R@100 R@1 R@10 R@100

1 9.06 26.44 53.23 5.41 17.96 38.53 178.93s
2 9.11 26.62 53.37 5.36 17.98 39.05 273.08s
4 9.09 26.29 54.54 5.32 17.90 39.69 475.90s

Table 8. Ablation study on TST number on Ego4d-Video-NLQ.

# TST
IoU = 0.3 IoU = 0.5 Infer

TimeR@1 R@5 R@1 R@5

1 2.90 9.44 1.41 4.82 34.47s
2 3.84 10.52 1.98 5.08 36.42s
4 3.61 10.67 1.72 5.02 38.32s

loss functions: (1) Binary cross entropy loss Lbce, which
uses IoU as labels to optimize the query-anchor matching
scores; (2) Noise contrastive estimation loss Lnce, which
optimizes a hidden space where positive pairs are assigned
close and negative pairs are pushed away. We selects the
anchor with highest IoU as positive samples and others
as negative samples; (3) Single ApproxNDCG loss Lar,
which optimizes the anchor rank only. The results are
summarized in Tab. 6. Lbce achieves poor performance in
all metrics, mainly caused by the extremely imbalance of
positive (which has IoU > 0) and negative (which has IoU
= 0) samples, even though we have enlarge the weight of
positive samples. Besides, Lar and Ldar both surpass Lnce

by a large margin, because Lnce only tries to distinguish
the anchor with highest IoU from large amounts of anchor
candidates, while Lar and Ldar implement the anchor rank
optimization from the global perspective, which needs to
consider the relationship between each anchor pair. Finally,
Ldar outperforms Lar by 0.68% / 0.43% in terms of R@1-
0.3 and R@1-0.5, demonstrating the complementary of
query rank optimization and anchor rank optimization.

Multi-scale mechanism. We conduct experiments on
MAD and Ego4d-Video-NLQ to study the impact of the
number of TST blocks (i.e., the number of anchor scales).
Results are shown in Tab. 7 and Tab. 8, respectively. “Infer
Time” refers to the total time cost over the entire test set.
Upon analyzing the tables, it is evident that incorporating a
multi-scale mechanism significantly improves performance.
By utilizing 2 scales, consistent enhancements are observed
across all metrics of MAD and Ego4d-Video-NLQ, with the
exception of R@1-0.5 on MAD. Furthermore, employing 4
scales yields a substantial performance gain on the R@100
metric on MAD. However, it should be noted that the
introduction of a multi-scale mechanism does lead to a
slight decrease in efficiency. Comparatively, a 4-scale net-
work requires 2.7× and 1.1× more time than a single-scale
network for MAD and Ego4d-Video-NLQ, respectively.
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Figure 3. Ablation study on the base anchor length, C0.

Figure 4. Ablation study on the temperature value, α.

Nevertheless, these time costs are relatively modest when
compared to the computational demands of sliding window-
based approaches.

Base anchor length C0. We vary the value of C0 to
study the impact of anchor length and summarize the results
in Fig. 3. We observe that the performance decreases
greatly on MAD as C0 grows, while not changes obviously
on Ego4d-Video-NLQ. This intriguing finding can be at-
tributed to the characteristics of the ground-truth moments
in each dataset. In the case of MAD, the majority of ground-
truth moments have a very short duration. Consequently, it
becomes challenging to accurately align a long anchor with
the query and accurately regress the boundaries. On the
contrary, the ground-truth moments in Ego4d-Video-NLQ
exhibit a more-balanced length distribution, rendering them
less sensitive to variations in anchor length.

Temperature α. We vary the value of α in Ldar across
from 0.001 to 0.5 to study the impact. The results are
presented in Fig. 4. It is evident from the results that the
optimization process is highly sensitive to the choice of
α. We observe that the performance reaches its peak when
α falls within the range of [0.005, 0.01]. However, as the
value of α increases beyond this optimal range, we observe
a significant decline in performance.

4.7. Qualitative Analysis

We provide qualitative results to illustrate the contribu-
tions of Pre-ranking and Re-ranking modules. Fig. 5 dis-
plays the predictions of SOONet without Re-ranking (first
line) and with Re-ranking (second line), as well as the cor-
responding groundtruth (third line). It suggests, equipped

Query: what seasoning did I use?

w/ Re-ranking

w/o Re-ranking

GT 123.5 137.0

123.8 137.7

38.0 48.5

w/o Re-ranking w/ Re-ranking

Sc
or
e

Figure 5. Qualitative analysis on the re-ranking module with full-
length anchor matching scores, where re-ranking helps localize the
moment of interest more precisely.

with only Pre-ranking module, our method achieves coarse
localization (two humps showed on orange line) but loses
some fine-grained details so that it can not distinguish food
and seasoning. However, when combined with Re-ranking
module, our method succeeds in recognizing the seasoning,
and raises the confidence of the right moment as well as
decreases the matching score of wrong moment. More
qualitative results are provided in Supplementary Material.

5. Conclusion and Discussion

We propose an end-to-end framework, SOONet, for
fast temporal grounding in long videos, which is able to
model an hours-long video with one-time network execu-
tion, alleviating the inefficiency issue caused by the sliding
window pipeline. Extensive experiments on MAD and
Ego4d datasets demonstrate the superiority of our SOONet
regarding both accuracy and efficiency.

Still, some further explorations can be expected. Due
to the fact that the sentence feature is pre-extracted by a
pre-trained language model, some fine-grained cross-modal
fusion (e.g., word-to-object semantic alignment) may get
lost. We visualize some failure cases in Supplementary
Material and leave it as a future work.
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