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Abstract

In this paper, we focus on the task of generalizable neu-
ral human rendering which trains conditional Neural Ra-
diance Fields (NeRF) from multi-view videos of different
characters. To handle the dynamic human motion, previ-
ous methods have primarily used a SparseConvNet (SPC)-
based human representation to process the painted SMPL.
However, such SPC-based representation i) optimizes un-
der the volatile observation space which leads to the pose-
misalignment between training and inference stages, and
ii) lacks the global relationships among human parts that
is critical for handling the incomplete painted SMPL. Tack-
ling these issues, we present a brand-new framework named
TransHuman, which learns the painted SMPL under the
canonical space and captures the global relationships be-
tween human parts with transformers. Specifically, Tran-
sHuman is mainly composed of Transformer-based Human
Encoding (TransHE), Deformable Partial Radiance Fields
(DPaRF), and Fine-grained Detail Integration (FDI). Tran-
sHE first processes the painted SMPL under the canoni-
cal space via transformers for capturing the global rela-
tionships between human parts. Then, DPaRF binds each
output token with a deformable radiance field for encoding
the query point under the observation space. Finally, the
FDI is employed to further integrate fine-grained informa-
tion from reference images. Extensive experiments on ZJU-
MoCap and H36M show that our TransHuman achieves
a significantly new state-of-the-art performance with high
efficiency. Project page: https://pansanity666.

github.io/TransHuman/

1. Introduction
Rendering high-fidelity free-viewpoint videos of dy-

namic human performers is vital for many applications such
as mixed reality, gaming, and telepresence. Compared to
general 2D-to-3D estimation/reconstruction [29, 32, 50],

*Work done during an internship with Alibaba DAMO Academy.
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Figure 1. Comparisons between existing SPC-based and our
transformer-based human representations. Given the incom-
plete painted SMPL, the SPC-based one optimizes under the vary-
ing observation space with limited receptive fields from 3D con-
volution. Instead, our transformer-based one optimizes under the
canonical space with global relationships between human parts.

human-centric reconstruction [33] is a more difficult task
considering the dynamic and deformable nature of the hu-
man body, yet can be improved by incorporating prior
knowledge about human body through the construction of
multi-knowledge representations [47].

Recent works [33, 31, 44, 38] integrate the Neural Radi-
ance Fields (NeRF) [29] technology with parametric human
prior models (e.g., SMPL [26]) for handling the dynamic
human body and achieve fair novel view synthesis results.
However, the tedious per-subject optimization and the re-
quirement of dense training views largely hinder the appli-
cation of such methods. Targeting these issues and inspired
by the recent success of generalizable NeRF [51, 5, 42] on
static scenes, the task of generalizable neural human render-
ing is proposed [19], which trains conditional NeRF across
multi-view human videos, and can generalize to a new sub-
ject in a single feed-forward manner given sparse reference
views as input.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Previous methods for generalizable neural human
rendering [6, 19] mainly employ the SparseConvNet
(SPC) [23]-based human representation (upper row of Fig.
1) which first project deep features from reference images
onto the vertices of fitted SMPL and then diffuse them to
nearby regions via SPC. The final representation is achieved
via trilinear sampling in the discrete 3D feature volume.
Such SPC-based representation mainly suffers from the fol-
lowing two aspects: (i) Volatile observation learning. The
SPC-based one optimizes under the observation space that
contains varying poses. This leads to the pose misalignment
during training and inference stages, and therefore limits the
generalization ability. (ii) Limited local receptive fields. As
shown in Fig. 1, due to the heavy self-occlusion of dynamic
human bodies, the painted SMPL templates are usually in-
complete. While as a 3D convolution network, the limited
local receptive fields of SPC make it sensitive to the incom-
plete input, especially when the occluded regions are large.

To address the aforementioned issues, we propose to
first process the painted SMPL with transformers under the
static canonical space to remove the pose misalignment be-
tween training and inference stages and capture the global
relationships between human parts. Then, a deformation
from the canonical to the observation space is required to
fetch the human representation of a query point (sampling
points on rays) under the observation space. Finally, the
fine-grained information directly achieved from the obser-
vation space should be further included to the coarse human
representation to complement the details.

Motivated by this, we present the TransHuman, a brand-
new framework that shows superior generalization abil-
ity with high efficiency. TransHuman is mainly com-
posed of Transformer-based Human Encoding (TransHE),
Deformable Partial Radiance Fields (DPaRF), and Fine-
grained Detail Integration (FDI). (i) TransHE. TransHE
is a pipeline that processes the painted SMPL under the
canonical space with transformers [10]. The core of this
pipeline includes a canonical body grouping strategy for
the avoidance of semantic ambiguity, and a canonical learn-
ing scheme to ease the learning of global relationships. (ii)
DPaRF. DPaRF deforms the output tokens of TransHE from
the canonical space to the observation space and gets a ro-
bust human representation for a query point from marched
rays. As shown in Fig. 1, the main idea is to bind each
token (representing a certain human part) with a radiance
field whose partial coordinate system deforms as the pose
changes, and the query point is encoded via the coordi-
nates under the deformed partial coordinate systems. (iii)
FDI. With TransHE and DPaRF, the human representation
contains coarse information with human priors yet limited
fine-grained details directly captured from the observation
space. Therefore, similar to [19], we propose to further in-
tegrate the detailed information from the pixel-aligned fea-

tures at the guidance of the human representation.
Extensive experiments on ZJU-MoCap [33] and

H36M [16] demonstrate the superior generalization abil-
ity and high efficiency of TransHuman which attains a
new state-of-the-art performance and outperforms previ-
ous methods by significant margins, e.g., +2.20 PSNR
and �45% LPIPS on ZJU-MoCap [33] under the pose
generalization setting.

Our contributions are summarized as follows:

• We propose a brand-new framework TransHuman for
the challenging generalizable neural human rendering
task which attains a significantly new state-of-the-art
performance with high efficiency.

• We propose to process the painted SMPL under the
canonical space to remove the pose misalignment dur-
ing training and inference stages and deform it back
to the observation space via DPaRF for robust query
point encoding.

• To the best of our knowledge, we make the first at-
tempt to explore the transformers technology around
the painted SMPL for capturing the global relation-
ships between human parts.

2. Related Work
2.1. Human Performance Capture

Synthesizing novel views for human performer is a long-
standing topic in computer vision and graphics. Traditional
methods [11, 8, 13, 9] typically require expensive hardware
like depth sensors for getting reasonable results. With the
recent success of Neural Radiance Fields (NeRF) [29, 2],
many works [33, 31, 44, 38] have attempted to learn the 3D
human representation from image inputs via differentiable
rendering. However, they require tedious per-subject opti-
mization on dense training images, and can not generalize
to unseen subjects, which largely confines the real-world
applications.

To tackle this issue and inspired by the recent advances
of generalizable NeRF methods [51, 5, 42], the generaliz-
able neural human rendering task is explored [19, 12, 6, 53],
At the core of this task is to properly exploit the human
prior from the pre-fitted parametric human model [26, 37].
One line of works [53, 12] take the parametric human
model as the medium of the deformation between obser-
vation and canonical spaces using blend skinning technol-
ogy [15, 20, 24], and optimize conditional NeRF under
a canonical pose. Instead, another line of works [19, 6]
directly diffuse the painted parametric human model un-
der the observation space via SparseConveNet (SPC) [23]
for a human representation with approximate priors, and
the final condition feature for a query point is the hybrid
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Figure 2. Overview of TransHuman. TransHE first builds a pipeline for capturing the global relationships between human parts via
transformers under the canonical space. Then, DPaRF deforms the coordinate system from the canonical back to the observation space and
encodes a query point as an aggregation of coordinates and condition features. Finally, FDI further gathers the fine-grained information of
the observation space from the pixel-aligned appearance feature under the guidance of human representation.

of human representation and pixel-aligned features. Obvi-
ously, a high-quality human representation is critical in this
paradigm, yet the SPC-based one optimizes under the vary-
ing observation space, lacks the global perspective, and is
restricted by the trilinear sampling in discrete 3D volumes.

Targeting these issues, we present TransHuman with
an advanced human representation based on transform-
ers [41, 40, 10], and outperforms the previous state-of-the-
art methods by significant margins.

2.2. Transformers with Neural Radiance Fields
With the significant advances of the transformer archi-

tecture in vision tasks (including classification [10, 4], seg-
mentation [48, 49, 30], detection [3, 54], multi-model un-
derstanding [34, 7, 21], etc), several works [22, 18, 36,
42, 17, 46] have attempted to introduce it with NeRF
technology. Specifically, [22] combines transformers with
CNN [14] as a stronger feature extractor for reference im-
ages, [18, 36, 42] use transformers as the aggregator of
source view features, and [17, 46] introduce the pre-trained
transformers [34, 4] as a semantic prior to relieve the dense
requirement of training views.

Differently, in this paper, we make the first attempt to
apply the transformer technology around the surface of
painted SMPL for a stronger human representation that cap-
tures the global relationship between human parts.

3. Method
Overview. The task of generalizable neural human render-
ing targets on learning conditional NeRF across multi-view

videos of different subjects, which can generalize to unseen
subjects in a single feed-forward pass given sparse refer-
ence views. At the core of the task is to get a high-quality
condition feature that contains accurate subject information
for each query point sampled on rays. To this end, we pro-
pose a novel framework named TransHuman which shows
superior generalization ability. As shown in Fig. 2, Tran-
sHuman is mainly composed of three aspects: Transformer-
based Human Encoding (TransHE), Deformable Partial Ra-
diance Fields (DPaRF), and Fine-grained Detail Integration
(FDI). § 3.1 introduces the TransHE which builds a pipeline
for capturing the global relationships between human parts
via transformers under the canonical space. § 3.2 demon-
strates the DPaRF which deforms the processed SMPL back
to the observation space and fetch a robust human represen-
tation. § 3.3 presents the FDI module that further gathers
the fine-grained information directly from the observation
space with the guidance of human representation. After
that, we introduce the volume rendering in § 3.4, and the
training and inference pipelines in § 3.5.

3.1. Transformer-based Human Encoding
For simplicity, we start by introducing the process of a

single reference image that is applicable for all other views,
and the multi-view aggregation will be detailed in § 3.3.
Given a reference images I for a certain time step and its
corresponding pre-fitted SMPL model V o 2 R6890⇥3 under
the observation pose †, we first project the d1-dimensional
deep features of I extracted by CNN to the vertices of V o

†We use the SMPL coordinate system unless otherwise specified.

3546



Obs.  Grid Voxelization   vs. Can.  Body Grouping (Ours)

Pose B

Pose A

0

2

1

3

0

1

2 3

2

0

1
3

2

0 1

3

Semantic EntanglementLeft Hand Vertex Right Hand Vertex

Temporal
Semantic 
Variance

Temporal
Semantic 
Consistency

Move
Right
Hand

Figure 3. 2D illustration of the semantic ambiguity issue. Naive
grid voxelization under the observation space leads to spatial se-
mantic entanglement and temporal semantic variance issues, while
the semantics with our canonical body grouping strategy is tempo-
rally consistent and spatially disentangled.

based on the camera information, and get the painted SMPL
F 2 R6890⇥d1 . Previous methods [19, 6] have mainly em-
ployed the SPC [23] to diffuse the painted SMPL to nearby
space (Fig. 1). However, they optimize under the vary-
ing observation space which leads to the pose misalign-
ment between training and inference stages, and the lim-
ited receptive fields of 3D convolution blocks make it sen-
sitive to the incomplete painted SMPL input caused by the
heavy self-occlusions of human bodies. Tackling these is-
sues, we present a pipeline named Transformer-based Hu-
man Encoding (TransHE) that captures the global relation-
ships between human parts under the canonical space. The
key of TranHE includes a canonical body grouping strat-
egy for avoiding the semantic ambiguity and a canonical
learning scheme to ease the optimization and improve the
generalization ability.
Canonical Body Grouping. Directly taking all the vertex
features of F as input tokens of transformers is neither ef-
fective considering the misalignment between fitted SMPL
and the ground truth body, nor efficient due to the large ver-
tex number, i.e., 6890. A possible solution is to directly
perform the grid voxelization [27] on F under the observa-
tion pose. However, due to the complex human poses, this
will lead to the semantic ambiguity issue. More concretely,
the gathered vertices in each voxel are highly different as
the pose changes (i.e., temporal semantic variance), and a
voxel might include vertices from dispersed semantic parts
(i.e., spatial semantic entanglement), as illustrated in Fig. 3.

To tackle this issue, we propose that grouping the ver-
tices under the canonical space and then applying this
canonical grouping to all the observation poses is a better
choice. Compared with the varying observation poses, the
canonical pose is both static and more stretched, which can
largely relieve the semantic ambiguity issue via the con-
sistent split among different poses (i.e., temporal seman-
tic consistency) and more disentangled semantics in each
voxel (i.e., spatial semantic disentanglement), as shown by
the right part of Fig. 3.

Formally, we first process the canonically posed (T-
posed) SMPL V c 2 R6890⇥3 with a clustering algorithm
(e.g., k-means [1]) based on the 3D coordinates, and get a
grouping dictionary Dc caching the indexes of the SMPL
vertices that belong to the same cluster, as illustrated in
Fig. 2. Notice that we only need to calculate Dc once be-
fore training. Then, for each iteration, the features from the
same cluster are aggregated via average pooling:

bF = GDc(F ), bF 2 RNt⇥d1 , (1)

where Nt is the number of clusters (tokens), and GDc(·) in-
dicates indexing based on Dc and then performing average
pooling in each cluster.
Canonical Learning. After grouping, we now have a de-
cent number of input tokens, and the next question is about
the choice of position embedding for each token. Since we
need the condition feature of a query point under the obser-
vation space, a possible choice is to directly learn under the
observation space (same as SPC-based methods [19, 6]) and
use the 3D coordinates of each token under the observation
pose as the position information, i.e., bV o = GDc(V o) 2
RNt⇥3. However, except for the pose misalignment issue
mentioned previously, bV o is also varying for different time
steps, which leads to the unfixed patterns of position embed-
dings that make it harder to capture the global relationships
between human parts.

Hence, to address these issues, we propose to learn the
global relationships under the static canonical space for re-
moving the pose-misalignment and easing the learning of
global relationships:

bF
0
= T ( bF , �1(bV c)), (2)

where bV c = GDc(V c) is the token positions under the
canonical space, �1(·) : R3!d1 represents the positional
encoding used in the original NeRF [29], T (·) : Rd1!d1

indicates the transformers, and bF 0 2 RNt⇥d1 is the output
tokens with learned global relationships between each other.

3.2. Deformable Partial Radiance Fields
For deforming the processed SMPL back to the obser-

vation space and get a robust human representation, we
present the Deformable Partial Radiance Fields (DPaRF).
The main idea of DPaRF is to bind each output token of
TransHE with a conditional partial radiance field for a cer-
tain semantic part whose coordinate system deforms as the
pose changes under the observation space, and the query
points from rays are encoded as the coordinates under the
deformed coordinate system, as shown in Fig. 2.
Coordinate System Deformation. Given the i-th token
bF 0

i 2 Rd1 from the TransHE output, a coordinate system
W c

i 2 R3⇥3 is initialized under the canonical space which

3547



takes bV c
i 2 R3 as the origin †. Then, as the pose changes

under the observation space, we rotate W c
i with the rotation

matrix bRi 2 R3⇥3 of token i:

W o
i = bRiW

c
i , (3)

where bRi is the averaged rotation matrix for vertices be-
longing to the i-th token, i.e., bR = GDc(R) 2 RNt⇥3⇥3,
and R 2 R6890⇥3⇥3 can be calculated via blending the ro-
tation matrices of 24 joints with the blend weights provided
by SMPL [26].
Coordinate Encoding. After that, for a query point p sam-
pled from the rays under the observation space, we get its
coordinate pi under the DPaRF of the i-th token with:

pi = W o
i (p� bV o

i ). (4)

And the final fetched human representation from the DPaRF
of the i-th token is:

hi = [ bF
0

i ; �2(pi)], hi 2 Rd2 , (5)

where [; ] indicates the concatenation, and bF 0

i is the condi-
tion feature for the i-th DPaRF.
K-nearest Fields Aggregation. Finally, for a more robust
representation, we assign a query point p to its Nk nearest
DPaRFs, and aggregate them based on the distances:

h =
NkX

i=1

softmax(� kp� bV o
i k2P

i kp� bV o
i k2

)hi, h 2 Rd2 . (6)

3.3. Fine-grained Detail Integration
With TransHE and DPaRF, for a query point p, we can

actually achieve a set of human representations from Nv

reference views h1:Nv = {hj}Nv
j=1 2 RNv⇥d2 following the

same procedure. h1:Nv contains coarse information with
human priors (e.g., geometry constraints and certain color
information) yet lacks the fine-grained information (e.g.,
lighting, textures) for high-fidelity novel view synthesis.
Therefore, inspired by [19], we further integrate the fine-
grained information from the pixel-aligned appearance fea-
ture a1:Nv = {aj}Nv

j=1 2 RNv⇥d2 at the guidance of human
representation h1:Nv .
Fine-grained Appearance Features. For the appearance
features, instead of directly using projected deep features
from CNN, i.e., the one used when painting SMPL, we ad-
ditionally concatenate the projected RGB-level information
from the raw images and then fuse them with a fully con-
nected layer FC(·) : R3+d1!d2 . The projected RGB fea-
tures can complement the misaligned and lost details caused
by the down-sample operation in CNN.

†Without loss of generality, we set Wi as the identity matrix for all the
tokens for simplicity.

Coarse-to-fine Integration. Then, we employ a cross-
attention module which takes the human representation
h1:Nv as the query, and the appearance feature a1:Nv as
the key and value, and get the integrated feature f1:Nv 2
RNv⇥d2 . The final condition feature f 2 Rd2 of query point
p is achieved via the average pooling on the view dimen-
sion: f =

PNc

j=1
1
Nc

f j .

3.4. Volume Rendering
Desnity & Color Prediction. The final density �(p) 2 R1

and color c(p) 2 R3 are predicted as:

�(p) = MLP�(f),

c(p) = MPLc(f , �3(d)),
(7)

where MLP� and MLPc are NeRF MLPs for density and
color predictions, respectively, and d is the unit view direc-
tion of the ray.
Differentiable Rendering. Then, for a marched ray r(z) =
o + zd, where o 2 R3 represents the camera center, and
z 2 R1 is the depth between a pre-defined bounds [zn, zf ],
its color C(r) is calculated via the differentiable volume
rendering [29]:

C(r) =
Z zf

zn

T (z)�(z)c(z)dz, (8)

where T (z) = exp(�
R z
zn

�(s)ds) represents the probabil-
ity that the ray travels from z to zn.

3.5. Training & Inference
Training Losses. We compare the rendered pixel colors
with the ground truth ones for supervision. Similar to [44],
we employ the MSE loss for pixel-wise and perceptual
loss [52] for patch-wise supervision, which is more robust
to misalignments. The random patch sampling [44] is em-
ployed for supporting perceptual loss training. The overall
loss is:

L = LMSE + �LPER, (9)

where we set � = 0.1 by default.
Inference. During the inference stage, for each time step,
Nv reference views are provided and the rendered target
views are compared with the ground truth ones for calculat-
ing the metrics. Notably, GP-NeRF [6] has proposed a fast
rendering scheme that leverages the coarse geometry prior
from the 3D feature volume to filter out useless points. Sim-
ilarly, our framework also supports such strategy by simply
using the SMPL template as the geometry prior instead (de-
tailed in the appendix).

4. Experimental Results
4.1. Experimental Settings
Datasets. We benchmark on ZJU-MoCap [33] and
H36M [16] for verifying the effectiveness of our TransHu-
man.
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Dataset Per-subject Unseen Results
Method Train Test training Pose Subject " PSNR " SSIM # LPIPS

Pose Generalization
NV [TOG19] [25] ZJU-7 ZJU-7 3 3 7 22.00 0.818 -
NT [TOG19] [39] ZJU-7 ZJU-7 3 3 7 22.28 0.872 -
NHR [CVPR20] [45] ZJU-7 ZJU-7 3 3 7 22.31 0.871 -
NB [CVPR21] [33] ZJU-7 ZJU-7 3 3 7 23.79 0.887 -
NHP [NIPS21] [19] ZJU-7 ZJU-7 7 3 7 24.60 0.910 0.147
GP-NeRF [ECCV22] [6] ZJU-7 ZJU-7 7 3 7 25.05 0.909 0.159
Ours ZJU-7 ZJU-7 7 3 7 27.25 0.936 0.087

Identity Generalization
NV [TOG19] [25] ZJU-3 ZJU-3 3 3 7 20.84 0.827 -
NT [TOG19] [39] ZJU-3 ZJU-3 3 3 7 21.92 0.873 -
NHR [CVPR20] [45] ZJU-3 ZJU-3 3 3 7 22.03 0.875 -
NB [CVPR21] [33] ZJU-3 ZJU-3 3 3 7 22.88 0.880 -
PVA [arXiv21] [35] ZJU-7 ZJU-3 7 3 3 23.15 0.866 -
PixelNeRF [CVPR21] [51] ZJU-7 ZJU-3 7 3 3 23.17 0.869 -
KeyNeRF [ECCV22] [28] ZJU-7 ZJU-3 7 3 3 25.03 0.897 -
GP-NeRF [ECCV22] [6] ZJU-7 ZJU-3 7 3 3 24.55 0.902 0.157
NHP [NIPS21] [19] ZJU-7 ZJU-3 7 3 3 24.94 0.905 0.144
Ours ZJU-7 ZJU-3 7 3 3 26.15 0.918 0.098
GP-NeRF† [ECCV22] [6] ZJU-7 ZJU-3 7 3 3 26.83 0.924 0.132
Ours† ZJU-7 ZJU-3 7 3 3 27.55 0.933 0.090

One-shot Generalization
NHP [NIPS21] [19] ZJU-7 ZJU-3 7 3 3 23.20 0.877 0.182
Ours ZJU-7 ZJU-3 7 3 3 24.11 0.891 0.142

Cross-dataset Generalization
NHP [NIPS21] [19] ZJU-7 H36M 7 3 3 18.84 0.820 0.222
Ours ZJU-7 H36M 7 3 3 20.48 0.856 0.169

Table 1. Comparisons of generalization ability with the state-of-the-art methods. We achieve a significantly new sate-of-the-art
performance compared with both generalizable [35, 51, 6, 19, 28] and per-subject methods [25, 39, 45, 33]. Following [19], the per-subject
optimization methods are trained on the training part of each subject since they can not generalize to unseen subjects, which is actually an
easier task. “†” means using the officially released human split from GP-NeRF [6] and employing the overfitting trick used in GP-NeRF.

(i) ZJU-MoCap [33] provides multi-view videos of 10
human subjects with 23 synchronized cameras, together
with the pre-fitted SMPL parameters and human masks.
Each video spans between 1000 to 2000 frames and con-
tains complicated motions like “Taichi” and “Twirl”. Fol-
lowing [19, 6], 10 subjects are split into 7 source subjects
(ZJU-7) and 3 target subjects (ZJU-3), and each subject is
further divided into training and testing parts. We strictly
follow the officially released human split from [19] for
training and testing. We refer the detailed split informa-
tion to the appendix. To prove that our method can welly
handle the incomplete painted SMPL, we additionally re-
port the performance of the one-shot generalization setting,
i.e., only 1 reference view is provided during inference.

(ii) H36M [16] records multi-view videos with 4 cam-
eras and includes multiple subjects with complex motions.
We use the preprocessed one by [31] which contains repre-
sentative subjects S1, S5, S6, S7, S8, S9, S11, and their
corresponding SMPL parameters and human masks. We
verify the cross-dataset generalization ability with H36M,
i.e., trained on ZJU-MoCap and then directly inference on

H36M. The first 3 views are taken as the reference views,
and the last one is used as the target view.
Evaluation Metrics. For novel view synthesis, we report
the commonly used Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index Measure (SSIM) [43], and
Learned Perceptual Image Patch Similarity (LPIPS) [52].
PSNR and SSIM are low-level metrics, while LPIPS reflects
human perception using CNN features. For 3D reconstruc-
tion, following [19, 6], we only report the qualitative results
since ground truth meshes are unavailable.

4.2. Implementation Details
In line with [19], we take the ResNet-18 [14] (only the

first 3 layers are used) as the CNN for extracting the deep
features from reference images and set the multi-view num-
ber Nv = 3. The number of clusters (tokens) in human
body grouping is set as Nt = 300, and the light-weight
ViT-Tiny [10] is employed as the transformer module. Each
query point is assigned with Nk = 7 DPaRFs. Following
[19, 6], we train on ZJU-MoCap with 512⇥512 resolutions,
and for each ray we sample 64 points by default during both
the training and inference stages.
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Figure 4. Visualization comparisons with previous state-of-the-art methods on ZJU-MoCap (pose generalization, identity gener-
alization) and H36M (cross-dataset generalization). Our method shows significantly better generalization ability with better body
geometry and more accurate details like textures and lighting.
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Figure 5. 3D reconstruction under the identity generalization
setting. Our method achieves more complete geometry with de-
tails like wrinkles compared with NHP [19] which employs a SPC-
based human representation.

4.3. Comparisons with State-of-the-art
Baselines. Following [19, 6], we compare with both per-
subject optimization methods [33, 39, 45, 25] and gen-
eralizable methods [35, 51, 28, 19, 6]. For per-subject
optimization methods, an individual model is trained on
the training part of each subject. Notably, previous state-
of-the-art methods for generalizable neural human render-
ing [19, 6] actually use different human splits in their offi-
cially released code and are not in line with the one used in
their papers (performance is not reproducible). Hence, for

fair comparisons, we unify them under the released hu-
man split of NHP [19]. Specifically, we report the perfor-
mance of NHP [19] using the official checkpoint, and re-run
the official code of GP-NeRF [6] under the unified human
split. Note that, GP-NeRF has employed an overfitting trick
which we think is unreasonable, i.e., they overfit the test
reference views instead of randomly sampling during the
training stage. This trick leaks the test information to the
training stage, therefore we remove it in our re-running. We
also provide the comparisons under the released human split
of GP-NeRF with the overfitting trick, where our method
outperforms it consistently by large margins.
Novel View Synthesis. We compare the quantitative re-
sults with previous state-of-the-art methods in Table 1. Ob-
viously, we outperform them by significant margins under
all the settings. Notably, for the identity generalization set-
ting, the per-subject methods are directly trained on the tar-
get subjects while our method is only trained on the source
subjects, yet we still outperform them by large margins, i.e.,
+3.27 in PSNR. Compared with the recent SPC-based gen-
eralizable methods [19, 6], our method also shows healthy
margins, i.e., +2.20 PSNR and �45% LPIPS compared
with the second-best under the pose generalization setting.
For the more challenging cross-dataset generalization set-
ting, we also outperform the baseline methods remarkably
albeit these two datasets [33, 16] have significantly differ-
ent distributions, which proves the superior generalization
ability of our TransHuman.

The qualitative comparisons are illustrated in Fig. 4,
where our TransHuman gives significantly better details
and body geometry. We attribute this to the careful de-
sign of our framework, i.e., the global human representa-
tion brings more complete body geometry, the canonical
learning scheme gives better generalization ability, and FDI
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Method " PSNR " SSIM # LPIPS
obs. body grouping 25.28 0.909 0.111
obs. PE 25.80 0.915 0.102
can. body grouping
+ can. PE 26.15 0.918 0.098

Table 2. Ablation of TransHE. Our canonical body grouping
together with the canonical learning scheme performs best.

Method " PSNR " SSIM # LPIPS
w/o coordinate 25.80 0.912 0.123
absolute coordinate 25.76 0.912 0.116
w/o k-nearest fields 26.05 0.916 0.099
full model 26.15 0.918 0.098

Table 3. Ablation of DPaRF. Coordinate encoding is critical and
the k-nearest fields aggregation can further bring improvements.

further includes more fine-grained details like textures and
lighting.
3D Reconstruction. The 3D reconstruction results are il-
lustrated in Fig. 5. Compared with NHP [19] that uses the
SPC-based human representation, our method achieves a
more complete and fine-grained geometry with details like
wrinkles.

4.4. Ablation Studies
Following [19], we perform ablation studies under the

identity generalization setting. Due to the limited space, we
refer more detailed ablation studies to the appendix.
Ablation of TransHE. We first study the effectiveness of
canonical body grouping and canonical learning scheme
in Table 2. When performing the body grouping under
the observation space with grid voxelization (“obs. body
grouping”), the performance suffers a significant drop from
26.15 to 25.28 in PSNR. As introduced in § 3.1, performing
grouping under the observation space leads to the semantic
ambiguity issue, therefore leading to worse performance.
Then, “obs. PE” changes the position embedding of input
tokens from the canonical positions V̂ c to observation po-
sitions V̂ o, and also observes a significant decrease, e.g.,
�0.35 in PSNR. The canonical learning scheme eases the
optimization and removes the pose misalignment between
training and inference stages, therefore leading to better per-
formance.
Ablation of DPaRF. We verify the effectiveness of DPaRF
in Table 3. “w/o coordinate” represents removing the coor-
dinate part from the human representation. As expected,
the performance drops by significant margins (�0.35 in
PSNR). Coordinates contain the accurate position informa-
tion of query point in each DPaRF, therefore is important.
“absolute coordinate” indicates using the absolute coordi-
nate of query point, i.e., p instead of p in Eq. 5, and the
performance does not show significant improvement com-
pared with “w/o coordinate”. This further proves the im-
portance of using the coordinate under the deformed coor-
dinate systems. Finally, “w/o k-nearest fields” shows that

Method " PSNR " SSIM # LPIPS
w/o a 24.58 0.898 0.134
w/o h 24.66 0.897 0.143
w/o RGB 26.05 0.917 0.101
full model 26.15 0.918 0.098

Table 4. Ablation of FDI. Using the appearance feature and hu-
man representation individually leads to the drop of performance,
and the raw RGB feature can bring certain improvement.

Method " PSNR " SSIM # LPIPS
SPC + trilinear 25.14 0.907 0.102
TransHE + DPaRF (ours) 26.15 0.918 0.098

Table 5. Comparision with SPC-based representation. Our
transformer-based representation outperforms the SPC-based one
significantly.

GT Fullw/o w/o

Figure 6. Ablation of human representation h and appearance
feature a in FDI. Human representation h provides geometry con-
straints from human priors and coarse color information, and fur-
ther integrates fine-grained information from appearance features
a with FDI.

the k-nearest fields aggregation design can bring certain im-
provement on all the metrics.
Ablation of FDI. We first perform the ablation of FDI by
individually removing the appearance feature part (“w/o a”)
or the human representation part (“w/o h”). As illustrated in
Table 4, merely using either of them gives an unsatisfactory
performance. Then, “w/o RGB” shows that the raw RGB
features can further bring a measure of improvement.

We provide the visual ablation examples of human rep-
resentation h and appearance feature a in Fig. 6. Obviously,
the human representation h contains geometry constraints
from human priors with coarse color information, while a
shows more vivid colors with poor geometry. Hence, we
propose to take the coarse human representation as the guid-
ance for integrating proper fine-grained details from the ap-
pearance feature.
Comparisons with SPC-based Representation. To fur-
ther verify the effectiveness of our proposed transformer-
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Method " PSNR " SSIM # LPIPS
Nt = 100 26.04 0.917 0.100
Nt = 300 26.15 0.918 0.098
Nt = 500 26.10 0.917 0.100
Nt = 1000 26.07 0.917 0.100

Table 6. Influence of cluster number Nt. Nt = 300 gives the
best performance.

Method " PSNR " SSIM # LPIPS
Nk = 1 26.05 0.917 0.099
Nk = 3 26.11 0.918 0.100
Nk = 5 26.13 0.918 0.100
Nk = 7 26.15 0.918 0.098
Nk = 9 26.10 0.917 0.100

Table 7. Influence of k-nearest number Nk. Nk = 7 performs
best.

Method " PSNR " SSIM # LPIPS Inference
Time

Nv = 1 24.11 0.891 0.142 12min
Nv = 3 26.15 0.918 0.098 17min
Nv = 5 26.49 0.923 0.093 24min
Nv = 7 26.72 0.926 0.091 35min

Table 8. Influence of multi-view number Nv . Results under the
identity generalization setting are reported.

based human representation, we directly replace the Tran-
sHE and DPaRF modules with SPC and trilinear sampling
in our code. We follow [19] to configure the SPC includ-
ing the architecture and input resolution. As shown by Ta-
ble 5, our proposed transformer-based representation out-
performs the SPC-based one by significant margins among
all the metrics under a fair comparison setting.
Influence of Cluster Number Nt. We study the influ-
ence of cluster (token) number by varying it sequentially as
{100, 300, 500, 1000}. As shown in Table 6, too large clus-
ter number does not bring further improvement. As men-
tioned in § 3.1, there exists misalignment between the fitted
SMPL and the ground truth body. Larger cluster number
may also include more misleading information, and we only
intend to take the human representation as the coarse-level
guidance, therefore we set Nt = 300.
Influence of K-nearest Number Nk. We show the in-
fluence of k-nearest number Nk in Table 7. When using
no k-nearest fields aggregation, i.e., Nk = 1, the perfor-
mance suffers a relatively significant drop in PSNR. This
shows that using k-nearest fields aggregation can improve
the robustness of human representation. When Nk > 1, the
performance tends to be more stable, and we choose Nk as
7 since it gives the best performance.
Influence of Multi-view Number Nv . We test the influ-
ence of multi-view number Nv in Table 8 and show one ex-
ample case in Fig. 7. We fix the model trained with Nv = 3,
and vary it during inference as {1, 3, 5, 7}. Generally, the
performance tends to get saturated as Nv getting larger, yet
the inference time is also increased.

GT

Figure 7. Visual results of different multi-view number Nv .

Method Param. Inference
Time

Inference
Mem.

Training
Mem. PSNR

NHP [19] 5.80M 1h55min 6.4GB 12.2GB 24.94
GP-NeRF [6] 9.52M 9min 10.3GB 11.0GB 24.55
Ours-16pts 6.08M 9min 5.7GB 7.8GB 25.39
Ours 6.08M 17min 6.2GB 7.8GB 26.15

Table 9. Efficiency comparisons under the identity generaliza-
tion setting. With the same inference time, our method outper-
forms GP-NeRF [6] significantly in PSNR albeit requiring fewer
parameters and training/inference memory. The performance can
further be greatly improved at the cost of certain additional infer-
ence time and minor inference memory.

4.5. Efficiency Analysis
We compare the efficiency of our method with previous

state-of-the-art methods in Table 9 under the identity gen-
eralization setting (438 frames). For a fair comparison with
the previously fastest method GP-NeRF [6] under the same
inference time, we provide a fast version of our method by
reducing the sampling points per ray from 64 to 16 during
inference (“Ours-16pts”). Obviously, with the same infer-
ence time, our method still outperforms GP-NeRF by 0.84
in PSNR albeit using merely 64% parameters, 55% infer-
ence memory, and 71% training memory, and the perfor-
mance can be further significantly improved with accept-
able additional cost. This proves that our TransHuman is
both effective and efficient.

5. Conclusion
In this paper, we propose a brand-new framework named

TransHuman for the generalizable neural human rendering
task. At the core of TransHuman is a canonically optimized
human representation with global relationships between hu-
man parts captured by transformers which shows superior
generalization ability. We hope that our efforts will moti-
vate more researchers in the future.
Limitations and Future Work. There are remaining chal-
lenges to be explored, such as including the joint optimiza-
tion of fitted SMPL under the generalizable setting and
training on unconstrained capture setups.
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