
Relightify: Relightable 3D Faces from a Single Image via Diffusion Models

Foivos Paraperas Papantoniou1,2 Alexandros Lattas1,2 Stylianos Moschoglou1,2 Stefanos Zafeiriou1,2

1Imperial College London 2Huawei Noah’s Ark Lab
{f.paraperas,a.lattas,s.moschoglou,s.zafeiriou}@imperial.ac.uk

Normals Specular Albedo

Input

Diffuse AlbedoCompleted Texture

3D Reconstruction Rendered Reconstruction
Sampling Rendered Samples

Figure 1. Left: We train an unconditional diffusion model on a high-quality dataset of UV textures and their accompanying facial reflectance
maps. Right: Using this model, we perform both texture completion as well as accurate reflectance prediction from monocular images by
inpainting in UV space. Our 3D facial reconstruction requires only a single image and allows the realistic rendering of the 3D avatar.

Abstract

Following the remarkable success of diffusion models
on image generation, recent works have also demonstrated
their impressive ability to address a number of inverse prob-
lems in an unsupervised way, by properly constraining the
sampling process based on a conditioning input. Motivated
by this, in this paper, we present the first approach to use
diffusion models as a prior for highly accurate 3D facial
BRDF reconstruction from a single image. We start by
leveraging a high-quality UV dataset of facial reflectance
(diffuse and specular albedo and normals), which we render
under varying illumination settings to simulate natural RGB
textures and, then, train an unconditional diffusion model
on concatenated pairs of rendered textures and reflectance
components. At test time, we fit a 3D morphable model to
the given image and unwrap the face in a partial UV texture.
By sampling from the diffusion model, while retaining the
observed texture part intact, the model inpaints not only the
self-occluded areas but also the unknown reflectance com-
ponents, in a single sequence of denoising steps. In con-
trast to existing methods, we directly acquire the observed
texture from the input image, thus, resulting in more faithful
and consistent reflectance estimation. Through a series of
qualitative and quantitative comparisons, we demonstrate
superior performance in both texture completion as well as
reflectance reconstruction tasks.

1. Introduction

Creating digital avatars of real people is of paramount
importance for a range of applications, including VR, AR
or the film industry. Human faces have been studied exten-
sively over the years, attracting attention at the intersection
of Computer Vision, Graphics and Machine Learning re-
search. Although vast literature exists around the estima-
tion of the 3D shape and reflectance of a face from un-
constrained inputs such as “in-the-wild” RGB images, it
still remains a challenging problem in the field. In partic-
ular, the recent breakthrough in image synthesis using dif-
fusion generative models creates a new perspective towards
photo-realistic 3D face reconstruction, which has not been
explored so far and stems from the state-of-the-art perfor-
mance of these models in solving inverse problems without
supervised training.

Facial reflectance capture typically requires a control-
lable illumination system equipped with multiple cameras,
first introduced as a Light Stage [12]. Polarized illumination
and gradient patterns can be employed for diffuse-specular
separation [48, 26], using which, spatially varying facial
reflectance maps can be acquired, that describe BRDF pa-
rameters, including the diffuse and specular albedo and nor-
mals. Although recent works attempt to simplify the captur-
ing apparatus and process using inverse rendering [28, 55]
or commodity devices [38], such methods still require a la-
borious capturing process and expensive equipment.
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Since their introduction by Blanz and Vetter [3], 3D Mor-
phable Models (3DMMs) [54, 11, 44, 5, 4] have been estab-
lished as a robust methodology for monocular 3D face re-
construction [18, 69] by regularizing the otherwise ill-posed
optimization problem towards a known statistical prior of
the facial geometry, which is usually defined by the lin-
ear space of a PCA model. In addition to the coarse ge-
ometry estimation, 3DMMs have been used in conjunction
with powerful CNN-based texture models, leading to im-
pressively detailed avatar reconstructions even from low-
resolution images [57, 23, 24]. Furthermore, another line
of research [6, 32, 68, 2, 17, 16, 39, 41] revolves around the
reconstruction of rendering assets such as reflectance com-
ponents (diffuse and specular albedo) and high-frequency
normals of the facial surface. As a result, the recovered 3D
faces can be realistically rendered in arbitrary illumination
environments. However, prior work either contains scene il-
lumination inhibiting relighting [13, 21, 23] or is restricted
by the models’ generalization, lowering the identity simi-
larity [23, 39, 47]. Our work shares the same objective in
that we couple a 3DMM with high-quality UV reflectance
maps, but attempts to solve both of these issues, by preserv-
ing the observed texture details from the input image and
jointly inferring the facial reflectance.

In fact, the visible pixels of the facial texture by the given
camera pose are directly recoverable from the input image
via inverse rasterization of the fitted 3D mesh. Therefore,
we cast the 3D face reconstruction problem as an image in-
painting task in the UV space; i.e. the goal is to fill in the
missing pixels in a consistent manner with respect to some
statistical prior. In particular, we propose to use a diffusion
model as the generative backbone of our method. Diffu-
sion models [61] are naturally associated with guided image
synthesis since they treat image generation as a sequence of
denoising steps in the form of a learnable Markov process.
This allows to directly interfere with the sampling process,
given that samples at each part of the chain are distorted ver-
sions of real images with known noise variances. Thus, by
properly modifying the sampling process, a single uncon-
ditional diffusion model can be used for different inverse
problems, such as image editing [50], inpainting [46, 10],
restoration [36] or super-resolution [9, 8], without problem-
specific training.

In this paper, we build a high-quality statistical model of
facial texture and reflectance by means of a diffusion model
and adopt an inpainting approach to complete the partially
reconstructed UV texture produced by a 3DMM fitting step.
We further extend the sampling process to recover the miss-
ing reflectance components by enforcing consistency with
the input texture. As a result, our method, dubbed Relight-
ify, generates accurate and render-ready 3D faces from un-
constrained images, as shown in Fig. 1.

In summary, we make the following contributions:

• We present the first, to the best of our knowledge,
diffusion-based approach for relightable 3D face re-
construction from images. By training on a pseudo-
ground-truth dataset of facial reflectance, while di-
rectly recovering texture parts from the input, we
achieve high-quality rendering assets that preserve im-
portant details of the input face (e.g. wrinkles, moles).

• We propose an efficient way of predicting different
modalities in a consistent way by learning a generative
model on concatenated reflectance maps and casting
the reconstruction as an inpainting problem, spatially,
but also channel-wise.

• We qualitatively and quantitatively demonstrate the su-
periority of our approach against previous methods re-
garding both the completed textures as well as the re-
covered reflectance maps.

2. Related Work
2.1. Diffusion Models for Inverse Problems

Diffusion models [61] are latent variable generative
models which artificially corrupt the data distribution by
adding noise and attempt to approximate the reverse pro-
cess. They have lately emerged as a powerful image synthe-
sis model [30, 15, 63] outperforming previous state-of-the-
art approaches in both conditional and unconditional tasks.
While they achieve excellent image quality and are robust
to multi-modal distributions, they are computationally de-
manding to sample from, since they require a large sequence
of denoising steps (e.g. 1000), each of which operates in the
high dimensional image space. To alleviate this, a num-
ber of works [62, 37, 58] have proposed alternative strate-
gies to accelerate sampling by reducing the steps of the re-
verse process. Another line of research [67, 59] proposes to
train an encoding model and learn a diffusion model on its
lower-dimensional latent space. Recently, Rombach et al.
[56] have further explored the use of a VQGAN [19] as the
auto-encoding model, showing that a mild compression is
enough to reduce the training/sampling time without sacri-
ficing sample quality. The latter approach is our method of
choice for this work, as we elaborate on a high-resolution
UV image space, which would otherwise significantly in-
crease the computational overhead.

One of the most interesting aspects of diffusion models
is that they can be used as unsupervised solvers for differ-
ent inverse problems, where the goal is to reconstruct a sam-
ple from some distorted observation, i.e. conditioning input.
Song et al. [63] propose a conditioning mechanism during
inference that allows applications such as class-conditional
generation, inpainting and colorization. Similarly, [8] uses
a low-pass filtered version of the conditioning image to
guide the denoising process at each step and SDEdit [50]
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addresses image translation and editing using a diffused ver-
sion of the input image to initialize sampling from an in-
termediate timestep. RePaint [46] achieves state-of-the-art
results on image inpainting by repeating multiple forward
and backward diffusion steps to enforce harmonization. De-
spite its improved performance, this resampling strategy
significantly increases the computational time. In contrast,
CCDF [9] and DDRM [36] propose efficient techniques for
reducing the length of the reverse process while retaining
image quality at a high level. More recently, MCG [10]
introduced a novel manifold constraint step, which com-
bined with the standard reverse diffusion outperforms the
aforementioned methods on a number of inverse tasks, in-
cluding inpainting. We adopt this approach in our work to
accurately fill in the missing pixels of both texture and re-
flectance maps of a face from a given image via diffusion-
based inpainting, while fully preserving the observed ones.
Note also that this approach does not assume any specific
distribution of visibility masks, as it is trained uncondition-
ally on complete textures.

2.2. Facial Reconstruction

3DMMs [3] are the typical models for facial reconstruc-
tion from “in-the-wild” images, using a linear model for
the identity, and additional linear models for expression or
color. Current facial 3DMMs include the Basel Face Model
(BFM) [54] and the Large Scale Facial Model (LSFM) [4].
Egger et al. [18] provide a thorough review on the subject.
AlbedoMM [60] first created a 3DMM of facial reflectance,
which can be relighted, but is restricted to a linear and per-
vertex color model. Dib et al. [16, 17] improved on prior
works’ simplistic shading models and used inverse ray trac-
ing to acquire photorealistic facial reflectance. Recently,
GANFit [23, 24] introduced a potent method for fitting
3DMMs with a GAN-based [27] facial texture generator,
achieving high-fidelity facial avatars, but lacking relight-
ing capabilities due to baked illumination in the textures.
AvatarMe++ [39, 41] overcame this issue by translating the
reconstructed textures to facial reflectance using a condi-
tional GAN, while adding extra processing steps. While we
use AvatarMe++ to augment our training data, our method
significantly outperforms them by using a powerful diffu-
sion model and inferring only the occluded facial texture.

TBGAN [22] first introduced a deep generative network
for facial reflectance, based on ProgressiveGAN [33] and
[43] introduced a more powerful model, based on Style-
GAN [34]. However, both works did not showcase fitting
capabilities. An extension of the latter [47], introduced a
set of multiple networks, with a StyleGAN2 [35] base, that
can be used to generate shape and albedo from images with
arbitrary illumination and expression. While close to our
work, our method uses a single and more powerful diffusion
model, inferring not only the diffuse albedo, but also the

specular albedo and normals. Moreover, our work inpaints
only the occluded facial areas, preserving the visible part of
the texture and achieves higher reconstruction fidelity.

Although our method is applied to facial reconstruction,
we simultaneously solve a facial texture inpainting problem
in UV space. Initially explored in 2D facial images [45] and
expanded to UV completion using deep encoder-decoder ar-
chitectures (UV-GAN [13]), such works recover the facial
texture from partial and masked facial images. Recently,
OSTeC [21], used a pre-trained StyleGAN in 2D to recover
multiple poses of the input subject so as to create a complete
UV facial texture. While prior works achieve impressive re-
sults, all are restricted facial textures with baked illumina-
tion. In contrast, we jointly recover the facial reflectance,
making the reconstruction relightable in standard rendering
engines.

3. Method
We propose a diffusion-based inpainting approach to es-

timate both the UV texture with existing baked illumination
and the actual reflectance of a face in a single process. At
the core of our approach lies an unconditional diffusion gen-
erative model trained on pairs of textures and their accom-
panying reflectance. This coupled texture-reflectance mod-
eling along with the sequential denoising process of diffu-
sion models allows us to reconstruct the reflectance from a
partial texture of the input face, as shown in Fig. 2. Our
method, thus, generates high-quality 3D face avatars from
“in-the-wild” images, which can be realistically relighted.

In the following sections, we first analyze the training of
our diffusion model, and then explain the 3D shape recon-
struction and texture inpainting strategies in further detail.

3.1. Diffusion Models: Background

Given a distribution of real images x, diffusion mod-
els [61] define a forward diffusion process which gradually
adds Gaussian noise to the input image in T consecutive
steps. This corresponds to a fixed Markov Chain, where
starting from a clean image x0, the noisy samples xt at each
timestep t are drawn from the following distributions (with
timestep-depending variances βt) conditioned on the previ-
ous samples:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

This is equivalent to directly sampling xt conditioned on
the clean image x0 via:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (2)

where αt := 1 − βt and ᾱt :=
∏t

s=1 αs. Given large
enough T , this process leads to normally distributed noise
xT . Then, the goal is to learn the reverse Markov process:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (3)
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Figure 2. Overview of our method during inference. Please note that we use a latent diffusion model [56], yet we illustrate the denoising
process in the original image space for visualization purposes. We perform standard 3DMM fitting to get a partial UV texture via image-
to-uv rasterization. Then, starting from random noise, we utilize the known texture to guide the sampling process of a texture/reflectance
diffusion model towards completing the unobserved pixels. Each denoising step, from zt to zt−1 (t ∈ {1, . . . , T}), follows an inpainting
approach similar to MCG [10] (see Eq. 9): 1) The reflectance maps and unobserved texture pixels are updated based on reverse diffusion
sampling and manifold constraints, while 2) the known pixels are directly sampled from the input texture via forward diffusion (⊙ and
⊕ denote the Hadamard product and addition respectively). Note that masking is only applied to the texture, while the reflectance maps
(diffuse/specular albedo, normals) are entirely predicted from random noise. At the end of the process, we acquire high-quality rendering
assets, making our 3D avatar realistically renderable.

Diffuse Albedo Specular AlbedoTexture Normals Renderings

Figure 3. Samples of texture and reflectance maps generated
by our diffusion model (left) and renderings in different scenes
(right). Random 3DMM shapes are used for the visualization.

which gradually denoises the random noise xT towards
a realistic image, by minimizing the variational bound
of the negative log likelihood [30, 15]. Following the
reparameterization proposed in [30], the model consists
of time-conditioned denoising autoencoders ϵθ(xt, t); t ∈
{1, 2, . . . , T}, which are trained to predict the noise ϵ ∼
N (0, I) that was added to the input image x0 to account for
the noisy version xt:

L = Ex0,ϵ,t

[
||ϵ− ϵθ(xt, t)||2

]
(4)

Once trained, we can generate images by starting from ran-
dom noise xT ∼ N (0, I) and sequentially drawing de-
noised images around the mean:

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
(5)

3.2. Training of our Diffusion Model

In this work, we harness the power of diffusion models to
learn a strong generative prior over the domain of facial tex-
ture/reflectance. In particular, we adopt a physically-based
perspective by separating the facial reflectance into differ-
ent UV maps, namely diffuse albedo (Ad), specular albedo
(As) and surface normals (N) with high-frequency details.
This allows realistic rendering under different illumination
conditions. We learn our prior using a high-quality dataset
consisting of complete pairs of facial reflectance, and a cor-
responding rendered texture T under arbitrary illumination.
More details on the data we use are provided in section 4.1.
We train an unconditional diffusion model (as described in
section 3.1) on the quadruples:

x = [T,Ad,As,N] ∈ R512×512×10 (6)

where we concatenate the components of Eq. 6 across chan-
nels (each of the 4 UV images measures 512× 512 pix-
els and 3 channels, except for the single-channel image
Ad). By sampling from this model, we can synthesize pairs
of shaded RGB textures (T) and reflectance components
(Ad,As,N) which are in correspondence, meaning that the
texture is a rendered version of the UV reflectance under
some illumination environment.

In practice, to reduce the computational requirements to
a reasonable level, we follow the paradigm of latent diffu-
sion models proposed by Rombach et al. [56], where the
images are first compressed to a latent space z = E(x) ∈
Rh×w×c by training a perceptual auto-encoder, consist-
ing of an encoder E and a decoder D. Using perceptual
and adversarial losses similar to VQGAN [19], the autoen-
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Figure 4. Examples of 3D reconstructions by our method, rendered using different environment maps in a commercial renderer [49].

coder achieves an excellent quality of reconstructed sam-
ples x̃ = D(E(x)), while allowing to efficiently train the
diffusion model on the lower dimensional pixel-space of
the learned embeddings. In our case, we train four sim-
ilar auto-encoders, one for each of T,Ad,As and N, all
of them reducing the input resolution to latent dimensions
of h = w = 64, c = 3. Therefore, our latent diffusion
model [56] is trained on the concatenation of the 4 embed-
dings:

z = [zT, zAd
, zAs , zN] ∈ R64×64×12 (7)

Samples from our diffusion model (after being decoded
through each D) can be seen in Fig. 1 (left part) and Fig. 3.

3.3. Inference

We use the aforementioned trained diffusion model to
perform inpainting on both the texture and reflectance UV
maps based on a partial UV texture obtained by 3DMM fit-
ting. We provide a detailed description below.

3DMM Fitting and Texture Initialization. We rely on
3DMMs to recover a rough 3D shape of the face from a 2D
image as a mesh S ∈ Rn×3 with n vertices. Specifically,
we employ a linear 3DMM:

S(ps,pe) = m+Usps +Uepe (8)

consisting of the LSFM [4] shape eigenbasis Us ∈ R3n×158

and the expression eigenbasis Ue ∈ R3n×29 from the
4DFAB database [7]. We fit the 3DMM to the input im-
age by optimizing the shape coefficients ps, expression co-
efficients pe and camera parameters pc using an off-the-
shelf framework 1. Note that any 3DMM fitting framework
works as a “plug and play” solution to our method. Thus,
one may trivially use a more sophisticated algorithm (e.g.
GANFit [23]) for precise shape reconstruction.

1https://github.com/ascust/3DMM-Fitting-Pytorch

We use a standard UV topology for texturing the 3D
mesh, where each vertex is assigned to a fixed 2D coordi-
nate on the UV plane. By rasterizing the fitted 3D mesh and
using barycentric interpolation, we can reverse the render-
ing process and unfold the face in UV, hence reconstructing
the visible parts of the texture directly from the input image.
This initial texture is accompanied by a UV visibility mask,
with 1 for pixels that are observed from the input image, and
0 for those that are occluded and, thus, need to be inpainted
by our model.

Texture Completion and Reflectance Prediction. Start-
ing from the partially completed UV texture T0 of the face
and a binary visibility mask m produced by the previous
step, our goal is to inpaint the remaining pixels along with
the pixels of the 3 reflectance maps. We use the latent repre-
sentation zT0 = E(T0) ∈ Rh×w×c of this texture image to
constrain the reverse diffusion process. Note that the mask
m is downsampled to the same resolution h = w = 64 of
the latent space for the next steps. Our inpainting algorithm
starts with a random noise image zT ∼ N (0, I) and uses
the denoising procedure of MCG [10], consisting of the fol-
lowing repeated steps:

zunknown
t−1 ∼ N (µθ(zt, t),Σθ(zt, t)) (9a)

zknown
Tt−1

∼ N (
√
ᾱt−1zT0

, (1− ᾱt−1)I) (9b)

ẑ0 =
(
zt −

√
1− ᾱtϵθ(zt, t)

)
/
√
ᾱt (9c)

L = ∥ (zT0
− ẑT0

)⊙m∥22 (9d)

zTt−1
= m⊙ zknown

Tt−1
+ (1−m)⊙

(
zunknown
Tt−1

− α
∂L
∂zTt

)
(9e)

zkt−1 = zunknown
kt−1

− α
∂L
∂zkt

, k = {Ad,As,N} (9f)

Given a sample zt at timestep t, we first sample the next de-
noised sample zt−1 using the original reverse diffusion step
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(Eq. 9a). We term this as zunknown
t−1 (borrowing the notation

from [46]) as it does not take into account the known parts
of the observed texture. To exploit the known texture, we
sample a noisy version of it zknown

Tt−1
at timestep t−1 via a for-

ward diffusion step (Eq. 9b). Then, we directly impose this
known noisy texture m ⊙ zknown

Tt−1
(⊙ denotes the Hadamard

product) as in the first half of Eq. 9e. Finally, for the un-
known pixels, we add the manifold constraint introduced in
MCG [10]; i.e. we make a prediction of the clean sample ẑ0
(Eq. 9c) based on the previous timestep zt, compare this (ℓ2
loss) with the ground truth in the known regions (Eq. 9d),
and use the gradient of this loss to update the unknown pix-
els of zt−1 (Eq. 9e and 9f) so as to minimize this distance.

Note on inpainting algorithm. We have chosen to adopt
the recently proposed MCG [10] inpainting algorithm,
which outperforms related state-of-the-art diffusion-based
methods (e.g. RePaint [46], DDRM [36]), as we empirically
found it to produce excellent results. Motivated by the orig-
inal algorithm, which aims at inpainting standard RGB im-
ages, we expand it to account for different input domains:
by treating our images as concatenated texture/reflectance
maps, we force the model to perform not only spatial in-
painting, but also “channel-wise inpainting”, by filling the
missing pixels in a manner that closely aligns with the train-
ing distribution. This essentially encourages the model to
learn an inverse rendering transformation during testing,
thus predicting accurate reflectance maps from just a partial
illuminated version of them, despite not directly imposing
physically-based constraints.

4. Experiments
4.1. Dataset and Implementation Details

We create a high-quality dataset that consists of facial
textures and their corresponding reflectance. Each item in-
cludes a texture T, shaded in some illumination, diffuse
albedo Ad, specular albedo As and normals N. To achieve
this, firstly, we acquire the public MimicMe dataset [51],
which contains T̃ = {T0, . . . ,TnT

}, nT = 4, 700 di-
verse facial textures, whose statistics are reported in [51].
However, such textures contain the illumination of the
scanning apparatus and are not relightable. Hence, we
then train an image-to-image translation network based on
AvatarMe++ model using the available dataset [41], which
translates the textures T̃ to facial reflectance: α(T̃) →
{AD,AS ,N}. Moreover, we augment the skin-tone di-
versity, using histogram matching albedo augmentation fol-
lowing [40]. Given the memory requirement of our net-
work, all textures have a resolution of 512 × 512. Fi-
nally, to enable the diffusion model to perform well in “in-
the-wild” images, we use the shapes S of MimicMe and
the acquired reflectance, to re-render the textures under ar-

Input OursAvatarMe++AlbedoMM

Figure 5. Rendered reconstructions of shape and reflectance by
AlbedoMM [60] (using the open-source code), AvatarMe++ [41]
(provided by authors) and our method, in the same illumination.

bitrary realistic environments, directly on the UV space:
ρ(AD,AS ,N,S) → T. For an evaluation of the model
without re-rendered textures, please refer to the Supp. Ma-
terial. Although AvatarMe++ uses a similar method to aug-
ment training data, we do not require this process to be dif-
ferentiable and use a ray-tracing renderer [49] (Baker algo-
rithm) to achieve more realistic textures.

To train our model, we use a KL-regularized latent diffu-
sion model with the default hyper-parameters proposed by
the authors of [56]. Specifically, we use a downsampling
factor of f = 8 for the perceptual auto-encoder and a diffu-
sion length of T = 1000 for the denoising model. We train
our model once and use it for texture and reflectance re-
construction from “in-the-wild” images. Below we provide
comprehensive qualitative and quantitative evaluations.

4.2. Qualitative Results

As already described, we produce relightable 3D faces
with reflectance assets that are compatible with commer-
cial rendering engines. Fig. 4 shows examples of recon-
structions from “in-the-wild” images and realistic render-
ings in varying environments (more results are included
in the Supp. Material). Furthermore, we provide a vi-
sual comparison with the reflectance reconstruction meth-
ods of AlbedoMM [60] and AvatarMe++ [41] in Fig. 5.
As can be seen, we recover 3D faces of higher consis-
tency with respect to the input. Note that AvatarMe++ [41]
starts from a GAN-generated texture as input, without di-
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[Luo et al. 21]

[Lee et al. 20]
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[Tran et al. 19]

[Deng et al. 19]

[Genova et al. 18]

Ours

Input

[Thies al. 16] with exp
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Figure 6. Visual comparison with state-of-the-art 3D face recon-
struction methods [47, 42, 23, 65, 14, 25, 64]. Results for related
methods are borrowed from [47].

Figure 7. Comparison with AvatarMe++ [41] challenging cases.

rect feedback from the actual facial image. Despite us-
ing it to create our training data, our method clearly out-
performs AvatarMe++ [41] during testing by conditioning
the reflectance prediction on the genuine visible facial tex-
ture instead of a statistical approximation (fitting) of it (see
Fig. 7 for some challenging subjects). We also show an ex-
tensive qualitative comparison with related 3D reconstruc-
tion methods in Fig. 6 (most of which can only recover
the texture), where similar observations can be made. Fi-
nally, we test our method on images from the Digital Emily
[1] and show the results in Fig. 10 together with related
works [17, 41]. We yield similar results regardless of the
lighting, thanks to our coupled texture/reflectance modeling
that combines reflectance with randomly rendered textures
during training.

4.3. Texture Completion

Following [21, 13], we evaluate our method on the task
of texture completion using the Multi-PIE [29] subset of

Input OSTeC UV-GAN Ours Ours (reflectance)

Figure 8. Examples of texture completion by OSTeC [21], UV-
GAN [13] and our method from “in-the-wild” images (each
method uses a different UV topology). In contrast to [21, 13]
we additionally recover reflectance components for realistic ren-
dering.

Methods Metric 0◦ ±30◦ ±60◦ ±90◦

CE [53] PSNR 23.03 21.93 20.27 19.63
SSIM 0.920 0.892 0.888 0.718

UV-GAN [13] PSNR 23.36 22.25 20.53 19.83
SSIM 0.924 0.897 0.892 0.725

OSTeC [21] PSNR 23.95 22.54 21.04 20.44
SSIM 0.928 0.902 0.898 0.746

Ours PSNR 26.00 24.73 24.65 20.58
SSIM 0.928 0.916 0.917 0.874

Table 1. Quantitative comparison between Relightify and [53, 13,
21] regarding UV texture completion on the MultiPIE dataset [29]
for different viewing angles.

the UVDB dataset [13]. This consists of complete UV tex-
tures for 337 different identities, and corresponding 2D im-
ages of the faces from various camera poses. In accordance
with [21, 13], we use the last 137 subjects for evaluation
(as the first 200 were used as training data in prior works).
We perform texture completion with our diffusion-based ap-
proach for each different viewing angle and compare it with
existing texture completion methods, namely CE [53], UV-
GAN [13] and OSTeC [21]. We use the widely adopted
Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-
ity Index (SSIM) metrics to compare the completed textures
with the ground truth and report the results in Tab. 1. As
can be seen, Relightify outperforms the related methods in
almost all settings, especially for challenging angles. A vi-
sual comparison with [21, 13] is provided in Fig. 8. Note
that in contrast to CE [53] and UV-GAN [13], our model
was not trained on the Multi-PIE dataset.

4.4. Identity Preservation

We perform quantitative evaluations of our method’s
ability to preserve the subject’s identity, by comparing the
distribution of identity scores between the input image and
rendered reconstruction, on the LFW dataset [31], against
prior work [23, 24, 25, 66]. Following the existing bench-
mark [24], we evaluate our results using VGG-Face [52].
We present our analysis in Fig. 9, measuring the distance
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between the input image and reconstruction for all subjects.
Our method shows a significant improvement in similarity,
while also producing not just a facial texture, but a set of
relightable reflectance textures.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rendering-to-photo cosine similarity on LFW

Genova et al.
Tran et al.
GANFit
GANFit+
Ours

Figure 9. Quantitative evaluation of similarity scores on
LFW [31], compared with prior work ([25, 66, 23, 24]), using
VGG-Face [52]. We show the cosine similarity distribution be-
tween ground truth and reconstruction.

Input Dib et al. AvatarMe++ Ours Ground Truth

Figure 10. Reconstructions from images with different illumina-
tion (Digital Emily Project [1]) by our method as well as [17, 41]
and ground truth. We show the diffuse and specular albedo for
all methods (where available), plus the recovered texture for our
method.

4.5. Reflectance Prediction

To further assess our method on the task of facial re-
flectance prediction from monocular images, we use six
test subjects with captured ground truth reflectance us-
ing a Light Stage [26], and compare Relightify with the
state-of-the-art method of AvatarMe++ [41]. More specif-
ically, we apply both methods on 2D photos of these sub-
jects and measure the PSNR of the recovered reflectance
maps with respect to the ground truth maps. As shown in
Tab. 2, our method produces significantly more accurate dif-
fuse and specular albedos, while the normals closely match
those of [41]. This demonstrates our method’s ability to
better capture subject-specific details by directly leverag-
ing texture information from the input image. Note that
AvatarMe++ reconstructions are additionally conditioned
on the 3DMM shape normals, which may explain a slight
increase in the corresponding PSNR.

4.6. Experimentation with Inpainting Algorithms

Although we adopt the MCG [10] approach for our
texture/reflectance diffusion model, we have experimented

PSNR PSNR PSNR
(diffuse albedo) (specular albedo) (normals)

AvatarMe++ [41] 18.30 19.77 27.26
Ours 22.47 27.17 26.69

Table 2. Quantitative comparison of our method with [41] (results
provided by authors). We calculate the average PSNR between
the reconstructed and the ground truth reflectance maps for six
subjects with ground truth, captured using a Light Stage [26].

with different inpainting algorithms. We compare four of
them in Fig. 11 and Tab. 4. We also provide the runtime
for each algorithm in Tab. 3. The baseline method of Score-
SDE [63], which can be interpreted as Eq. 9 without the gra-
dient term, produces sub-optimal results, i.e. the occluded
areas are often inpainted in an inconsistent way with the
observed ones, which is especially apparent in the texture
(Fig. 11) and albedos (Tab. 4). RePaint [46] also produces
unsatisfactory textures while at the same time increasing the
reverse diffusion steps by a factor of n (we use n = 10 as
suggested by the authors of [46]), which significantly af-
fects the computational time. In contrast, MCG [10] pre-
serves the original sampling length (T = 1000 timesteps),
hence being much more efficient. However, it is still slower
than Score-SDE [63] since it requires the computation of a
gradient for the manifold constraint at each step. In general,
we found MCG [10] to perform better in most cases. To fur-
ther strengthen the efficiency of our method, we have addi-
tionally incorporated the DDIM [62] acceleration technique
in the MCG algorithm, which allows reducing the denois-
ing steps to N < T (we use N = 200) without a significant
drop in quality. In such case, our method can generate high-
quality texture and reflectance assets from a partial UV tex-
ture in roughly 12 seconds, which is significantly faster than
competing texture completion algorithms (e.g. OSTeC [21]
requires around 10 minutes).

Input Partial UV Score-SDE RePaint MCG MCG + DDIM

Figure 11. Texture completion with our diffusion model using dif-
ferent inpainting algorithms [63, 46, 10, 62]. All algorithms are
implemented on top of the same unconditionally trained diffusion
model, and only the reverse sampling process is modified.

5. Limitations
Our method outperforms prior works on texture comple-

tion as well as the challenging task of reflectance prediction.
This is accomplished by explicitly recovering information
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Score-SDE RePaint MCG (Ours) MCG (Ours) + DDIM
Time 17 sec 3 min 1 min 12 sec

Table 3. Sampling time during texture completion and reflectance
prediction for different inpainting algorithms [63, 46, 10, 62] (us-
ing an Nvidia RTX 2080 TI GPU).

Diffuse Albedo Specular Albedo Normals
PSNR SSIM PSNR SSIM PSNR SSIM

Score-SDE 20.80 0.808 26.69 0.845 26.86 0.784
RePaint 20.08 0.813 26.65 0.848 27.27 0.801
MCG 22.47 0.825 27.17 0.853 26.69 0.781

MCG + DDIM 21.94 0.817 26.88 0.846 26.45 0.774

Table 4. Comparison of inpainting algorithms [63, 46, 10, 62] ap-
plied on our diffusion model, following the evaluation of Tab. 2.

from the input image via inpainting. Nonetheless, similarly
to related texture completion works [21, 13], this also im-
plies that the reconstructed texture is affected by the qual-
ity of the input image. Although the partial texture is first
projected in our latent diffusion space by the perceptual en-
coder, a low resolution input may still degrade the quality
of our result. In these cases, an upsampling network could
be employed as in [39] to improve the resolution and details
of the predicted UV maps. Also, despite its relatively large
size, the employed dataset [51] may still under-represent
some ethnic groups and lack diverse facial expressions, re-
ducing accuracy in those cases. Incorporating diverse high-
quality ground truth data with captured reflectance would
significantly improve the performance. Finally, our method
may also suffer by the ambiguity between albedo and illu-
mination, which is thoroughly described in TRUST [20]. In
fact, their proposed solution could be combined with our
method in future work.

6. Conclusion

In this paper we introduced Relightify, a method that
achieves state-of-the-art facial texture completion and facial
reflectance acquisition, from monocular “in-the-wild” im-
ages. To achieve this, we train a latent diffusion model with
multiple encoder-decoder networks, on a synthetic facial
texture and reflectance dataset, and use a diffusion-based
inpainting method on the masked UV textures. Our results
directly acquire the visible facial parts while also extrapo-
lating to facial reflectance that exhibits a high likeness to
the input image and can be trivially employed in commer-
cial rendering applications.
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