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Abstract

Attributed to the unstructured and sparse nature of point
clouds, the transformer shows greater potential in point
clouds data processing. However, the recent query-based
3D detectors usually project the features acquired from a
sparse backbone into the structured and compact Bird’s Eye
View(BEV) plane before adopting the transformer, which
destroys the sparsity of features, introducing empty tokens
and additional resource consumption for the transformer.
To this end, in this paper, we propose a novel query-based
3D detector called Clusterformer, our Clusterformer re-
gards each object as a cluster of 3D space which mainly
consists of the non-empty voxels belonging to the same ob-
ject, and leverages the cluster to conduct the transformer
decoder to generate the proposals from the sparse voxel fea-
tures directly. Such cluster-based transformer structure can
effectively improve the performance and convergence speed
of query-based detectors by making use of the object prior
information contained in the clusters. Additionally, we in-
troduce a Query2Key strategy to enhance the key and value
features with the object-level information iteratively in our
cluster-based transformer structure. Experimental results
show that the proposed Clusterformer outperforms the pre-
vious query-based detectors with a lower latency and mem-
ory usage, which achieves state-of-the-art performance on
the Waymo Open Datasets and KITTI Datasets.

1. Introduction
LiDAR 3D object detection is a fundamental task in var-

ious application fields such as autonomous driving systems
and robotics navigation, which has attained wide attention
in recent years [27, 39, 34, 26, 14, 41]. Unlike the im-
ages with a regular structure in the 2D tasks, the point
clouds from LiDAR sensors are unstructured and sparse,
making it challenging to directly adopt the convolution neu-
ral network (CNN). To tackle this challenge, some detec-
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Figure 1. (a): The illustration of our cluster-based query initializa-
tion and interaction range. We group the foreground non-empty
voxels into different clusters(shown in different colors) based on
center voting, and leverage the cluster center(represented by pur-
ple rectangle) to initialize the queries. Additionally, we limit the
interaction range in the same cluster to make the query only focus
on an interest region. (b): Visualization of the attention map in
proposed intra-cluster cross-attention(the red color denotes higher
attention weight), which shows that the queries can adaptively ag-
gregate crucial voxel features(such as the roof and corner area of
a vehicle) in each cluster by the intra-cluster cross-attention.

tors [27, 21, 35, 38] extract geometric features directly from
point clouds based on the PointNet [22] or PointNet++ [23],
while other approaches [34, 26, 14, 25] voxelize the raw
point clouds into discrete grids then utilize standard CNN.

Witnessing the remarkable research achievements in vi-
sion tasks [5, 17, 2, 42], the transformer has also drawn
growing attention in point clouds processing recently [18,
7, 12, 41, 1, 6, 20], and shows greater potential com-
pared to CNN and PointNet since it can directly pro-
cess sparse variable-length point clouds and holds pow-
erful ability in capturing contextual dependencies among
points. Among them, [41, 1, 6, 20] mainly leverage the
transformer decoder to generate the detections from a set
of predefined queries in an end-to-end manner which are
also called query-based detectors. Following the currently
mainstream grid-based detectors, these query-based detec-
tors also project the sparse features into the BEV plane
before adopting the transformer. Although we can ob-
tain meaningful initial queries based on the learned BEV
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center heatmap [41, 1] which is significant for the query-
based detectors, we believe such projection for transformer
structure still has the following drawbacks: 1) since the
Transformer structure holds powerful ability in processing
variable-length sequential data, projecting the sparse and
sequential point clouds into the regular and compact BEV
plane for transformer structure is unnecessary; 2) the BEV
projection destroys the natural sparsity of the features from
a sparse convolution backbone, introducing empty ”tokens”
for the transformer structure and additional resource con-
sumption; Unlike these query-based detectors for outdoor
scenes, the 3DETR [19] adopts the transformer decoder on
the raw point clouds directly. However the initial queries
in 3DETR are acquired from the 3D space by the Far-
thest Point Sampling (FPS), such query initialization can’t
achieve satisfactory performance for outdoor scenes due to
the fact that point clouds in outdoor scenes are sparse and
unevenly distributed compared to indoor scenes.

Based on the above observations, in this paper, we seek
to design an effective query-based detector for outdoor
scenes to leverage the ability of transformer structures in
processing sparse sequence point clouds. To achieve this
goal, one crucial factor is to acquire meaningful query point
such as object centers [41, 1] from the sparse 3D space. In-
spired by the concept of cluster in the 3D panoptic segmen-
tation [15, 40], we propose a novel query-based 3D detec-
tor called Clusterformer. Our Clusterformer regards each
object as a cluster of 3D space which mainly consists of
the non-empty voxels belonging to the same object and first
obtains different clusters based on center voting. Since the
cluster centers are closed to the object centers after center
voting, we encode the cluster centers as the initial queries.
In this way, our Clusterformer can acquire the initial queries
which contain accurate location information of candidates
from 3D space in outdoor scenes.

The other significant factor for the query-based detectors
is a reasonable interaction range for queries that directly
influence the convergence speed [42, 20]. In our Cluster-
former, we design an intra-cluster cross-attention to decode
the queries into final detections, the cluster-based query ini-
tialization allows us to perform intra-cluster interaction be-
tween the queries and the grouped voxel features, which
can keep the queries only focus on an interest region. We
also introduce a Query2Key strategy to enhance the key
and value features in the intra-cluster cross-attention with
object-level information, which is contained in the query
features. Since we have dropped abundant background and
empty voxels in the cluster generating process, the cluster-
based transformer structure can work in an efficient way.

Extensive experiments are conducted on the Waymo
Open Dataset [30] and KITTI dataset [10] to show the state-
of-the-art performance of the Clusterformer, the contribu-
tion of our Clusterformer can be summarized as follows:

1) A cluster-based transformer called Clusterformer is
proposed for outdoor 3D object detection, which applies the
transformer on the sparse voxel features to generate propos-
als directly;

2) We leverage the clusters to acquire the initial queries
and perform intra-cluster interaction in our Clusterformer to
improve the performance and convergence speed by making
use of the object prior information contained in clusters, we
also conduct extensive experiments to explore how query
initialization strategy and interaction range affect the per-
formance of query-based detectors;

3) A simple but effective strategy is introduced to en-
hance the key and value features with object-level informa-
tion during the multiple transformer decoder layers;

4) The proposed Clusterformer has acquired state-of-the-
art performance on the large-scale Waymo Open dataset and
KITTI dataset.

2. Related work
2.1. Object detection from point clouds

3D object detection can generally be divided into point-
based [38, 27, 35, 21, 38] and grid-based methods [39, 34,
14, 26] according to the data representations.

Point-based methods typically adopt PointNet [22] or
its various variant networks [23, 16] to extract point-wise
geometric features and generate dense predictions directly.
Among them, VoteNet [21] first proposes the center voting
to aggregate features around the object centers which has
been widely used in subsequent point-based works [38, 9,
35]. In contrast, our work mainly focus on proper query
initialization from the sparse 3D space with center voting.

Grid-based methods project the raw point clouds into
structured voxels [39, 34, 26] or pillars [14, 25], so that the
CNN can be adopted directly. Among them, Second [34]
introduces the 3D submanifold sparse convolution [11] to
extract voxel features while maintaining computational ef-
ficiency. Grid-based methods are currently the mainstream
detection approach and have achieved promising detection
performance. However, the performance and computational
complexity are often affected by the voxelization granu-
larity and perception range, since these methods usually
project the sparse features into BEV plane.
2.2. Query-based Detectors

DETR [2] is the pioneering work to utilize transformer
structure for end-to-end object detection, which regards the
objects as a set of learnable queries. However, due to the
randomness of the initial queries and the global interaction
range, the convergence speed of DETR is extremely slow.
Many follow-up works of DETR are proposed to improve
the convergence speed and performance with better query
initialization strategy [32, 37] and more reasonable interac-
tion range [42, 20].
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Figure 2. Overall pipeline of our Clusterformer. We first extract the sparse voxel features from a U-net like sparse backbone and group the
foreground voxels into different clusters based on center voting and a pseudo center heatmap, then the cluster-based transformer structure
with multiple decoder layers is introduced to get the final detections based on the grouped voxel features and a set of cluster-based queries.

3DETR [19] first introduces the DETR into indoor 3D
detection task. However, the initial queries in 3DETR are
acquired from 3D space by FPS which is not suitable for the
outdoor scenes. Different from [19], recently query-based
3D detectors [41, 6, 1, 20] usually project the sparse features
into the BEV plane before applying the transformer struc-
ture. Among them, Centerformer[41] and Transfusion [1]
both utilize the BEV features to initialize the query based
on a learned center heatmap. Although, such query ini-
tialization can keep the query meaningful, projecting the
voxel features into the BEV plane destroys the sparsity of
the features, introducing abundant empty tokens and bring-
ing senseless interactions for the transformer structure. Dif-
ferent from these query-based detectors, we group the non-
empty voxels into different clusters and utilize the cluster
centers to initialize the query. In this way, our Clusterformer
can keep the query meaningful which contains accurate lo-
cation information of object candidates without projecting
the voxel features into the BEV plane.

2.3. Point Clouds Panoptic Segmentation

Point clouds panoptic segmentation is generally divided
into proposal-based [29] and proposal-free methods [40, 15,
33]. Among them, the proposal-free methods aim to explore
cluster-based instance segmentation and drop the additional
detection branch. These methods usually adopt center vot-
ing and an additional center heatmap to generate the clusters
which mainly consist of not-empty voxels belonging to the
same instance. In this paper, we leverage such cluster to
conduct our cluster-based transformer structure.

3. Methodology
3.1. overview

The overall architecture of the proposed Clusterformer
is illustrated in Fig. 2. In our Clusterformer, we first vox-
elize the input point clouds and utilize a 3D sparse con-
volution backbone to extract the voxel-wise features(See
§3.2). Then, to acquire meaningful object queries from
these sparse features, we group the non-empty foreground
voxels into different clusters based on center voting and ini-
tialize the queries based on the cluster centers(See §3.3).
After acquiring these initial queries and grouped voxel fea-
tures, we further proposed a cluster-based transformer de-
coder to decode the query by performing intra-cluster inter-
action with the grouped voxel features(See §3.4). In the
end, we adopt a multi-layer perceptron (MLP) to gener-
ate the detections from the refined queries with a Center-
point [36] style box regression objective(See §3.5).

3.2. Sparse feature extraction

Given the input raw point clouds P ∈ Rn×3 with n
points, we first voxelize P and adopt a U-net like 3D sparse
convolution backbone [28] to extract sparse voxel features
υ ∈ RM×D, where M and D represent the number of non-
empty voxels and feature dimension. Different from the
previous query-based detectors [41, 1, 6, 20], we do not
project the sparse voxel features into the BEV plane, but
directly feed them into the transformer structure to lever-
age the ability of the transformer structure in processing the
sparse sequence data.
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3.3. Query initialization

Since the query initialization is significant for the query-
based detectors [32, 37, 41, 1], we hope to find positions
with explicit meaning like object centers in the sparse 3D
space to initialize the queries for providing prior informa-
tion of object candidates. In the proposal-free 3D panop-
tic segmentation methods, the sparse non-empty voxels are
grouped into different clusters based on center voting, we
observe that such cluster centers are closed to the object
centers after center voting, which can be utilized to initial-
ize the query. At the same time, the cluster can be adopted
as a reasonable interaction range for the queries in 3D space.
Based on these observations, we first group the non-empty
foreground voxels into different clusters and initialize the
queries from these clusters.

Cluster generating. To obtain clusters from the sparse
voxel features, we first classify the non-empty voxels into
different categories and predict the center offset of each
foreground voxels by multi-layer perceptron (MLP). Then
we shift the voxels closer to their corresponding object cen-
ters by adding the predicted offset which is called as center
voting [21], and these shifted voxels can be seen as voted
centers in VoteNet [21]. Instead of sampling a subset of
voted centers by the FPS in VoteNet, we adopt a pseudo
heatmap [15] to generate the clusters. Specifically, all the
voted centers are projected onto a class-aware BEV map
I ∈ RH×W×Cn , where H and W are the BEV map size
and Cn represents the number of categories. The number of
voted centers in each BEV grid can represent the possibility
of the object center falling on the current grid. As a result,
the I can be seen as a pseudo center heatmap. We select
the position with a local maximum value in I as the object
center to avoid generating multiple centers for one object.
After acquiring the object centers on the BEV plane, we
can simply allocate each shifted voxel to its closest center
based on the euclidean distance to generate different clus-
ters C = {c0, c1, ...ci, ..., cn}, where i denotes the unique
id of each cluster.

Query initialization from cluster centers. After ac-
quiring the different clusters C, we take the mean position
of all the voted centers(shifted voxels) in each cluster ci as
the cluster center. Then we encode the coordinate of each
cluster center Ωi = {xi, yi, zi} by two linear layers as the
initial query which can be formulated as:

Q0
i = ψ1(ψ2(Ωi)) (1)

where the ψ1 and ψ2 represent the two linear layers. Q0 ∈
RN×D represents the initial query, where N denotes the
number of queries. In this way, the acquired queries can
contain accurate location information of object candidates
which is beneficial for the query decoding. It is worth men-
tioning that the acquired queries in our Clusterformer are
sparse since the queries are only initialized at the possible

object centers. Additionally, we do not need to manually
set the number of queries in our Clusterformer since it is
determined by the cluster number.

Figure 3. The architecture of our cluster-based transformer de-
coder, where the intra-cluster cross-attention is proposed to per-
form the intra-cluster interaction by a cluster-aware attention mask
to decode the query. Additionally, we introduce a Query2Key
strategy to enhance the key and value features with object-level
information after each decoder layer.

3.4. Cluster-based Transformer Decoder

After acquiring the initial queries and the grouped non-
empty foreground voxel features, we design a cluster-based
transformer decoder to decode the query as shown in Fig. 3.
It mainly consists of an intra-cluster cross-attention(ICCA)
layer, a self-attention layer and the Query2Key strategy.
Intra-cluster cross-attention. Because the acquired clus-
ters mainly consist of the non-empty voxels belonging to
the same object, we naturally think of limiting the interac-
tion range in the same cluster to keep the queries only focus
on an interest region.

In our intra-cluster cross-attention, we introduce a
cluster-aware attention mask Al ∈ RN×M ′

for such intra-
cluster interaction, where the l represents the decoder lay-
ers. If the ith query and jth key belong to a same cluster,
Al

ij would be set as 0 while the other would be set as −∞,
which is formulated as Eq. 2.

Al
i,j =

{
0, id(Ql

i) = id(Kl
j);

−∞, otherwise
(2)

where the id(•) represents the cluster id. Based on the at-
tention maskAl

i,j , the proposed intra-cluster cross-attention
layer can be formulated as:

Ql = softmax(
Ql−1Kl−1

√
D

+Al−1)V l−1 (3)
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We treat the features of each voxel as a token, and set
the grouped non-empty voxels features υ′ as the key K ∈
RM ′×D and value V ∈ RM ′×D for the intra-cluster cross-
attention layer, where M ′ is the number of foreground non-
empty voxels and M >> M ′. Since we have dropped the
numerous background and empty voxels, the intra-cluster
cross-attention layer is adopted on a smaller number of
tokens with a lower resource consumption, which is sig-
nificant for outdoor scene. Additionally, unlike the stan-
dard cross-attention, the key and value features in our intra-
cluster cross-attention are also updated during the multiple
decoders by the proposed Query2Key strategy.
Cluster-wise Self-attention. The intra-cluster cross-
attention mainly focus on aggregating the information of
object candidate in a cluster which lacks of access to the
global range information, therefore we further introduce a
self-attention layer to perform cluster-wise interaction be-
tween the different queries Ql. Such cluster-wise interac-
tion can provide a global-range view for object localization,
additionally, the interaction between the queries can reason
the pairwise relation of different candidates.
Query2Key strategy. Since the queries mainly acquire the
object candidate information by the cross-attention, the rep-
resentation ability of the key and value features in a cross-
attention layer is essential which directly involves the detec-
tion performance. In our intra-cluster cross-attention, the
features acquired from the sparse backbone are set as the
key and value, which mainly contain local-range informa-
tion. However, the box regression also needs object-level
information for better performance. Therefore, we intro-
duce a simple but effective strategy named Query2Key to
enhance the key and value features with object-level infor-
mation which is similar to the VFE[39]. Specifically, after
each decoder layer, we concatenate the updated query fea-
tures Ql on the key features Kl−1 with the same cluster
id in a broadcast manner, then use a linear layer to refine
the contacted features. Since we generate detections for
each decoder layer based on the queries, the updated queries
are considered to contain adequate object-level information,
such concatenate operation can fuse the local and object-
level information to enhance the key features.

Note that since the value features are kept the same with
the key features, the value features are also been enhanced
as the key features. These enhanced key and value features
would be utilized in the next decoder layer.

3.5. Detection head and Loss functions

Detection head. We feed the refined queries into MLP to
generate bounding boxes. We also follow the Deformable-
DETR [42] to adopt the iterative bounding box refinement
with the shared MLP, each decoder would refine the bound-
ing boxes based on the predictions from the previous de-
coder layer. Additionally, based on the predicted box cen-

ters by each decoder, we can correct the cluster id for the
key features and update the cluster-aware attention mask.

Loss Functions. The loss functions in our Clusterformer
can be divided to cluster generating loss ℓc and box predic-
tion loss ℓb which are formulated as:

ℓ = ℓcoffset + ℓccls +

n∑
i=1

ℓbreg +

n∑
i=1

ℓbcls +

n∑
i=1

ℓbiou (4)

where n represents the number of decoder layers. We adopt
L1 loss for the center offset prediction and box regression.
For the classification loss, we adopt focal loss for the voxel
and box classification. Following [41, 1], the IoU loss is
also introduced to improve the detection performance by re-
fining the box classification confidence.

3.6. Discussion

The FSD [9] also acquires clusters by center voting [21]
and generates detections based on clusters, while our Clus-
terformer still has two essential differences from FSD.
1). Unlike FSD, ClusterFormer is essentially a DETR-liked
detector, the ”clusters” are only utilized to provide object
prior information for query decoding, which means that
even without clusters, ClusterFormer can still complete the
detection task in an end-to-end manner.
2). FSD aggregates group features by dynamic pooling
which treats different points equally in a cluster, instead, our
ClusterFormer proposes the ICCA to selectively aggregate
the critical features, meanwhile, FSD lacks modeling the
global context information, in our Clusterformer, cluster-
wise self-attention allows for the interaction of features be-
tween different clusters to obtain global information.

4. Experiments
In this section, we conduct experiments on the two com-

monly used datasets, Waymo [30] and KITTI [10] to evalu-
ate the proposed Clusterformer. We first introduce the two
datasets and implementation details of the proposed Clus-
terformer, then compare our approach with the recent state-
of-the-art detectors. Finally, ablation studies are conducted
to explore the effectiveness of the model design details.

4.1. Waymo open dataset

The Waymo Open dataset [30] consists of 1000 se-
quences (around 158k samples in total), including 798, 202,
and 150 for training, validation, and testing, respectively,
which provides 3D bounding box annotations for three cat-
egories: vehicles, cyclists, and pedestrians. The commonly
used metric 3D Mean Average Precision (mAP) is adopted
for WOD evaluation. Additionally, the WOD introduces the
mAPH (mAP weighted by heading accuracy) to evaluate the
accuracy of the object orientation. The metric is further di-
vided into Level 1(boxes with more than five LiDAR points)
and Level 2(boxes with at least one LiDAR points).
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Methods mAP/mAPH mAP/mAPH Vehicle 3DAP/APH Pedestrian 3DAP/APH Cyclist 3D AP/APH
L1 L2 L1 L2 L1 L2 L1 L2

Second [34] 67.2/63.1 61.0/57.2 72.3/71.7 63.9/63.3 68.7/58.2 60.7/51.3 60.6/59.3 58.3/57.0
Part-A2-Net [28] 73.6/70.2 66.9/63.8 77.1/76.5 68.5/68.0 75.2/66.9 66.2/58.6 68.6/67.4 66.1/64.9

CenterPoint-Voxel [36] 74.4/71.7 68.2/65.8 74.2/73.6 66.2/65.7 76.6/70.5 68.8/63.2 72.3/71.1 69.7/68.5
PV-RCNN++ [26] 78.1/75.9 71.7/69.5 79.3/78.8 70.6/70.2 81.3/76.3 73.2/68.0 73.7/72.7 71.2/70.2

AFDetV2 [13] 77.2/74.8 71.0/68.8 77.6/77.1 69.7/69.2 80.2/74.6 72.2/67.0 73.7/72.7 71.0/70.1
Pillarnet-34 [25] 77.3/74.6 70.9/68.4 79.0/78.5 70.9/70.4 80.5/74.0 72.2/66.1 72.2/71.2 69.7/68.6

FSD [9] 79.4/77.1 72.7/70.5 79.5/79.0 70.3/69.9 83.6/78.2 74.4/69.4 75.3/74.1 73.3/72.1
SST-Center [7] 75.5/72.3 69.2/66.2 75.1/74.6 66.6/66.1 80.0/72.1 72.3/65.0 71.4/70.2 68.8/67.6
Voxelset [12] 75.5/72.2 69.1/66.2 74.5/74.0 65.9/65.5 80.0/72.4 72.4/65.4 71.5/70.2 68.9/67.7
Votr-Ts [18] -/- -/- 74.9/74.2 65.9/65.2 -/- -/- -/- -/-

SWFormer [31] -/- -/- 77.8/77.3 69.2/68.8 80.9/72.7 72.5/64.9 -/- -/-
TransFusion-L [1] -/- -/64.9 -/- -/65.1 -/- -/63.7 -/- -/65.9
Centerformer [41] 75.3/72.9 71.7/68.9 75.0/74.4 69.9/69.4 78.6/73.0 73.6/68.3 72.3/71.3 69.8/68.8

Clusterformer(Ours) 81.4/79.0 74.6/72.3 79.8/79.3 70.5/70.1 84.4/79.0 75.7/70.6 80.0/78.7 77.4/76.2
SWFormer-3f [31] -/- -/- 79.4/78.9 71.1/70.6 82.9/79.0 74.8/71.1 -/- -/-

SST-3f [7] -/- -/- 77.0/76.6 68.5/68.1 82.4/78.0 75.1/70.9 -/- -/-
Centerformer-4f [41] 78.5/77.0 74.7/73.2 78.1/77.6 73.4/72.9 81.7/78.6 77.2/74.2 75.6/74.8 73.4/72.6

MPPnet-4f [3] 81.1/79.9 75.4/74.2 81.5/81.1 74.1/73.6 84.6/82.0 77.2/74.7 77.2/76.5 75.0/74.4
FSD++-7f [9] -/- 76.8/75.5 81.4/80.9 73.3/72.9 85.1/82.2 78.2/75.4 81.2/80.3 78.9/78.1

Clusterformer-3f(Ours) 83.3/81.7 77.7/76.2 81.4/80.9 74.1/73.7 85.9/82.7 79.2/76.1 82.5//81.6 79.6/78.7

Table 1. Performance comparison with state-of-the-art methods on the Waymo dataset with 202 validation sequences (about 40k samples)
for single and multi-frame input. The ’3f’, ’4f’, and ’7f’ denote the different input frames for the model. All reported results are from a
single model without any test-time augmentations(TTA).

4.2. KITTI dataset

The KITTI dataset consists of 7481 training samples and
7518 testing samples, and the training samples are further
split into 3712 and 3769 samples for training and validation
respectively. KITTI adopts the 3D mAP with a rotated IoU
threshold of 0.7 to evaluate car category, and the mAP is
divided into three difficulty levels(easy, moderate, and hard)
according to the object size, truncation level, and occlusion.

4.3. Implementation Details

Network architecture. For WOD, the corresponding
axis ranges are set as (−75.2, 75.2), (−75.2, 75.2), (−2, 4),
and the voxel size is set as (0.1m, 0.1m, 0.15m) in X, Y,
Z axis, respectively, for voxelization. For KITTI, the cor-
responding axis ranges are set as (0, 70.4), (−40.0, 40.0),
(−3, 1), and the voxel size is set as (0.1m, 0.1m, 0.1m) in
X, Y, Z axis, respectively, for voxelization. Our Cluster-
former consists of four transformer decoder layers, and the
hidden channels and the number of heads are set as 128 and
4, respectively. Since the query already contains position
information, we only adopt position encoding on the key
and valuer features in our intra-cluster cross-attention layer
by adding the encoded voxel coordinates information. For
the multi-frame version Clusterformer, we simply concate-
nate the multi-frame point clouds and feed them into our
Clusterformer without additional structural changes.

Training and inference. We use eight 3090 GPUs to
train the proposed Clusterformer with batch-size 16 for 12

epochs and 80 epochs for WOD and KITTI dataset, re-
spectively, unless otherwise specified. The AdamW opti-
mizer and one-cycle learning rate scheduler with a maxi-
mal learning rate of 0.001 are adopted. During the training,
data augmentations including gt-sample, random flip, and
rotation are introduced to improve the performance, mean-
while, we also follow [41, 1] use the fade-strategy to drop
the data augmentations in the last epoch for avoiding over-
fitting. The whole WOD is used to report the final results
compared with the other 3D detectors, while only 20% of
data is used in the ablation experiment.

4.4. Comparisons on Waymo Open Dataset

As shown in Table 1, we present a comparison between
the wide range of state-of-the-art 3D detectors with our
Clusterformer on the WOD validation set for the single-
frame and multi-frame input. Our Clusterformer achieves
state-of-the-art performance on the WOD validation set
among the mainstream detectors with only 12 epochs of
training. Specifically, as for the single frame input, the
Clusterformer acquires 72.3 L2 mAPH, which is 3.2 higher
than the previous best query-based 3d detector Center-
former [41]. Our Clusterformer also outperforms the cur-
rent best two-stage detectors FSD [9] with 1.8 higher L2
mAPH. For the multi-frames input, our Clusterformer with
three frames acquires 76.2 L2 mAPH, which still outper-
forms the precious 3D detectors by a large margin. Our
Clusterformer even suppresses the FSD++ [9] by 0.7 L2

6669



Methods mAP/mAPH mAP/mAPH Vehicle 3DAP/APH Pedestrian 3DAP/APH Cyclist 3D AP/APH
L1 L2 L1 L2 L1 L2 L1 L2

RangeDet [8] 71.7/69.8 65.8/64.1 75.8/75.3 67.1/66.7 74.7/71.0 68.5/65.1 64.5/63.0 61.9/60.4
CenterPoint-Voxel [36] -/69.0 -/- 81.1/80.6 -/- 76.6/70.5 68.8/63.2 72.3/71.1 69.7/68.5

PV-RCNN++ [26] 77.9/75.6 72.4/70.1 81.6/81.2 73.8/73.4 78.1/72.0 74.1/69.0 71.9/70.7 69.2/68.1
Pillarnet-34 [25] 78.1/75.9 71.7/69.5 79.3/78.8 70.6/70.2 81.3/76.3 73.2/68.0 73.7/72.7 71.2/70.2

AFDetV2-lite [13] 77.5/75.2 72.2/70.0 80.5/80.0 73.0/72.6 79.8/74.3 73.7/68.6 72.4/71.2 69.8/68.7
Clusterformer(Ours) 81.1/78.9 75.0/73.0 81.6/81.2 73.1/72.8 83.4/78.3 76.6/71.9 78.4/77.1 75.5/74.3

Table 2. Performance comparison with the state-of-the-art 3D detectors on the WOD test set, all reported results are from single model
without any test-time augmentations for single-frame input.

mAPH with fewer input frames. Such results demonstrate
the effectiveness of the proposed cluster-based transformer.

We also submit the prediction results to the official on-
line server for the evaluation result on the test set of Clus-
terformer. Table 2 shows the comparison with the published
results on the WOD test set. Our Clusterformer acquires
78.9 L1 mAPH and 73.0 L2 mAPH for the single-frame
input, which outperforms the previous state-of-the-art 3D
detectors, especially on the pedestrian and cyclist category.

4.5. Comparisons on KITTI Dataset

We further conduct experiments on the KITTI dataset,
the results are summarized in Table 3. As we can see,
our Clusterformer also achieves competitive performance
on the KITTI datasets, which suppress the two-stage detec-
tors CT3D and MsSVT-TS by 0.7 and 2.0 mAP on moder-
ate difficult level, additionally, Our Clusterformer achieves
the best performance on the hard difficult level with 79.28
mAP. Such results demonstrate the effectiveness and gener-
alization of our Clusterformer on various datasets.

Method 3D Car(IoU=0.7)
easy moderate hard

Second [34] 88.61 78.62 77.22
PointPillars [14] 86.62 76.06 68.91
VOTR-TSD [18] 89.04 84.04 78.68

CT3D [24] 89.54 86.06 78.99
VoxelSet [12] 89.21 86.71 78.56
MsSVT-TS [4] 89.32 84.66 78.94

Clusterformer(ours) 89.76 86.69 79.28
Table 3. Performance comparison on the KITTI val split with AP
calculated by 11 recall points for the Car category.

4.6. ablation study

In this section, we conduct ablative studies on Waymo
dataset to investigate key designs in our Clusterformer, Note
that we train all the ablation experiments with 24 epochs.

Effects of cluster-based transformer structure. We
first investigate the effectiveness of the proposed cluster-
based transformer structure. As shown in Table 4, when we
remove the cluster-based transformer structure and directly
aggregate the features in a cluster by pooling function to
make predictions (line one in the table) which is similar to
the previous point-based detectors [21, 35, 38], the overall

L2 mAPH drops about 2.6. Such a result demonstrates the
superiority of the proposed cluster-based transformer struc-
ture. Compared with aggregating the features in a cluster
directly, the intra-cluster cross-attention can aggregate the
meaningful information in a cluster adaptively and obtain
1.4 L2 mAPH improvement. The cluster-wise self-attention
layer between the queries can reason the pairwise relation of
different candidates, which brings 0.4 L2 mAPH improve-
ment. With the Query2Key strategy, the L2 mAPH has been
further improved by 0.8.

ICCA SA Query2Key mAPH/L2
Vehicle Pedestrian Cyclist Overall

65.9 68.7 71.3 68.6
✓ 66.6 69.4 73.9 70.0 ↑ 1.4
✓ ✓ 67.1 69.7 74.4 70.4 ↑ 0.4
✓ ✓ ✓ 69.0 70.1 74.7 71.2 ↑ 0.8

Table 4. The ablation results of the proposed cluster-based trans-
former structure on the WOD validation set. Where ICCA and SA
denote the intra-cluster cross-attention and self-attention layer.

Discussion of different query initialization strategy
and interaction range. To demonstrate the effectiveness
of our cluster-based query initialization strategy and intra-
cluster interaction, we conduct experiments with different
initialization strategy and interaction range for comparison
as shown in Table 5.

Query Initialization Interaction Range Vehicle mAPH
L1 L2

FPS
initialization

Global-wise 51.2 44.2
Distance-wise 70.5 61.7
intra-cluster - -

Cluster Center
initialization

Global-wise 56.8 49.4
Distance-wise 74.4 65.3
intra-cluster 76.0 66.9

Zero
initialization

Global-wise 38.9 35.0
Distance-wise 71.2 62.2
intra-cluster 75.0 65.9

Table 5. Performance comparison of different query initialization
strategies and interaction ranges. The distance-wise interaction
range represents the voxel features with a distance less than the
threshold from the query point will attend in the interaction, since
the distance threshold is sensitive to different categories, we only
present the result of vehicle category with a 2m distance threshold,
which is enough to cover a vehicle. The ’-’ represents the FPS
initialization can not perform intra-cluster interaction.
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We discuss the results of Table 5 in terms of different
query initialization strategies.
FPS initialization: We encode the point positions acquired
from the FPS as the initial queries which is similar to
3DETR. Although the FPS is adopted only on the fore-
ground point clouds, such query initialization strategy still
can not get satisfactory results with only 61.7 L2 mAPH as
shown in row 2 of Table 5.
Cluster Center initialization: Our cluster center initializa-
tion strategy outperforms the FPS initialization strategy by
3.6 L2 mAPH with distance-wise interaction range. Such
a result demonstrates the effectiveness of our cluster center
initialization strategy. Additionally, the cluster center query
initialization strategy allows us to perform intra-cluster in-
teraction, which further brings 1.6 L2 mAPH improvement.
We argue that this is because compared with intra-cluster
interaction, the distance-wise interaction inevitably intro-
duces features in other objects for queries, which may lead
to adverse effects on box regression.
Zero initialization: We also initialize the queries by zero
value, and such empty query with intra-cluster interaction
still achieves promising results with 65.9 L2 mAPH. This
result demonstrates that, based on a reasonable interaction
range for queries, we can achieve satisfactory performance
without an elaborately designed query initialization strat-
egy. It is worth mentioning that for global-wise interac-
tion, all the query initialization strategies obtain poor results
since it is difficult for the model to converge in such a large
interaction range in 3D space.

The effect of Query2Key on different decoder num-
bers. To further investigate the effect of Query2Key strat-
egy with different decoder layers, we conduct the exper-
iments by gradually adding the layers with or without
Query2Key strategy.
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Figure 4. The performance comparison of different decoder num-
bers with or without the proposed Query2Key strategy.

As shown in Fig. 4, without the proposed Query2Key
strategy, the performance of our Clusterformer will slightly
be improved with the decoder number increasing from 2 to
4. However, such improvement is gradually attenuated, and
when the number of decoders increases from 4 to 5, the
performance even drops 0.3 L2 mAPH. In contrast, when
the proposed Query2Key strategy is adopted, adding trans-

former decoder layers can bring more significant improve-
ment. Specifically, when the number of decoders increases
from 2 to 4, the L2 mAPH gains 1.6 improvement compared
with 0.8 L2 mAPH improvement without Query2Key strat-
egy. We believe such improvement mainly comes from that
the updating key and value features contain more object-
level information by the Query2Key strategy.

The effect of the local maximum operation. In the
cluster generating process, we select the local maximum
value in the pseudo heatmap to avoid generating multiple
centers for one object which would lead to cluster errors.
Table 6 shows the results of different window size settings,
we can see that without the local maximum operation(last
row in Table 6), the performance drops significantly, espe-
cially on the vehicle and pedestrian category. We also find
the window size of (5,3,3) acquires the best performance.

Window size mAPH/L2
Vehicle Pedestrian Cyclist overall

(7,3,5) 68.7 70.0 74.2 70.9
(5,3,3) 69.0 70.1 74.7 71.2
(3,1,3) 68.2 68.9 74.5 70.5
(1,1,1) 67.6 68.7 73.6 69.9

Table 6. The performance comparison of different window size
setting in the local maximum operation for each category, where
the (7,3,5) are for vehicle, pedestrian, and cyclist, respectively.

The effect of NMS with different matching strate-
gies. We experiment with Hungarian matching and Max-
IoU matching strategy used in training to investigate the ef-
fect of NMS with different matching strategies, the results
are summarized in Table 7. We can see that, with different
matching strategies, removing NMS will degrade the per-
formance, but still achieves acceptable detection accuracy,
this is because the local maximum operation can undertake
the role of NMS to a certain extent. On the other hand, the
Hungarian matching strategy can further reduce the model’s
demand for NMS, the Hungarian matching strategy with-
out NMS acquires 70.2 L2 mAPH, which is 1.0 lower than
the Max-IoU matching strategy with NMS. Such results
demonstrate our Clusterformer can work in an end-to-end
manner by removing NMS with a slight performance drop.

Method mAPH/L2
Vehicle Pedestrian Cyclist overall

Hungarian matching W/I NMS 69.1 69.8 74.5 71.1
Hungarian matching W/O NMS 69.1 68.1 73.4 70.2
Max-IoU matching W/I NMS 69.0 70.1 74.7 71.2

Max-IoU matching W/O NMS 68.2 65.4 70.8 68.1
Table 7. The effect of NMS with different matching strategy.

4.7. The inference speed and memory usage

We also present the latency and inference memory us-
age of our Clusterformer and make a comparison with other
state-of-the-art query-based 3D detectors. Since Center-
former [41] and Transfusion [41] don’t report the latency
and memory usage, we re-implement them based on their
officially released codes to report the results. As shown in
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Table 8, compared with the Centerformer [41], our Cluster-
former acquires a better detection performance with lower
latency, i.e., 103ms vs.123ms, and only about half of the
inference memory usage.

Methods Latency Inference Memory mAPH/L2
Transfusion-L [1] 118ms 10.8G 64.9
Centerformer [41] 123ms 10.4G 68.9

Clusterformer(Ours) 103ms 5.7G 72.3

Table 8. The latency and inference memory comparison with other
state-of-the-art query-based 3D detectors on the WOD val set. All
the latency results are measured on a NVIDIA GTX 3090 GPU.

5. Conclusion
In this paper, we propose a novel cluster-based trans-

former structure for 3D object detection called Cluster-
former which directly generates the proposals from the
sparse voxel features without projecting the voxel feature
into the BEV plane. Our Clusterformer leverages the cluster
to acquire the initial queries which contain accurate location
information of the candidates from the 3D space and per-
form intra-cluster interaction to decode the queries. Such
initial queries and interaction mode can effectively improve
the performance and convergence speed of query-based de-
tectors. We also design a Query2Key strategy to enhance
the key and value features iteratively. Experimental results
show that the proposed Clusterformer outperforms the other
state-of-the-art 3D detectors on WOD and KITTI datasets.
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