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Abstract

Novel view synthesis and 3D modeling using implicit

neural field representation are shown to be very effective

for calibrated multi-view cameras. Such representations

are known to benefit from additional geometric and seman-

tic supervision. Most existing methods that exploit addi-

tional supervision require dense pixel-wise labels or local-

ized scene priors. These methods cannot benefit from high-

level vague scene priors provided in terms of scenes’ de-

scriptions. In this work, we aim to leverage the geometric

prior of Manhattan scenes to improve the implicit neural

radiance field representations. More precisely, we assume

that only the knowledge of the indoor scene (under investi-

gation) being Manhattan is known – with no additional in-

formation whatsoever – with an unknown Manhattan coor-

dinate frame. Such high-level prior is used to self-supervise

the surface normals derived explicitly in the implicit neu-

ral fields. Our modeling allows us to cluster the derived

normals and exploit their orthogonality constraints for self-

supervision. Our exhaustive experiments on datasets of di-

verse indoor scenes demonstrate the significant benefit of

the proposed method over the established baselines. The

source code will be available at https://github.

com/nikola3794/normal-clustering-nerf.

1. Introduction

Above 80% images ever taken are estimated to in-

volve human-made architectural structures, with a substan-

tial share of indoor scenes [11]. These scenes often exhibit

strong structural regularities, including flat and texture-poor

surfaces in some axis-aligned Cartesian coordinate system

– also known as Manhattan world [7, 12]. Paradoxically,

these regularities may hinder the 3D modeling process if

it is unaware of the human-made scene priors. In fact,

several computer vision works have even benefited from

the knowledge of the Manhattan world for the task of 3D

scene reconstruction [43, 12], camera localization [19], self-

calibration [50], and more [37, 35, 29, 57].

For calibrated multi-view cameras, 3D inversion using

implicit neural representations [24, 47, 54] is becoming in-

creasingly popular due to their remarkable performance and

recent efficiency developments [55, 30, 25, 51]. Meanwhile,

such representations are known to benefit from additional

supervision in the form of depth [1, 9, 32], normals [18],

semantics [45, 58, 17, 15], local-regularization [46, 44, 26],

local planar patches [21], or their combinations [56, 14, 21].

In this context, a notable recent work ManhattanSDF [14]

demonstrates the benefit of exploiting the high-level geo-

metric prior for structured scenes. More precisely, Manhat-

tanSDF [14] uses the known semantic regions to impose the

planar geometry prior of floors and walls under the Manhat-

tan scene assumption. During this process, the exact normal

of the floor and partial normals of the walls are assumed to

be known, with respect to the camera coordinates.

We aim to improve the 3D neural radiance field repre-

sentations for calibrated multi-view cameras in indoor Man-

hattan scenes, with no further assumptions. In other words,

we consider that the structural and semantic information is

not available, unlike ManhattanSDF [14]. In addition to the

floor and walls used in ManhattanSDF [14], we wish to ex-

ploit the Manhattan prior of many other indoor scene parts

(e.g. tables and wardrobes). More importantly, we consider

that the Manhattan coordinate frame is also unknown. Our

assumptions (of unknown semantics and Manhattan frame)

on one hand make our setting very practical. On the other

hand, those assumptions make the problem of exploiting the

Manhattan scene prior for 3D inversion very challenging.

The virtue of the Manhattan world assumption comes

from its simplicity, allowing us to intuitively reason about

the geometry of a wide range of complex scenes/objects

such as cities, buildings, and furniture. However, such

reasoning often requires the axis-aligned Cartesian coor-

dinate frame, also known as the Manhattan frame (MF),

to be known [37]. Unfortunately, recovering the Manhat-

tan frame directly from images is not an easy task [7, 37].

Therefore, several methods have been developed until re-

cently [10, 4, 36, 16, 13] to recover the Manhattan frame,

relying upon the known 3D reconstruction or image primi-
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Figure 1: Illustration of the proposed method. We compute one surface normal for each ray triplet, using 3D surface

points derived from rendered depths (left). The computed normals (from many ray triplets) are clustered to obtain the MF

(middle). The non-Manhattan and noisy surfaces are handled by a robust orthogonal normals search, which is later used for

self-supervision through the Manhattan prior (right).

tives (eg. lines, planes). We wish to exploit the Manhattan

prior for improving the 3D representation, without needing

to know MF beforehand. Instead, our experiments reveal

that knowing the MF beforehand offers no additional bene-

fit in Manhattan-prior aware radiance field representation.

In this work, we propose a method that jointly learns

the Manhattan frame and neural radiance field, from cali-

brated multi-view in indoor Manhattan scenes, in an end-to-

end manner using the recent efficient backbone of Instant-

NGP [25]. The proposed method requires no additional in-

formation to exploit the Manhattan prior and relies on the

explicitly derived normals in the implicit neural fields. We

use batches of three neighboring rays, whose effective sur-

face’s local piece-wise planarity is assumed to derive the ex-

plicit normals by algebraic means. In pure, complete, and

enclosed Manhattan scenes, these normals form six clus-

ters corresponding to three orthogonal and other three par-

allel counterpart planes. However real scenes consist of

non-Manhattan scene parts and missing planes. Therefore,

we use a robust method that uses minimal three orthogonal

clusters to recover the sought Manhattan frame. As in the

literature, we seek a rotation matrix whose entries are di-

rectly derived from the orthogonal clusters of normals, to

align the Manhattan frame. The recovered MF is then used

to encourage the derived normals to be axis-aligned for self-

supervision. A graphical illustration of our method is pre-

sented in Figure 1. Our extensive experiments demonstrate

the robustness and utility of our method in improving the

implicit 3D in neural radiance field representations.

The major contributions of our paper are listed below:

– We address the problem of exploiting the structured-scene

knowledge without requiring any dense or localized scene

priors, for the first time in this paper.

– We present a method that successfully exploits the Man-

hattan scene prior with an unknown Manhattan frame. The

proposed method also recovers the unknown frame.

– We demonstrate the robustness and utility of our method

on three indoor datasets, where our method improves the

established baselines significantly. These datasets consist

of 200+ scenes, making our method tested in significantly

more scenes than the state-of-the-art methods.

2. Related Works

Implicit neural representation of 3D: Since the founda-

tional work of Mildenhall et al. [24], the implicit neural

representation of 3D scenes has advanced on various fronts.

These fronts include representation [54, 40], generaliza-

tion [49, 28, 20, 22, 34], generation [27, 6], and efficient

methods [30, 55, 25]. We rely on a recent method Instant-

NGP [25] developed by Mueller et al., as our backbone.

Our choice is made primarily based on the computational

efficiency during both training and inference. Thanks to

the offered computational efficiency, we are able to conduct

large-scale experiments on several scenes.

Auxiliary supervision methods: In addition to the images,

other inputs such as depth [33, 39, 9], semantics [58, 15, 17,

41], normal [52, 53], and their combinations [56, 14, 21]

are shown to be beneficial on improving the neural radiance

field representation. In this regard, these auxiliary super-

visions often use ground-truth labels. It is needless to say

that the need for ground-truth supervision is not desired,

whenever possible. Therefore, recent methods use labels

predicted by some pre-trained networks [56] or recovered

from the structure-from-motion (SfM) pipeline [9, 21]. One

notable work ManhattanSDF [14] exploits the Manhattan

prior without requiring any SfM reconstruction. However,

ManhattanSDF requires (a) semantics of the scene parts and

(b) the Manhattan frame, to be known. We argue that such

labels required for auxiliary supervision cannot always be

relied upon, due to domain gaps, poor reconstruction of

texture-less regions, and additional computational needs, to

list a few. Therefore, we do not use any additional labels for

auxiliary supervision.
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Manhattan frame estimation: Since the early works of

Bernard [2], Manhattan structure reasoning is done directly

on/from images by detecting the so-called the vanishing-

points (VPs) [23, 42]. In fact, the problem of detecting three

orthogonal VPs is equivalent to finding the MF in 3D for the

calibrated multi-view setting [3]. Note that the knowledge

of Manhattan structure has been used in several computer

vision works [43, 12, 19, 50, 37, 35, 29, 57]. When un-

known, most methods implicitly or explicitly estimate the

MF to leverage the Manhattan scene prior. In [37], Straub et

al. have demonstrated that the MF can be efficiently repre-

sented in and recovered from the space of surface normals.

We use a similar formulation as [37], using the surface nor-

mals derived explicitly from the implicit neural fields.

3. Background and Notations

Manhattan frame (MF) is a coordinate system that is de-

fined by the structure building orthogonal planes of Man-

hattan scenes. We consider unknown MF since the scene

planes and their geometric relationships are unknown. Let

the unknown MF differs from the world-frame (WF), used

for the 3D representation, by rotation R ∈ SO(3). We

denote three orthogonal axes in MF by E = {ex, ey, ez}.

Without loss of generality, let the axes’ coordinates be ex =
[1, 0, 0]⊺, ey = [0, 1, 0]⊺, and ez = [0, 0, 1]⊺. Note that

these axes align with the normals of the respective scene

building planes, in the WF. Let N = {ni}
m
i=1

be a set of 3D

normals of all the scene planes. Then, the rotation R, from

world to Manhattan frame, aligns the normals n ∈ N to the

Manhattan axes e ∈ E , i.e, Rni ∈ E , ∀ni ∈ N .

We are interested to recover R from a set of nor-

mals N . For this, the above set-to-set assignment alone

is not sufficient. This requires the element-wise assign-

ment between sets N and E . To do so, we divide the

set N into three orthogonal subsets Nx, Ny , and Nz .

Now, for any triplet of {nx, ny, nz} from the correspond-

ing orthogonal subsets, we aim to establish the condition

[ex, ey, ez] = R[nx, ny, nz]. Note that the assignment con-

dition results into R = [nx, ny, nz]
⊺. Therefore, the prob-

lem of recovering MF from a given set of normals boils

down to finding three normals from orthogonal subsets. At

this point, one issue regarding robustness remains pending.

More precisely, we wish to recover R for a noisy set of nor-

mals N , with potentially overwhelmingly many outliers.

We use a robust method to recover R from given normals

N . In principle, R can be recovered from minimal two

orthogonal normals, with one additional normal for disam-

biguation by sign correction. The recovered rotation can

then be validated by consensus for robust recovery [37].

Alternatively, one can also perform the robust estimation

of the orthogonal subsets of N , followed by solving

[ex, ey, ez] = R[nx, ny, nz], ∀nx ∈ Nx, ny ∈ Ny, nz ∈ Nz,

for R ∈ SO(3). For computational reasons, we estimate

the robust subsets by clustering. The orthogonal subsets

are then obtained by choosing the three most orthogonal

clusters. Later, the obtained cluster centers are used to

estimate the MF (or to enforce its existence) represented by

R. Please refer to Section 4.2 for more details.

4. Method

From a set of calibrated images, we model the 3D scene

using the neural radiance field representation. In the pro-

cess, we wish to exploit the Manhattan scene prior, with-

out the knowledge of the Manhattan frame. This problem

is addressed by jointly optimizing for the neural radiance

field and the Manhattan frame estimation. The complete

pipeline of our method is illustrated in Figure 2. As shown,

our method consists of three units: (a) Explicit normal mod-

eling, (b) Robust estimation of orthogonal normals, and (3)

Self-supervision by Manhattan prior. In the first stage, we

shoot a batch of three rays which allows us to estimate the

surface normal using an algebraic method. As the estimated

normals are bound to be noisy (with outliers), we perform

their clustering to obtain the most orthogonal clusters (rep-

resenting the Manhattan frame) in a robust manner. The ob-

tained clusters are then used to estimate the sought MF, in

the form of a rotation matrix, using the method discussed in

Section 3. In the final step, we use the estimated Manhattan

frame to encourage the close-by normals to be Manhattan-

like and to enforce a stricter orthogonality constraint for

self-supervision. In the following, we will present the de-

tails of three units of our method in different Subsections.

4.1. Explicit Normal Modelling

At any given view, we consider the color c = Cθ(r) and

depth d = Dθ(r) for a ray r emanating from the corre-

sponding camera center o is obtained using the volumet-

ric rendering of the implicit neural radiance field, repre-

sented by a neural network parameterized by θ as in [24].

Then, the location of the 3D surface point is given by,

x = o + d.r. We process triplets of three neighboring rays.

Let T = {r1, r2, r3} be such a triplet, whose corresponding

surface points are given by X = {x1, x2, x3}. Now, for the

ray triplet T , we obtain the explicit surface normal n with

the help of the point triplet X , using the following mapping

and algebraic operation,

T → X → v = (x1 − x2)× (x1 − x3) → n =
sign(o⊺v)v

∥v∥
. (1)

Note that v is a vector orthogonal to the plane passing

through 3D points in triplet T . We obtain the oriented nor-

mal n by normalizing v and correcting its sign by ensuring

that the camera center o is in front of the estimated plane.

A graphical illustration of the surface normal estimation is

provided in Figure 1 on the left. We select a random set
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Figure 2: The complete pipeline of our method. We use grid features (GF) and an MLP to represent the radiance field. The

explicit normals are derived using the depths obtained from volume rendering. The Manhattan scene prior is exploited by

clustering the estimated normals to enforce their orthogonality.

of ray triplets {Ti}
m
i=1

from multiple cameras. These ray

triplets provide us the surface point triplets {Xi}
m
i=1

. We

use point triplets to explicitly derive the surface normals

N = {ni}
m
i=1

, using (1). These normals are later used to re-

cover the unknown Manhattan frame. The simplicity of the

explicit normals computed in this paper makes them easy to

compute and handle. If needed, normals of different sizes

of surface regions could also be computed similarly.

4.2. Robust Estimation of Orthogonal Normals

We are interested to recover the MF from a set of noisy

surface normals N = {ni}
m
i=1

. Recall Section 3, the MF

can be obtained by robustly recovering a set of three or-

thogonal normals from N . To do so, we first cluster N into

k clusters {Ci}
k
i=1

, by using the the well-known k-means

clustering algorithm [5]. During the clustering, every cen-

troid is L2 normalized after each iteration, to ensure that

they are unit vectors to represent surface normals. In a per-

fect Manhattan world, there exist only six clusters corre-

sponding to the three orthogonal MF axes E = {ex, ey, ez}
and their parallel counterparts. However, real scenes consist

of surfaces of different orientations. An additional source

of non-Manhattan normals comes from the inaccuracy in

the normal estimation. Therefore, we use a clustering tech-

nique to robustly recover the orthogonal normals. In the fol-

lowing, we present how the orthogonal clusters are selected

from the set of clusters {Ci}
k
i=1

. Note from Section 3, the

selected orthogonal clusters are considered to represent MF

defining sets Nx, Ny , and Nz . We proceed by first select-

ing three orthogonal clusters, say N1, N2, and N3. Later,

we assign them to Nx, Ny , and Nz to recover MF.

For notational ease, we pair clusters and centroids as

U = {(Ci, ci)}
k
i=1

, where the centroids are computed by

taking the average across the corresponding cluster such

that ci =
1

|Ci|

∑
n∈Ci

n, followed by normalizing to a unit

vector ci = ci

∥ci∥
. Leveraging the Manhattan prior

through the assumption that Manhattan surfaces dominate

the scene, we pick n1 = cf , where f = argmaxi |Ci|.
In other words, we pick the centroid of the largest clus-

ter, as one of the MF axes. Then, we obtain n2 = cs

and n3 = ct as a solution of the optimization problem

Algorithm 1 (N1,N2,N3,R) = findManhattanFrame(N )

1. Cluster normals N into, U = {(Ci, ci)}
k
i=1 using k-means.

2. For the largest cluster C ∈ U , assign (C, c) → (N1, n1).
3. Find Cs ∈ U , Ct ∈ U minimizing |c⊺sn1|+ |n⊺

1
ct|+ |c⊺sct|.

4. Assign (Cs, cs) → (N2, n2), (Ct, ct) → (N3, , n3).
5. |e⊺zn1| ≤

1√
2
?n1 → nz : (|e⊺yn1| ≤

1√
2
?n1 → ny : n1 → nx).

6. Perform the remaining {n1, n2, n3} → {nx, ny, nz}
as in step 5 to the closest corresponding canonical axes.

7. Return N1,N2,N3, and R = [nx, ny, nz]
⊺.

s, t = argmini,j |c
⊺

i n1|+ |n⊺
1
cj |+ |c⊺i cj |. In other words,

we find two additional cluster centroids providing the most

orthogonal triplet. We further merge all selected clusters

with their opposites. This is achieved by comparing all

cluster pairs. Whenever two centroids are nearby, but op-

posite in sign, the corresponding clusters are merged with

the appropriate sign correction. The procedure of finding

{N1,N2,N3} is illustrated in Figure 1 (middle and right),

and is summarized in Algorithm 1 from step 1–4. Although

the orthogonal clusters with their centroids are sufficient to

exploit the desired Manhattan prior, we may wish to re-

cover the MF in the form of a rotation matrix. As such,

any arrangement of {n1, n2, n3} as a valid rotation matrix

offers us a valid MF. We may however often be interested

to recover the one which is closest to the world frame. For

this reason, we suggest keeping the largest cluster’s cen-

troid paired to the closes canonical axis in E . Similarly, we

also align one more axis, whereas the last remaining axis

gets paired by default. We summarize how to recover MF

closest to the world frame in Algorithm 1 in steps 5–7.

4.3. Selfsupervision by Manhattan Prior

The supervision of the implicit neural radiance field,

parameterized by θ, is achieved through jointly optimiz-

ing three loss terms. The first one is the photometric loss

computed as follows, Limg = 1

|R|

∑
r∈R∥Cθ(r) − C(r)∥2

2
,

where C(r) is the ground-truth color, and R is the set of

rays going through sampled pixel triplets. This loss term is

responsible for facilitating the learning of the implicit 3D

representation of the investigated scene [24].

Losses from Manhattan prior: We exploit the Manhattan
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scene prior for self-supervision, in order to improve the im-

plicit 3D representation without additional ground truth la-

bels. We do so by using the clusters {N1,N2,N3} obtained

from Algorithm 1. More precisely, for cluster-centroid pairs

{(Ni, ni)}
3

i=1
we use the following two losses,

Lctr =
1

3

3∑

i=1

1

|Ni|

∑

n∈Ni

∥1− n
⊺

i n∥1 + ∥ni − n∥1, (2)

Lort =
1

3
(|n⊺

1
n2|+ |n⊺

1
n3|+ |n⊺

2
n3|). (3)

Here, the loss Lctr encourages tighter clusters, while the

loss Lort enforces the orthogonality among the three clus-

ters. The final loss used to optimize θ is then given by

L = Limg + λctrLctr + λortLort, where λctr and λort

are the hyperparameters. Please, refer to Figure 2 for a

schematic summary of all three losses.

5. Experiments

5.1. Baselines, Metrics, and Implementation Details

InstantNGP [25] (baseline): This method represents the

scene as a multi-resolution voxel grid and leverages a hash

table of trainable feature vectors, which are used to repre-

sent grid elements. The representation is further processed

with a small MLP. This allows InstantNGP to be very com-

putationally efficient, requiring in our case around 30 min-

utes per scene to train and evaluate. Therefore, we use it as

the backbone of our method and as our baseline.

ManhattanDF [14]: This method exploits the Manhattan

prior by supervising the explicit normals of the floors to

align with the known nz , as well as by supervising normals

of the walls to align with two learned orthogonal axes which

are also orthogonal to nz . To achieve this, apart from the

RGB images, this method relies on knowing the wall and

floor semantics, as well as knowing the exact floor axis nz
(MF partially known). We implemented it on top of the In-

stantNGP backbone with density field estimation.

Ours: We implement our proposed method from Section 4

on top of InstantNGP with density field estimation.

Ours (MF known): We modify our method by assuming

that the MF is fully known. We do so by adding additional

loss terms Lmani
= ∥1 − n

⊺

i m∥1 + ∥ni − m∥1 for each

orthogonal cluster centroid ni and its closest MF axis m (or

a closer opposite counterpart). Thus, we explicitly guide the

orthogonal triplet to align with the known MF.

Metrics: To quantitatively evaluate novel view rendering,

we use peak signal-to-noise ratio (PSNR) and the struc-

tural similarity index (SSIM) [48]. To evaluate the extracted

surface normals of novel rendered views, we use the me-

dian angular error. To partially evaluate the quality of the

learned implicit 3D structure, we utilize the mean absolute

error (MAE) and the root mean square error (RMSE) on the

depth obtained by volume rendering. Finally, to evaluate the

recovered MF, we calculate the absolute error between the

yaw, pitch, and roll angles of the recovered frame and the

MF. All metrics are averaged across scenes, except for the

yaw, pitch, and roll errors for which the median is reported.

Implementation Details: We turn on Lort and Lcentr after

500 steps and linearly increase their weights to the specified

values over the next 2500 steps. Also, we randomly sample

rays for one-third of every batch size and select their left

and upper neighbor to form a triplet to facilitate obtaining

explicit surface normals. For other implementation details,

please refer to the supplementary material.

Note that in addition to RGB images, ManhattanDF [14]

requires knowing the wall and floor semantics, and the exact

floor axis nz . In contrast, our method only requires RGB

images and the assumed Manhattan prior to holding true.

Therefore, this comparison aims to get a better insight into

what can be achieved without leveraging additional labels.

5.2. Datasets

Hypersim [31] is a photorealistic synthetic dataset consist-

ing of indoor scenes. It was created by leveraging a large

repository of scenes created by professional artists, with

461 indoor scenes in total. This dataset is geometry-rich,

containing a lot of details and lighting sources. Each scene

has one or more camera trajectories available, where each

trajectory has up to 100 views rendered in 1024×768. For

each scene, camera calibration information is provided, as

well as detailed per-pixel labels such as depth and surface

normals. After cleaning up the scenes by discarding a few

with insufficient camera views, as well as other problems,

we were left with 435 scenes. We also kept only one camera

trajectory per scene. We then evaluated the InstantNGP [25]

baseline on all 435 scenes and made three divisions based

on its PSNR on unseen views. Hypersim-A contains 20

scenes where the baseline was performing well above av-

erage, Hypersim-B contains 20 scenes where the baseline

had near-average performance, and Hypersim-C contains

10 scenes where the baseline had a below-average perfor-

mance. For each scene, we randomly assigned half views

to the training split and the rest to the test split. We note

that the test split often contains views that were partially or

completely unobserved during training. We also note that

Hypersim is visually very realistic, geometry-rich, and chal-

lenging, considering it is synthetic. This can be subjectively

observed by inspecting rendered views.

ScanNet [8] is a real-world dataset consisting of indoor

scenes. It was collected using a scalable RGB-D capture

system that includes automated surface reconstruction and

crowd-sourced semantic annotation. The dataset contains

1613 indoor scenes, which are annotated with ground-truth

camera poses, surface reconstructions, and instance-level

semantic segmentations. We use three scenes that were used
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Table 1: Experiments on Hypersim. We observe that our method consistently outperforms the baseline, as well as the ManhattanDF. This

is very interesting since, unlike ManhattanDF, we do not use any additional labels during training. Finally, we see that it does not matter

for our method whether the MF is known beforehand or not. Therefore, the additional knowledge of MF is neither necessary nor helpful.

PSNR↑ SSIM↑ Normals◦ ↓ Pitch◦ ↓ Roll◦ ↓ Yaw◦ ↓ D-MAE↓ D-RMSE↓

Scenes

A

InstantNGP [25] (baseline) 25.86 0.871 57.12 6.18 6.46 19.25 0.064 0.102

ManhattanDF [14] 26.51 0.868 40.69 1.23 1.01 5.08 0.053 0.087

Ours 27.20 0.864 37.30 0.40 0.50 0.52 0.053 0.093

Ours (MF known) 27.21 0.856 35.59 0.25 0.26 0.45 0.052 0.091

Scenes

B

InstantNGP [25] (baseline) 20.75 0.811 60.12 6.06 7.92 15.87 0.105 0.151

ManhattanDF [14] 21.87 0.826 50.50 2.55 2.06 11.69 0.079 0.121

Ours 22.45 0.816 54.08 1.19 1.35 1.81 0.080 0.127

Ours (MF known) 22.51 0.813 50.59 0.51 0.65 0.55 0.078 0.126

Scenes

C

InstantNGP [25] (baseline) 17.79 0.740 64.29 7.45 4.55 15.14 0.130 0.174

ManhattanDF [14] 18.33 0.770 56.08 3.20 3.41 10.25 0.103 0.147

Ours 19.43 0.768 54.79 5.37 2.24 4.24 0.094 0.133

Ours (MF known) 19.29 0.764 55.12 3.64 4.03 9.48 0.094 0.135

194

scenes

InstantNGP [25] (baseline) 20.47 0.783 61.34 6.56 6.99 21.75 0.104 0.146

ManhattanDF [14] 20.94 0.794 52.81 1.72 2.32 13.48 0.097 0.140

Ours 21.63 0.786 52.01 1.87 1.94 3.77 0.085 0.126

in [14], where one-tenth of all views were uniformly sam-

pled, leaving 303-477 views per scene. For each scene, the

training and test split both contain half of the total views.

Replica [38] is a synthetic dataset featuring a diverse set of

18 indoor scenes. Each scene is equipped with photoreal-

istic textures, allowing one to render realistic images from

arbitrary camera poses. We use five scenes that were ren-

dered and prepared in [58], where the rendered views also

contain semantic segmentation labels. Each scene contains

900 views generated from random 6-DOF trajectories simi-

lar to hand-held camera motions in 640x480 resolution. We

select 75 views for training and 75 for testing in each scene.

5.3. Results

Experiments on Hypersim: We summarize the experi-

ments performed on Hypersim in Table 1. Our proposed

method achieves clear improvements in comparison to the

InstantNGP baseline, in terms of novel-view rendering, nor-

mals estimation, depth estimation, as well as MF recovery.

This is consistent across different scene difficulties, namely

splits A, B, and C. Furthermore, our method also outper-

forms the ManhattanDF SotA. This is very interesting since,

unlike ManhattanDF, we do not use any additional labels

during training, other than the ground truth RGB. The Man-

hattanDF has partial access to ground truth MF axes, as well

as wall and floor semantics, which directly implies having

sparse surface normals ground truth. However, there are

lots of Manhattan objects and areas in realistic scenes such

as in Hypersim, other than the walls and floors. Our self-

supervised method leverages the presence of many such

objects and areas, to facilitate imposing geometrical con-

straints on the implicit representation during learning. This

can be visually observed in Figure 3. Moreover, we ob-

serve that it does not matter for our method whether the

MF is known beforehand, since our method recovers the

Knowns

(a) InstantNGP [25] (baseline)

Knowns

(b) ManhattanDF [14]

Knowns

(c) Ours (d) Grond truth

Figure 3: Leveraging the Manhattan prior (Hypersim-A). Our

method leverages the presence of many Manhattan objects and ar-

eas in the scene in a self-supervised fashion, which facilitates im-

posing geometrical constraints during learning. Our method offers

plausible normals – sometimes with missing details – that help to

better model the radiance fields. In contrast, ManhattanDF lever-

ages the Manhattan prior through labels of only walls and floors.

MF in the clustering step automatically, and therefore sim-

ilar performance is achieved in both cases. This is par-

ticularly exciting because our self-supervised method per-

forms similarly to the supervised one (using the ground-

truth MF). Finally, we show large-scale experiments on a

larger set of 194 scenes, which lead to the same conclusions.

We observed that the semantic loss of the ManhattanDF

sometimes causes convergence issues on difficult scenes,

which we partially alleviated with class weighting and la-

bel smoothing. Therefore, we report results on only 194

scenes where ManhattanDF converged. Additional results

on all 435 scenes are provided in the supplementary.

Experiments on ScanNet: In Table 2, we examine the be-

havior of our proposed method on real-world indoor scenes.
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Figure 4: Qualitative results. Our method leverages many Manhattan objects and surfaces in the scene, which improves the

implicit geometrical representation compared to the baseline. Unlike ManhattanDF, our method relies on many cues other

than the walls & floors, which leads to a better representation of some objects (e.g. the white table in the bottom right corner

of the example from columns 1-3). For more qualitative results, please refer to the supplementary material.

Table 2: Experiments on real-world ScanNet data. Our method

outperforms both the baseline and ManhattanDF. This is the case

both with and without supervising with sparse depth from SfM.

PSNR↑ SSIM ↑ Depth↓-MAE

InstantNGP [25] (baseline) 17.78 0.587 0.119

RegNeRF [26] 18.73 0.618 0.102

ManhattanDF [14] 18.68 0.614 0.112

Ours 20.79 0.643 0.072

+ additional sparse depth from SfM

InstantNGP [25] (baseline) 20.70 0.631 0.048

ManhattanDF [14] 21.53 0.640 0.052

Ours 22.25 0.667 0.033

Table 3: Experiments on Replica. Our method outperforms

the baseline, and it shows similar performance as ManhattanDF,

which leverages additional labels during training.

PSNR↑ SSIM ↑ Depth↓-MAE

InstantNGP [25] (baseline) 34.30 0.944 0.022

Semantic-NeRF [58] 34.08 0.938 0.014

ManhattanDF [14] 35.24 0.944 0.008

Ours 35.13 0.944 0.011

Our method achieves clear improvements in comparison

to the InstantNGP baseline, as well as to ManhattanDF,

in terms of all measured metrics. Additionally, following

the experimental setting of ManhattanDF [14], we train all

methods with additional sparse depth supervision – where

the sparse depth is obtained from the SfM pipeline. Our

proposed method is also superior in this setting.

Experiments on Replica: We summarize experiments per-

formed on the Replica dataset in Table 3. It can be ob-

served that the InstantNGP baseline already performs very

17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0

Baseline PSNR [dB]
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20
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p
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m
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Improvements of our method w.r.t. scene difficulty
Hypersim

ScanNet

Replica

Figure 5: Improvements vs. scene difficulty. Our method

achieves the biggest improvements on scenes of hard and moder-

ate difficulty, by leveraging many Manhattan objects and surfaces.

well on this dataset, leaving not much room for further im-

provements. Therefore, we consider Replica as an easier

dataset. Nevertheless, our method still performs better than

the baseline. As expected, ManhattanDF also improves the

baseline similarly. Recall that the ManhattanDF uses addi-

tional labels for supervision. We also note that Replica has

noticeably more walls and floors, and less of other objects,

compared to other more complex datasets.

Qualitative results: We depict the visual results of the

discussed experiments in Figure 4. Our method leverages

many Manhattan objects and surfaces in the scene, which

improves the geometrical structure of 3D compared to the

InstantNGP baseline. This is visible in surface normals

and depth, obtained using volume rendering. Furthermore,

we observe that, unlike ManhattanDF, our method relies on

many Manhattan cues other than the walls & floors. This

leads to a better representation of some such objects, e.g.

the white table in the bottom right corner of the example
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Table 4: Sparse training views. Our proposed method clearly

exhibits the best performance, for all cases of input view sparsity.

PSNR↑ SSIM ↑ Depth↓-MAE

12

views

InstantNGP [25] 18.02 0.706 0.138

ManhattanDF [14] 19.45 0.750 0.116

Ours 20.50 0.760 0.104

9

views

InstantNGP [25] 16.79 0.661 0.154

ManhattanDF [14] 18.04 0.714 0.130

Ours 19.14 0.728 0.120

6

views

InstantNGP [25] 15.75 0.582 0.178

ManhattanDF [14] 16.00 0.639 0.159

Ours 16.67 0.667 0.158

Table 5: Ablation study on Hypersim-A. Both of our proposed

loss terms contribute to the overall performance.

PSNR↑ Norm.◦ ↓ Depth↓ Rot.◦ ↓

Only Limg 25.86 57.12 0.064 10.63

+ Lort 27.21 50.07 0.058 5.39

+ Lctr 27.06 36.09 0.053 0.57

+ Lort + Lctr (Ours) 27.20 37.30 0.053 0.47

Ours + MF known 27.21 35.59 0.052 0.32

Ours (no delay) 27.06 35.78 0.054 0.39

Ours (no w lin.) 27.01 37.86 0.055 0.60

from columns 1-3. Moreover, we observe that our method

is able to cope with difficult scenes and views, where other

methods struggle. For more qualitative results, please refer

to the supplementary material.

Improvements with respect to scene difficulty: We an-

alyze the improvements by our method for different scene

difficulties. We decided on scene difficulty based on the

novel-view rendering performance of the InstantNGP base-

line. In Figure 5, we see that our method brings the most

benefits for scenes of hard and moderate difficulties, thanks

to the Manhattan scene prior.

Sparse training views: In order to gain more insight, we

examine the behavior of training neural radiance fields with

sparse training input views. The results on the Hypersim-

A dataset are presented in Table 4. Our proposed method

clearly outperforms the InstantNGP baseline, as well as

ManhattanDF, when trained with 6, 9, and 12 input views.

Finding the MF: We test the robustness of our proposed

method for finding the Manhattan frame, by introducing

a simultaneous offset α in the yaw, pitch, and roll on the

canonical MF. The experiments are performed on Hypersim

A and can be found in Figure 6. In Figure 6a we observe

that the novel-view rendering quality remains largely robust

to the rotation offset α. We note that we increase the scene

bounding box by the same factor for all experiments in Fig-

ure 6, to make sure that objects remain within the voxel

grid for maximal α. This slightly decreases the resolution

of grid element representations, so PSNR is slightly lower

than in Table 1. Furthermore, in Figure 6b we see that the

MF estimation remains robust to the rotation offset.

Ablation study: We report our ablation study in Table 5.

Both of our proposed losses contribute to the overall per-

formance. Furthermore, turning on Lort and Lcentr after
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(a) Novel-view rendering quality remains robust to the rotation offset α.
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(b) MF estimation remains robust to the rotation offset α.

Figure 6: Finding the MF. We test the robustness of our method

by introducing the rotation offsets on the canonical MF.

500 steps, and linearly increasing their weight also helps

slightly. Please refer to the supplementary for more details.

6. Conclusion

We demonstrated the possibility of exploiting the Man-

hattan scene prior without needing any additional supervi-

sion. This is achieved by performing robust clustering of

explicit normals, followed by the search of the Manhat-

tan frame (MF) whose existence is based on the assumed

prior. The sought MF is obtained from the orthogonal clus-

ters, which are later used to self-supervise the neural rep-

resentation learning. Our self-supervision encourages the

normals of Manhattan surfaces to group into three orthog-

onal directions. Our experiments on three indoor datasets

demonstrate that the proposed method not only benefits

from building parts (such as walls and floors) but also ex-

ploits many other Manhattan scene parts (such as furniture).

Both quantitative and qualitative evaluations reveal the ben-

efit of the proposed method in terms of, improved perfor-

mance over the established baselines and competitive re-

sults to state-of-the-art methods that use additional labels

for supervision. Our method has the potential to be ex-

tended in other higher expressiveness scene priors, such as

Atlanta world and the mixture of Manhattan frames.

Limitations: One limitation of our method is that it some-

times produces surface normals with missing details or

“blocky” artifacts. Nevertheless, this usually offers better

novel-view RGB rendering, compared to not imposing any

structure priors. Another limitation is that our method is not

beneficial for very easy scenes. For a detailed discussion of

limitations, please refer to the supplementary material.
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