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Abstract

Video-language pre-training (VLP) has become increas-
ingly important due to its ability to generalize to vari-
ous vision and language tasks. However, existing ego-
centric VLP frameworks utilize separate video and lan-
guage encoders and learn task-specific cross-modal infor-
mation only during fine-tuning, limiting the development
of a unified system. In this work, we introduce the sec-
ond generation of egocentric video-language pre-training
(EgoVLPv2), a significant improvement from the previous
generation, by incorporating cross-modal fusion directly
into the video and language backbones. EgoVLPv2 learns
strong video-text representation during pre-training and
reuses the cross-modal attention modules to support dif-
ferent downstream tasks in a flexible and efficient man-
ner, reducing fine-tuning costs. Moreover, our proposed
fusion in the backbone strategy is more lightweight and
compute-efficient than stacking additional fusion-specific
layers. Extensive experiments on a wide range of VL tasks
demonstrate the effectiveness of EgoVLPv2 by achieving con-
sistent state-of-the-art performance over strong baselines
across all downstream. Our project page can be found at
https://shramanpramanick.github.io/EgoVLPv2/.

1. Introduction

Video-Language Pre-training (VLP) has proven to be the
de-facto solution for a variety of video-text tasks, e.g., video-
text retrieval [98, 66, 4], VQA [95, 104, 112], zero-shot
recognition, [7, 49, 32] and video-text grounding [61, 51].
This is fueled by recent advances in vision [15, 53, 6, 4,
2, 19, 54] and language [84, 14, 52, 102, 74, 12, 73], cou-
pled with large-scale data [98, 111, 59, 4, 24, 13]. Existing
video-language datasets generally fall under two categories:
third-person view and first-person view (egocentric). The
noticeable domain gap between them restricts VLP frame-
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Figure 1: EgoVLPv2 achieves the state-of-the-art per-
formance across a broad range of egocentric video under-
standing tasks (see Table 1 for details) among similar-sized
baselines by incorporating cross-modal attention in the trans-
former backbones to learn video-language representation.

works pre-trained on third-person videos from performing
well on egocentric benchmarks [50]. However, the recent
introduction of a massive-scale egocentric dataset Ego4D
[24] helps unlock the full potential of egocentric VLP.

Existing egocentric VLP approaches [50, 110, 60, 3]
pre-train separate (dual) video and language encoders and
learn task-specific cross-modal information only during
fine-tuning, limiting the development of unified egocen-
tric VL frameworks. Moreover, they lack strong zero-
shot inference ability on multi-modal downstream tasks.
This issue is commonly addressed by stacking dedicated
fusion layers on top of the dual video and text encoders
[57, 37, 96, 82, 99, 100, 105], or with a shared video-
language architecture [41, 1, 35, 83, 86]. However, these
approaches introduce a large number of fusion-specific pa-
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(a) Dual Encoders (b) Stacked Fusion Layers (c) Shared Encoders (d) Fusion in the Backbone (Ours)

Figure 2: Four categories of VLP frameworks. (a) use separate (dual) video and text backbones, with InfoNCE [64] as
the common pretraining objective [50, 110, 3, 60] (b) use cross-modal fusion layers on top of dual encoders, with MLM,
VTM, etc. as common pretraining tasks [57, 37, 96, 82] (c) use a single encoder for different modalities, with similar learning
objectives as (b) [41, 1, 35] (d) Fusion in the Backbone (Ours).

rameters, and the resulting encoder cannot be directly applied
to uni-modal (video-only) tasks.

In this work, we present the second generation of ego-
centric VLP (EgoVLPv2), a significant improvement over
the previous generation [50] by incorporating cross-modal
fusion directly into the video and language backbones. Our
approach improves over existing VLP frameworks by: (i)
fewer fusion parameters compared to stacked fusion-specific
transformer layers or shared encoders, requiring less GPU
memory, compute resources, and training time; (ii) the flexi-
bility to switch between dual and fusion encoders, by turning
on and off cross-attention fusion using a gating mechanism;
(iii) being applicable to both uni- and multi-modal tasks.

Inserting cross-modal fusion directly into the backbone
helps unify a wide range of dual- and fusion-encoder-based
downstream tasks. Specifically, the “switching” ability of
EgoVLPv2 enables us to utilize the same pre-trained en-
coders for fast retrieval and grounding tasks, which require
dual and fusion encoders, respectively. Moreover, in con-
trast to existing egocentric VLP frameworks that learn task-
specific fusion parameters during fine-tuning, EgoVLPv2
reuses the pre-trained cross-attention modules across differ-
ent tasks, significantly reducing the fine-tuning cost. This
enables us to introduce query-focused video summarization
as a downstream task, which has recently gained attention in
the community [62, 91, 92, 30, 93, 63]. The scarcity of anno-
tated data has been a bottleneck to training decent-sized mod-
els end-to-end on this task, with the only available egocentric
dataset, QFVS [77], providing merely 135 video-query train-
ing samples. EgoVLPv2 achieves new state-of-the-art results
on QFVS with a decent margin over the baselines.

In summary, our contributions are: (i) We advance a step
forward in egocentric VLP by proposing EgoVLPv2, the
second generation of EgoVLP [50] with cross-modal fusion
in the backbone. Our proposed framework can switch be-
tween dual and fusion encoders and requires 45% lesser com-
pute (GMACs) than learning additional fusion-specific trans-
former layers. (ii) The switching capability of EgoVLPv2
allows us to unify a wide range of dual- and fusion-encoder-
based downstream tasks under the same VLP framework
and reduce the task-specific fine-tuning cost by employing

the same pre-trained cross-attention modules across different
video-language tasks. (iii) We demonstrate the effectiveness
of EgoVLPv2 on eight egocentric benchmarks and achieve
state-of-the-art performance among comparable-sized back-
bones. We summarize these results in Figure 1.

2. Related Works
2.1. VLP Frameworks

Video-language pre-training (VLP) has attracted increas-
ing attention in recent years, following the success of image-
language pre-training [71, 39, 29, 16, 5, 10, 56, 45, 17, 106,
101, 103, 69, 46, 87, 89, 27, 88, 65, 38] and their applica-
tions [9, 21, 26, 43, 70]. There are three broad categories of
VLP frameworks (see Figure 2):

Dual Encoders: Many existing egocentric VLP frameworks
[50, 110, 3, 60] falls into this category. They use separate
video and language backbones and learn task-specific cross-
modal fusion during fine-tuning [4, 58, 97, 85]. They are
commonly trained using InfoNCE [64] or MIL-NCE [58]
objectives, and have been successful in video-text retrieval.

Shared Encoder: Approaches that learn a combined en-
coder for video and text fall under this category [41, 1,
35, 83, 86]. They are modality independent and can be
applied to an image, video, text, audio, time-series, and
single-view 3D data. Common learning objectives include
masked language modeling [14, 112], masked frame model-
ing [81, 112], masked token modeling [96], masked modal
modeling [57, 96], sentence ordering modeling [36], frame
ordering modeling [36, 40], and video-text matching [36].

Encoders with Stacked Fusion Layers: This line of work
uses dedicated cross-modal fusion layers on top of dual
encoders [57, 37, 96, 82, 99, 100, 105], trained using similar
objectives as shared encoders.

The latter two categories introduce a large number pa-
rameters for cross-modal fusion. In this work, we propose
a fourth category (Figure 2 (d)) by inserting cross-modal
fusion in uni-modal backbones using a gating mechanism.
Our framework is flexible to act as either dual or shared
encoders by switching cross-attention modules off and on.
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Figure 3: Computation of three objectives, LEgoNCE, LMLM, and LVTM. We insert cross-modal fusion into uni-modal
backbones with a gating mechanism. During pre-training, every forward iteration contains three steps: (i) cross-attention
modules are switched off, EgoVLPv2 acts as dual encoder, LEgoNCE is computed. (ii) cross-attention is switched on,
EgoVLPv2 acts as fusion encoder, and video-masked narration pair is fed into EgoVLPv2 to compute LMLM (iii) cross-
attention is kept on, hard-negative video-narration pairs are fed into EgoVLPv2 to compute LVTM. This fusion in the backbone
strategy results in a lightweight and flexible model compared to using fusion-specific transformer layers.

2.2. Video-Language Datasets

The success of VLP can be partially attributed to the avail-
ability of large-scale open-world video-text datasets such as
ActivityNet [33], WebVid-2M [4], and HowTo100M [59].
These datasets comprise videos sourced from the Web, and
are paired with the corresponding ASR captions, making
them popular for VLP pre-training. Despite their impressive
size, these existing video-text pretraining datasets typically
feature 3rd-person views. On the other hand, egocentric
videos has received increasing interests from the community.
Previous egocentric datasets [13, 79, 48, 75, 67] were small-
scale and domain-specific. The recently released Ego4D
[24] is the first massive-scale egocentric dataset consist-
ing of 3670 hours of videos collected by 931 people from
74 locations across 9 different countries world-wide. Re-
cently, EgoClip [50] offered a filtered version of Ego4D
with variable-length clip intervals instead of single times-
tamps. We train our proposed framework, EgoVLPv2, on
the EgoClip version of Ego4D.

3. EgoVLPv2

3.1. Fusion in the Backbone

We use TimeSformer [6, 4] and RoBERTa [52] as our
video and language backbones. However, such separate
(dual) uni-modal encoder design does not capture cross-
modality interaction and, thus, fails to produce fine-grained

multi-modal representation. Existing VLP frameworks
achieve cross-modal fusion by: (i) learning a shared ar-
chitecture [41, 1, 35, 83, 86] or stack fusion layers on top of
dual encoders [57, 37, 96, 82, 99, 100, 105], or (ii) learning
cross-modal fusion during fine-tuning [50, 110, 3, 60, 4, 58,
97, 85]. While the former offers superior cross-modal rep-
resentation and zero-shot inference ability on multi-modal
downstream tasks, they introduce a large number of fusion
parameters than the latter. In this work, we insert cross-
modal fusion into the top few layers of uni-modal backbones
to strike a balance between the two ideas.

Figure 3 shows the architecture of EgoVLPv2. Each
TimeSformer encoder layer has a divided space-time atten-
tion module containing temporal and spatial self-attentions
with residual connections. The output of space-time atten-
tion at kth encoder layer, z(k), can be expressed as:

x̂
(k)
vid = x

(k−1)
vid + TEMP-SA(x

(k−1)
vid )

z(k) = x
(k−1)
vid + SPA-SA(x̂

(k)
vid)

= SPACE-TIME(x
(k−1)
vid ) (1)

where x
(k−1)
vid is the output of the (k − 1)th encoder layer,

TEMP-SA and SPA-SA represent temporal and spatial self-
attention blocks, respectively. We insert multi-modal fusion
inside the backbone by introducing gated cross-attention
after the space-time attention module. Hence, the output
of kth fused TimeSformer layer, x(k)

vid , can be expressed as:
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z(k) = SPACE-TIME(x
(k−1)
vid )

x
(k)
vid = x

(k−1)
vid + z(k) + α ∗ CA(z(k), x

(k−1)
text ) (2)

x
(k)
vid = x

(k)
vid + FFN(x

(k)
vid)

where x(k−1)
text is the output from the (k−1)th RoBERTa layer,

CA, FFN denote cross-attention block and feed-forward
network, respectively, and α is a learnable gating parameter
initialized from 0. Each RoBERTa layer contains multi-head
self-attention [84] followed by feed-forward layers. Similar
to the fused TimeSformer module, we insert cross-attention
into the RoBERTa backbone:

x̂
(k)
text = SA(x

(k−1)
text )

x
(k)
text = x

(k−1)
text + x̂

(k)
text + α ∗ CA(x̂

(k)
text, x

(k)
vid) (3)

x
(k)
text = x

(k)
text + FFN(x

(k)
text)

where SA is the traditional self-attention module. For
simplicity, we insert cross-attention into the same number
of layers in both backbones. Notably, such fusion in the
backbone strategy is not only limited to TimeSformer and
RoBERTa; but can also be applied to any transformer-based
video [54, 19, 2] and text [14, 74, 102] encoders.

Fusion in the backbone with gated cross-attention has
the following advantages: (i) Cross-attention parameters
can easily be switched off by setting the gating scalar α
to 0; thus, the model behaves as a dual encoder, which is
helpful for scenarios that require “unfused” video and textual
features; (ii) Our fusion approach is more lightweight and
compute-efficient than adding fusion-specific transformer
layers, which is demonstrated in detail in Section 4.5.

3.2. Pre-training Objectives

We use three pre-training objectives: (1) Egocentric noise
contrastive estimation (EgoNCE), (2) masked language mod-
eling (MLM), and (3) video-text matching (VTM).

EgoNCE: Lin et al. [50] proposed EgoNCE for dual-
encoder-based egocentric VLP. It makes two modifications
over InfoNCE [64]: (i) Besides the matched video-text sam-
ples, all pairs that share at least one noun or one verb are
treated as positives. (ii) Every batch of N video-text sam-
ples is augmented with another N visually similar videos,
which are treated as additional negatives. Overall, video-to-
text EgoNCE objective, Lego

v2t, can be expressed as:

Lego
v2t =

1

|B̃|

∑
i∈B̃

log

∑
k∈Pi

exp
(

vT
i tk
τ

)
∑
j∈B

(
exp

(
vT
i tj
τ

)
+ exp

(
vT
i tj′

τ

))
(4)

(a) Retrieval w/ Dual
Encoder.

(b) VQA/retrieval w/
Fusion Encoder.

(c) QFVS w/ Fusion
Encoder.

Figure 4: EgoVLPv2 can be adapted to various dual- and
fusion-encoder-based video-language tasks, ranging from
retrieval, video question-answering, and video grounding to
query-focused video summarization.

where the ith video embedding vi and jth text embedding
tj are L2 normalized features, and τ is a temperature factor.
B̃ is the augmented batch with 2N samples. The term in
brown are the modified positive samples, and the term in
blue are the modified negative samples. The text-to-video
EgoNCE objective, Lego

t2v, can be defined symmetrically. The
total EgoNCE loss is: LEgoNCE = Lego

v2t + Lego
t2v.

We compute EgoNCE in a dual-encoder setting. Specif-
ically, we set α = 0, and thus, the cross-attention modules
are switched off to calculate the EgoNCE loss.
MLM: Masked language modeling and video-text matching
are proven helpful in fusion-encoder-based VLP literature
[14, 112]. For MLM, we randomly mask 15% text tokens,1

and the loss, LMLM, aims to reconstruct the masked tokens
based on surrounding words and video patches by minimiz-
ing the negative log-likelihood.
VTM: For the VTM objective, the model is given a video-
text sample, and the output is a binary label y ∈ {0, 1} indi-
cating if the input pair is matched. LVTM is constructed as a
binary cross-entropy loss over the predicted scores. Follow-
ing [5, 16], we sample the global hard-negative video-text
pairs using the similarities computed by EgoNCE.

We compute LMLM and LVTM in a fusion-encoder set-
ting. In this case, α ̸= 0 and the cross-attention modules are
switched on. Overall, our EgoVLPv2 pre-training pipeline
can be summarized in the following three steps:

• EgoNCE requires unfused video and text features, so we
switch off cross-attention (α = 0). Thus, LEgoNCE is
computed with EgoVLPv2 acting as a dual encoder.

• MLM & VTM requires multi-modal representation. We
switch on cross-attention modules and compute LMLM

1Following BERT, we decompose this 15% into 10% random words,
10% unchanged, and 80% with a special token [MASK].
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and LVTM with EgoVLPv2 acting as a fusion encoder.

• For back-propagation, the three losses are added, result-
ing in Ltotal = (1−γ−δ)LEgoNCE+γLMLM+δLVTM,
and back-propagated into the model end-to-end. γ and δ
are hyper-parameters that control the contribution of differ-
ent terms on Ltotal. An ablation on different pre-training
objectives of EgoVLPv2 is provided in Section 4.5. The
pseudo-code for pre-training EgoVLPv2 can be found in
the supplementary.

3.3. Adaptation to Downstream Tasks

We now describe how we adapt EgoVLPv2 to different
downstream tasks as shown in Figure 4.

Video-Text Retrieval: We perform retrieval in two settings:
(i) dual encoders: we switch off cross-attention and use
EgoVLPv2 as a dual encoder, and compute the cosine sim-
ilarity between video clips and text narrations. (ii) fusion
encoders: we switch on cross-attention. The top M lay-
ers of the video and language backbones interact and pro-
duce multi-modal representations, which are fed into the
pre-trained VTM head to compute matching scores. We
also compute an ensemble of the two to further boost the
performance, discussed in Section 4.5.

Video Grounding and Question Answering: We per-
form both uni- (video-only) and multi-modal (text-guided)
video grounding. We switch off cross-attention for uni-
modal grounding and use only the video encoder. We use
EgoVLPv2 as a fusion encoder for text-guided grounding
and video question answering.

Query-focused Video Summarization: The input videos
are very long (3-5 hours) for this task. We first use the
unfused N − M layers2 of our video and text encoders
to extract uni-modal features from 5 second clips and the
text query. Next, we apply the KTS shot boundary detector
[68] to segment the long video. After this, the query and
segment-wise clip features are fed into the top M fused lay-
ers of EgoVLPv2 to compute the multi-modal representation.
Finally, we learn an additional single-layer transformer to
design the interrelation across all 5 second long clips in every
segment. We present additional details for the query-focused
video summarization framework in the supplementary.

4. Experiments
4.1. Pre-training & Downstream Datasets

We pre-train EgoVLPv2 on the EgoClip [50] version
of Ego4D [24], the largest publicly available egocentric
video dataset. EgoClip sources untrimmed egocentric videos
from Ego4D and offers filtered video-narration samples with

2For simplicity, we keep the number of unfused and fused layers the
same in the video and text encoder.

Dataset Task Multi-
modal Fusion Metrics (%) Eval.

Ego4D [24]

MCQ w/ dual ✓ ✗ Inter- & Intra Acc. ZS
MCQ w/ fusion ✓ ✓ Inter- & Intra Acc. ZS

NLQ ✓ ✓ Recall@N HT
MQ ✗ − mAP, Recall@N HT

QFVS [77] Video Summ. ✓ ✓ F-1 HT
EgoTaskQA [28] Video QA ✓ ✓ Mean Acc. HT, FT
CharadesEgo [79] CLS† ✓ ✗ Video-level mAP ZS, FT
EK-100 [13] MIR w/ dual ✓ ✗ mAP, nDCG ZS, FT

Table 1: Egocentric downstream datasets, metrics, and
evaluation protocols. We evaluate EgoVLPv2 on a wide
variety of benchmarks: video-text retrieval (EgoMCQ,
CharadesEgo, EK-100), uni-modal and text-guided video
grounding (EgoMQ, EgoNLQ), video question answer-
ing (EgoTaskQA) and query-focused video summarization
(QFVS). The evaluation protocols include zero-shot (ZS),
task-specific head-tuning (HT), and end-to-end fine-tuning
(FT). †ChardesEgo is a multi-class classification problem,
but we convert this to a retrieval task. Please find more de-
tails in Section 4.1 and in supplementary.

variable-length clip intervals instead of single timestamps of
Ego4D. Moreover, EgoClip excludes the videos appearing
in the validation and test sets of the Ego4D benchmark [24],
resulting in around 3.8M pre-training samples covering over
2927 hours of video from 129 different scenarios.

We evaluate EgoVLPv2 across multiple benchmarks on
five egocentric datasets, summarized in Table 1:
• On Ego4D [24] benchmarks: Multiple-Choice Questions

(EgoMCQ) is a text-to-video (T → V) retrieval task with
five video clips for every query text. Natural Language
Query (EgoNLQ) is a natural language grounding [25, 22,
80] task that aims to localize a single time interval within
a video given a text query. Moment Query (EgoMQ) is a
video-only temporal action localization [8] task.

• Query-focused video summarization (QFVS) [77] aims to
generate a concise version of a long (3-5 hours) egocentric
video based on a natural language query.

• Video question-answering on EgoTaskQA [28] provides
four question types (descriptive, predictive, explanatory,
and counterfactual) with direct and indirect references, and
evaluates the prediction over spatial, temporal, and causal
domains of goal-oriented task understanding. Notably,
to the best of our knowledge, we are the first to unify
QFVS and EgoTaskQA as two downstream tasks of a VLP
framework.

• Action Recognition on CharadesEgo [79]: a multi-class
classification of daily indoor activities, with class names
being short natural language phrases like ‘Putting some-
thing on a shelf.’ Hence, leveraging text representations
with class names, we treat this task as a retrieval problem.
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Method # Pre-train
Dataset

EgoMCQ EgoNLQ validation set

Accuracy (%) mIOU@0.3 mIOU@0.5
Inter Intra R@1 R@5 R@1 R@5

SlowFast [20] − − − 5.45 10.74 3.12 6.63
EgoVLP [50] 3.8M 90.6 57.2 10.84 18.84 6.81 13.45
HierVL-Avg [3] 3.8M 90.3 53.1 − − − −
HierVL-SA [3] 3.8M 90.5 52.4 − − − −
LAVILA-B [110] 56M 93.8 59.9 10.53 19.13 6.69 13.68
EgoVLPv2 3.8M 91.0 60.9 12.95 23.80 7.91 16.11

∆Ours - EgoVLP − 0.4 ↑ 3.7 ↑ 2.11 ↑ 4.96 ↑ 1.10 ↑ 2.66 ↑

Table 2: Performance on EgoMCQ and EgoNLQ’s vali-
dation set. EgoVLPv2 yields significant gains over existing
baselines on both tasks. LAVILA is pre-trained on 15× more
narrations generated by GPT-2 [72], and is colored gray. On
EgoMCQ, reported results are achieved by directly ensem-
bling dual- and fusion-encoder-based inference.

Method IoU=0.3 IoU=0.5 IoU=0.7 mAP (%) @ IoU
R@1 R@5 R@1 R@5 R@1 R@5 0.1 0.3 0.5 Avg.

SlowFast [20] 33.45 58.43 25.16 46.18 15.36 25.81 9.10 5.76 3.41 6.03
Frozen [4] 40.06 63.71 29.59 48.32 17.41 26.33 15.90 10.54 6.19 10.69
EgoVLP [50] 40.43 65.67 30.14 51.98 19.06 29.77 16.63 11.45 6.57 11.39
EgoVLPv2 41.97 68.24 31.08 54.15 20.96 31.10 17.58 11.92 6.90 12.23

∆Ours - EgoVLP 1.54 ↑ 2.57 ↑ 0.94 ↑ 2.17 ↑ 1.90 ↑ 1.33 ↑ 0.95 ↑ 0.47 ↑ 0.33 ↑ 0.84 ↑

Table 3: Performance on EgoMQ’s validation set.
EgoVLPv2 sets a new state-of-the-art across all baselines
using VSGN [109] as grounding head.

• Multi-instance retrieval on Epic-Kitchens-100 [13] (EK-
100 MIR): this is a text-to-video (T → V) and video-to-
text (V → T) retrieval task, with a significant semantic
overlap between different narrations. Detailed statistics
of pre-training and downstream datasets and evaluation
metrics are given in the supplementary.

4.2. Evaluation Protocol

We evaluate EgoVLPv2 using three evaluation protocols:
• Zero-Shot (ZS). The pre-trained backbones are directly

applied for V ↔ T retrieval without fine-tuning on down-
stream datasets. We perform zero-shot retrieval via: (i)
dual encoders, computing the cosine similarity between
video clips and textual narrations, and (ii) fusion encoder,
incorporating the pre-trained VTM head to compute the
video-text matching score.

• Task-specific Head-tune (HT). We extract features using
the frozen encoder and train task-specific heads3 using the
training split of downstream datasets.

• Fine-tune (FT). We fine-tune the entire pre-trained video-
text model end-to-end using the training split of down-
stream datasets.
3VSLNet [107] for EgoNLQ, VSGN [109] for EgoMQ, single-layer

transformer encoder [84] for summarization, and linear layers for video
QA.

Method Video-1 Video-2 Video-3 Video-4 Average

SeqDPP [23] 36.59 43.67 25.26 18.15 30.92
SH-DPP [76] 35.67 42.72 36.51 18.62 33.38
QC-DPP [77] 48.68 41.66 36.51 29.96 44.19
TPAN [108] 48.74 45.30 56.51 33.64 46.05
CHAN [93] 49.14 46.53 58.65 33.42 46.94
HVN [30] 51.45 47.49 61.08 35.47 48.87
QSAN [92] 48.52 46.64 56.93 34.25 46.59
WHM [62] 50.96 48.28 58.41 39.18 49.20
IntentVizor [91] 51.27 53.48 61.58 37.25 50.90

EgoVLP† [50] 49.64 53.60 59.87 35.76 49.72
EgoVLPv2 53.30 54.13 62.64 38.25 52.08

∆Ours - EgoVLP 3.66 ↑ 0.53 ↑ 2.77 ↑ 2.49 ↑ 2.36 ↑

Table 4: Performance on query-focused video summa-
rization (QFVS). Existing baselines are trained end-to-
end, whereas EgoVLPv2 only learns a tiny head on top
of pre-trained encoders. †EgoVLP denotes the performance
achieved by the officially released checkpoint.

4.3. Implementation Details

We use TimeSformer-B [6, 4] and RoBERTa-B [52] as
our video and language backbones. The video encoder has
12 layers and 12 heads, and is configured with the patch size
of 16 × 16 and the hidden dimension of 768. The spatial
attention modules are initialized from a ViT [15]. We resize
videos to 224× 224 and sample 4 frames per video for pre-
training and 16 for fine-tuning on downstream tasks. We use
RoBERTa-B pre-trained on English Wikipedia and Toronto
Book Corpus. For our best model,4 we fuse the top 6 layers
of the two encoders. We pre-train our model for 20 epochs
with a batch size of 256, using AdamW [55] with a peak
learning rate of 3e-5 for the backbones and 12e-5 for the
cross-modal parameters. We use linear warmup over the
first 2 epochs and use linear decay. Pre-training takes five
days on 32 A100 GPUs. Other necessary pre-training and
downstream details are given in the supplementary.

4.4. Main Results

We use boldface and underline for the best and second-
best performing methods in every table and indicate the
performance improvements over the state-of-the-art with ∆.

Ego4D: Table 2 and 3 present the performance of EgoVLPv2
on three different Ego4D benchmarks: EgoMCQ, EgoNLQ
and EgoMQ. On EgoMCQ, our model achieves 91.0% inter-
video and 60.9% intra-video accuracy, significantly improv-
ing over the baselines. Note that EgoVLPv2 achieves 1%
absolute gain on the challenging intra-video MCQ task
over LAVILA, which is trained using 15× more narrations
generated by a pre-trained large language model, GPT-2
[72]. On EgoNLQ, EgoVLPv2 yields an impressive gain of
2.11% R@1 for IoU = 0.3 over EgoVLP. Moreover, using a

4An ablation on the number of fusion layers is provided in Section 4.5.
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Method Eval. Direct Indirect
Open Binary All Open Binary All

VisualBERT [42] FT 24.62 68.08 37.93 21.05 57.61 37.01
PSAC [44] FT 26.97 65.95 38.90 15.31 57.75 32.72
HME [18] FT 27.66 68.60 40.16 18.27 52.55 33.06
HGA [31] FT 22.75 68.53 36.77 8.66 53.72 28.36
HCRN [34] FT 30.23 69.42 42.40 27.82 59.29 41.56
ClipBERT [37] FT 27.70 67.52 39.87 11.17 40.71 24.08

EgoVLP† [50] FT 31.69 71.26 42.51 27.04 55.28 38.69
EgoVLPv2 FT 35.56 75.60 46.26 29.14 59.68 42.28

∆Ours - EgoVLP FT 3.87 ↑ 4.34 ↑ 3.75 ↑ 2.10 ↑ 4.40 ↑ 3.59 ↑

EgoVLP† [50] HT 20.52 64.63 32.76 16.87 48.40 29.19
EgoVLPv2 HT 26.59 69.10 37.87 22.11 57.19 35.20

∆Ours - EgoVLP HT 6.07 ↑ 4.47 ↑ 5.11 ↑ 5.24 ↑ 8.79 ↑ 6.01 ↑

Table 5: Performance on EgoTaskQA direct and indirect
splits. EgoVLPv2 outperforms prior work across all settings,
metrics, and data splits. †EgoVLP denotes the performance
achieved by the officially released checkpoint.

Method Eval. CharadesEgo Method Eval. EK-100 MIR
mAP mAP nDCG

Actor [78] FT 20.0 S3D [94] FT 29.2 44.7
SSDA [11] FT 23.1 MME [90] FT 38.5 48.5
Ego-Exo [47] FT 30.1 JPoSE [90] FT 44.0 53.5
EgoVLP [50] FT 32.1 EgoVLP [50] FT 45.0 59.4
HierVL-Avg [3] FT 32.6 HierVL-Avg [3] FT 44.9 59.8
HierVL-SA [3] FT 33.8 HierVL-SA [3] FT 46.7 61.1
EgoVLPv2 FT 34.1 EgoVLPv2 FT 47.3 61.9

∆Ours - EgoVLP FT 2.0 ↑ ∆Ours - EgoVLP FT 2.3 ↑ 2.5 ↑
∆Ours - HierVL-SA FT 0.3 ↑ ∆Ours - HierVL-SA FT 0.6 ↑ 0.8 ↑

EgoVLP [50] ZS 25.0 EgoVLP [50] ZS 16.6 23.1
HierVL-Avg [3] ZS 25.2 HierVL-Avg [3] ZS 16.7 23.5
HierVL-SA [3] ZS 26.0 HierVL-SA [3] ZS 18.9 24.7
EgoVLPv2 ZS 26.2 EgoVLPv2 ZS 26.7 29.1

∆Ours - EgoVLP ZS 1.2 ↑ ∆Ours - EgoVLP ZS 10.1 ↑ 6.0 ↑
∆Ours - HierVL-SA ZS 0.2 ↑ ∆Ours - HierVL-SA ZS 7.8 ↑ 4.4 ↑

Table 6: Performance on CharadesEgo and EK-100 MIR.
EgoVLPv2 achieves significant gains in fine-tuning and zero-
shot settings for both tasks. Results are achieved by dual-
encoder-based inference.

smaller task-specific head and fewer epochs of head-tuning,
EgoVLPv2 outperforms existing baselines, which indicates
the importance of learning cross-modal information during
pre-training.5 On the uni-modal grounding task, EgoMQ,
our framework also sets a new state-of-the-art, outperform-
ing EgoVLP by 1.54% R@1 for IoU = 0.3, implying the
flexibility of fusion in the backbone over dual and shared
encoder-based pre-training.
QFVS: We evaluate EgoVLPv2 on query-focused video
summarization task. The QFVS dataset contains only 135
video-query training samples with long (3-5 hours) videos,
and all existing baselines are trained end-to-end. In contrast,
we learn a tiny head (single-layer transformer) on top of the
pre-trained encoders. As shown in Table 4, our model per-

5Additional details are provided in supplementary.

Fusion
Strategy

# Fusion
Layers

#Trainable
Params.

GMACs per
instance

EgoMCQ
Inter Intra

3 374.5M 288.62 90.5 60.0
Fusion in the 6 381.6M 300.16 91.0 60.9

Backbone 9 388.7M 311.71 91.0 60.9
12 395.8M 323.26 91.0 60.9

Additional
Fusion
Layers

3 396.9M 402.88 90.5 60.3
6 414.6M 437.90 90.5 60.8
9 432.4M 472.91 90.6 60.8

12 450.1M 507.92 90.6 60.9

Table 7: Ablation study on fusion strategies. Our proposed
fusion in the backbone strategy performs slightly better than
using fusion-specific transformer layers, but with less param-
eters and less compute .

sistently attains the state-of-the-art F-1 score across all four
videos in this dataset. The pre-trained video-language repre-
sentation helps EgoVLPv2 to achieve strong performance,
whereas the baselines struggle to learn good cross-modal
features due to the small training set.

EgoTaskQA: Table 5 shows the results on the egocentric
video question-answering tasks on the EgoTaskQA dataset.
Our model achieves significant gains across various baselines
in the fine-tuning regime. Notably, EgoVLPv2 performs
consistently well in the challenging indirect split, which
demonstrates its ability to solve complicated reference tasks.
In the head-tuning regime, we only learn a linear layer on
top of frozen encoders, where EgoVLPv2 beats EgoVLP by
a strong margin, which proves the efficacy of cross-modal
pre-trained representation.

CharadesEgo: This is a multi-class action recognition task,
with class names as short text phrases. We convert this to a
video-to-text (V → T) retrieval problem as in CLIP [71], and
perform dual-encoder-based retrieval. As shown in Table
6, EgoVLPv2 obtains a new state-of-the-art in both fine-
tuning and zero-shot regimes. Since CharadesEgo videos
are significantly different from Ego4D, being captured by
crowd-sourced workers using mobile cameras, these results
demonstrate the generalizability of EgoVLPv2.

EK-100: Table 6 shows our results on EK-100 MIR. In the
fine-tuning regime, EgoVLPv2 achieves noticeable improve-
ments over the supervised approaches (S3D, MME, JPoSE)
and VLP methods (EgoVLP, HierVL). In the zero-shot setup,
EgoVLPv2 beats EgoVLP and HierVL by 7.8% mAP and
4.4% nDCG scores. The consistent performance gains again
show the quality of pre-trained encoders.

4.5. Ablation Study

Fusion in the Backbone: We compare our fusion module
to the conventional practice of using fusion-specific trans-
former layers, which we implement following ALBEF [39].6

6https://github.com/salesforce/ALBEF/
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Frame 1 Frame 2 Frame 3 Frame 4

#C C stands near the wheelbarrow and scrolls the phone.

#C C stirs the eggs from the pan on the cooker with right hand.

Figure 5: Text-to-video cross-attention from multiple heads in the last layer of EgoVLPv2 with 16× 16 patches. We look
at the attention maps of the [CLS] token from the text encoder on input video frames. Different heads, depicted in different
colors, focus on different objects or parts. These maps show the strong cross-modal representation learned by EgoVLPv2
during pre-training, which helps to enhance performance on video-language downstream tasks.

Pre-training Objectives EgoMCQ (%)

Dual Enc. Fusion Enc. Ensemble
EgoNCE MLM VTM VTM-Hard Inter Intra Inter Intra Inter Intra

✓ − − − 89.5 52.6 − − − −
✓ ✓ − − 89.6 52.4 − − − −
✓ − − ✓ 89.6 53.4 90.6 59.1 91.0 60.0
✓ ✓ ✓ − 89.5 53.6 89.1 51.5 90.2 56.8
✓ ✓ − ✓ 89.8 56.7 90.6 59.6 91.0 60.9

Table 8: Ablation study on different pre-training objec-
tives of EgoVLPv2. We evaluate on EgoMCQ using our
model either as a dual encoder, as a fusion encoder, or an
ensemble of both. Removing any objective leads to a per-
formance drop. The flexibility of the proposed fusion in the
backbone module helps us boost retrieval performance using
an ensembling strategy.

Table 7 shows that the proposed fusion strategy performs
slightly better than stacked fusion layers. For both methods,
increasing the number of fusion layers to 6 results in a non-
trivial performance gain. However, our proposed architec-
ture is significantly more parameter- and compute-efficient.
For instance, with 6 fusion layers, the proposed architec-
ture contains 33M fewer parameters and requires 45% lesser
computing cost, which shows the efficacy of our method.

Pre-training Objectives: We ablate different pre-training
objectives and evaluate the pre-trained models on EgoMCQ
using EgoVLPv2 as a dual encoder, as a fusion encoder,
and an ensemble of the two by summing their similarity
scores for each video-text pair. As shown in Table 8, remov-
ing any pre-training objective lead to a performance drop.
Specifically, VTM with hard-negative mining is largely ben-
eficial across all three evaluation strategies. Fusion encoder-
based evaluation brings significant improvements over dual-
encoders; moreover, as EgoMCQ contains only 5 sentences

for every video, both evaluation methods offer similar la-
tency. Ensembling the two yields further 1−2% performance
gain for both inter- and intra-video accuracy metrics.

4.6. Attention Visualization & Error Analysis

In Figure 5, we show that different heads in the cross-
modal attention can attend to different semantic regions of
the video frames, guided by the narration. We observe that
the pre-trained model learns well to recognize a wide variety
of objects appearing in egocentric actions, such as indoor
furniture, cooking appliances, phones, tablets, car steering,
bicycle handles, etc. Such strong cross-modal information
learned during pre-training helps EgoVLPv2 in multi-modal
downstream tasks. The visualizations in Figure 5 are ob-
tained with 960p video frames, resulting in sequences of
3601 tokens for 16× 16 patches. However, vastly hindered
objects in cluttered environments, especially in low-light
conditions, are occasionally not focused. We show such
error cases in the supplementary.

5. Conclusion

This work introduces EgoVLPv2, the second generation
of egocentric video-language pre-training and a significant
improvement over the previous generation [50] by incorpo-
rating cross-modal fusion directly into the video and lan-
guage backbones. Our proposed fusion in the backbone
strategy is lightweight, compute-efficient, and allows us to
unify various VL tasks in a flexible and efficient manner.
We conduct extensive experiments to demonstrate the ef-
fectiveness of EgoVLPv2 on a wide range of downstream
tasks, consistently achieving state-of-the-art performance.
Moreover, we visually demonstrate the effectiveness of the
learned cross-attention representation.
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