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Abstract

Open-vocabulary models are a promising new paradigm
for image classification. Unlike traditional classification
models, open-vocabulary models classify among any arbi-
trary set of categories specified with natural language dur-
ing inference. This natural language, called “prompts”,
typically consists of a set of hand-written templates (e.g.,
“a photo of a {}”) which are completed with each of the
category names. This work introduces a simple method
to generate higher accuracy prompts, without relying on
any explicit knowledge of the task domain and with far
fewer hand-constructed sentences. To achieve this, we com-
bine open-vocabulary models with large language models
(LLMs) to create Customized Prompts via Language mod-
els (CuPL, pronounced “couple”). In particular, we lever-
age the knowledge contained in LLMs in order to gener-
ate many descriptive sentences that contain important dis-
criminating characteristics of the image categories. This
allows the model to place a greater importance on these re-
gions in the image when making predictions. We find that
this straightforward and general approach improves accu-
racy on a range of zero-shot image classification bench-
marks, including over one percentage point gain on Ima-
geNet. Finally, this simple baseline requires no additional
training and remains completely zero-shot. Code available
at https://github.com/sarahpratt/CuPL.

1. Introduction
Open-vocabulary models [40, 23, 42, 63] achieve high

classification accuracy across a large number of datasets
without labeled training data for those tasks. To accomplish
this, these models leverage the massive amounts of image-
text pairs available on the internet by learning to associate
the images with their correct caption, leading to greater
flexibility during inference. Unlike standard models, these
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Figure 1. Schematic of the method. (Top) The standard method
of a zero-shot open-vocabulary image classification model (e.g.,
CLIP [42]). (Bottom) Our method of CuPL. First, an LLM gener-
ates descriptive captions for given class categories. Next, an open-
vocabulary model uses these captions as prompts for performing
classification.

models classify images by providing a similarity score be-
tween an image and a caption. To perform inference, one
can generate a caption or “prompt” associated with each of
the desired categories, and match each image to the best
prompt. This means that categories can be selected ad hoc
and adjusted without additional training.

However, this new paradigm poses a challenge:

How can we best represent an image category through
natural language prompts?

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
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Marimba ViaductLorikeet Papillon

LLM
“A lorikeet is a small to medium-sized parrot with a brightly colored plumage.”

“A marimba is a large wooden percussion instrument that looks like a xylophone.”

“A viaduct is a bridge composed of several spans supported by piers or pillars.”

“A Papillon is a small, spaniel-type dog with a long, silky coat and fringed ears”

Marimba ViaductLorikeet Papillon

“A lorikeet is a small to medium-sized parrot with a brightly colored plumage.”

“A marimba is a large wooden percussion instrument that looks like a xylophone.”

“A viaduct is a bridge composed of several spans supported by piers or pillars.”

“A papillon is a small, spaniel-type dog with a long, silky coat and fringed ears.”

GPT-3
“What does a 
{lorikeet, marimba, 
viaduct, papillon} 
look like?”

LLM-prompts: Image-prompts:

Figure 2. Example CuPL LLM-prompts and Image-prompts. LLM-prompts are filled in with a class name and then used as input to
GPT-3, which then outputs image-prompts. Example LLM generated image-prompts and associated images from ImageNet are shown.
Only image-prompts are used for the downstream image classification.

The standard approach is to hand write a number of prompt
templates [42] (e.g.,“a photo of a {}”), compile a natural
language label for each category in the dataset, and create a
set of prompts for each category by filling in each template
with the natural language labels. Then, image embeddings
are matched to the nearest set of prompt embeddings and la-
belled with the category associated with that set of prompts
(more details in Section 2).

This method has three major drawbacks. Firstly, each
prompt template has to be hand-written, so having twice as
many prompts for a category requires twice as much human
effort. This can become costly as each new dataset typically
has a different set of prompt templates [42].

Secondly, the prompt templates must be general enough
to apply to all image categories. For example, a prompt
for the ImageNet [13] category “platypus” could only be
as specific as “a photo of a {platypus}”, and could not be
something like “a photo of a {platypus}, a type of aquatic
mammal” as that template would no longer be relevant for
other image categories. This is limiting, as descriptive de-
tails are useful for fine-grained classification. For example,
different species of frogs share many of the same character-
istics. However, tree frogs can be distinguished with their
distinct large eyes. This is a valuable detail for classification
but cannot be included in a general template. Therefore,
when using these basic templates, the model may not take
advantage of this detail in the image, leading to an incorrect
categorization as demonstrated in Figure 5.

Lastly, writing high performing prompt templates cur-
rently requires prior information about the contents of the
dataset. For example, the list of hand-written ImageNet
prompts [42] includes “a black and white photo of the {}.”,
“a low resolution photo of a {}.”, and “a toy {}.” all of
which demonstrate prior knowledge about the type of rep-

resentations present in the dataset. This information is not
generalizable to other datasets, as ImageNet contains “black
and white” and “toy” representations of its categories, but
other datasets do not (e.g., FVGC Aircraft [32]).

To overcome these challenges, we propose Customized
Prompts via Language models (CuPL). In this algorithm,
we couple a large language model (LLM) with a zero-shot
open-vocabulary image classification model. We use the
LLM to generate prompts for each of the image categories
in a dataset. Using an LLM allows us to generate an ar-
bitrary number of prompts with a fixed number of hand-
written sentences. Additionally, these prompts are now
customized to each category and contain specified visual
descriptions while still remaining zero-shot. This allows
prompts to contain details about a class which distinguish
it from other similar classes. For example, to describe a tree
frog, the LLM generates the sentence “A tree frog looks
like a small frog with large eyes.” This not only describes
the category, but specifically mentions the eyes, the feature
which distinguishes the Tree frog class from the most visu-
ally similar classes - other types of frogs. We find that CuPL
prompts are rich with these discriminating details and show
that the model is able to leverage these details to place more
importance on relevant parts of the image when classifying
between similar, commonly confused categories (Figure 5).

We find these customized prompts outperform the hand-
written templates on 15 zero-shot image classification
benchmarks, including a greater than 1 percentage point
gain on ImageNet [13] Top-1 accuracy and a greater than 6
percentage point gain on Describable Textures Dataset [11],
with fewer hand-written prompts when compared to the
standard method used in [42]. Finally, this method requires
no additional training or labeled data for either model.

15692



2. Methods
The CuPL algorithm consists of two steps: (1) generat-

ing customized prompts for each of the categories in a given
dataset and (2) using these prompts to perform zero-shot
image classification.

2.1. Generating Customized Prompts
This step consists of generating prompts using an LLM.

For clarity, we distinguish between two different kind of
prompts. The first are the prompts which cue the LLM to
generate the descriptions of the dataset categories. These
prompts do not describe an object, but rather prompt the
description of an object (e.g., “What does a platypus look
like?”). We will refer to these as “LLM-prompts”.

Secondly, there are the prompts to be matched with im-
ages in the zero-shot image classification model. These are
the prompts that describe a category (e.g., “A platypus looks
like ...”). We call them “image-prompts.” In CuPL, these are
the output of the LLM, as exemplified in Figure 2.

In this work, we use GPT-3 [5] as our LLM. To gener-
ate our image-prompts, we must first construct a number of
LLM-prompt templates. While this does require some en-
gineering by hand, it is significantly less than the amount
of hand-engineered sentences used in the standard method
of creating image-prompt templates for CLIP. For example,
in our ImageNet experiments, we construct 5 LLM-prompt
templates compared to the 80 image-prompts used by CLIP
for zero-shot ImageNet classification.

After constructing these LLM-prompts, we generate 10
different image-prompts for each of the LLM-prompts. This
means for ImageNet we use an LLM to generate a total of
50 customized image-prompts for each image category. For
each of these, we generate a maximum of 50 tokens, but halt
a generation early if it produces a period. Additionally, we
generate with a high temperature of 0.99, which encourages
more diversity among the 10 generated image-prompts. We
also clean each generated sentence by deleting any blank
lines and adding a period at the end.

2.2. Utilizing Customized Prompts
After generating image-prompts for each of the cat-

egories, we then perform zero-shot image classification.
While there are a number of open-vocabulary models [40,
23, 42, 63], we report our results using CLIP [42] as this is
the most popular publicly available open-vocabulary model.

CLIP consists of a text encoder and and image encoder
(schematic on the top of Figure 1). In the standard setting,
there are a number of hand-written templates which can be
completed with the relevant category names (e.g. “A photo
of a {}”, “A photo of many {}”). To classify the images in
a dataset, each of these templates is filled in with a given
category name. Then each of these sentences is embedded

via the text encoder, and all sentences completed with the
same category name are averaged and normalized. This re-
sults in n embeddings where n is the number of categories
in the dataset. Each of these n embeddings is the mean of
many different sentence embeddings. Then each image in
the dataset is embedded using the image encoder. This em-
bedding is compared to each of the n text embeddings using
cosine similarity and is labeled with the most similar one.

CuPL requires only a small adjustment from this stan-
dard practice. Instead of filling in the hand-written tem-
plates for each category, we simply replace these altogether
with the sentences output by GPT-3. This means that for
CuPL, hand-written templates are only used as input for the
LLM, while the prompts for CLIP are entirely generated
text. We present 2 different setting of CuPL (as shown in
Table 1), each representing a different trade-off between ac-
curacy and hand-engineering.

1. CuPL (base). This setting uses three hand-written
sentences across all 15 examined datasets. We do this
by constructing general LLM-prompt templates which are
filled in with the category names for each dataset. Our three
general templates are as follows:

Describe what a/the looks like:
Describe a/the :

What are the identifying characteristics of a/the ?

The blank portion of this template is either filled in with
the category type plus the category name (e.g. “pet” + {}
for the Oxford Pets dataset [38] or “aircraft” + {} for FGVC
Aircraft [32]) or just the category name for more general
datasets like ImageNet [13]. Type specification is necessary
because of words that have multiple meanings. For example
“boxer” from the Oxford Pets dataset can also mean a per-
son who boxes, as opposed to a dog breed, so it is necessary
to specify “Describe a pet boxer:”. Similarly, “Tornado”
from the FGVC Aircraft dataset can be a type of aircraft or
a type of weather.

2. CuPL (full). In this setting we use different LLM-
prompt templates for each dataset, just as [42] uses different
image-prompt templates for each dataset. However, we use
fewer hand-written templates overall and also contain less
specific information about each dataset in the templates. For
this work, each dataset has between 2 and 9 LLM-prompts
which generate between 20 and 90 image-prompt per cate-
gory (10 generated sentences per LLM-prompt). For Ima-
geNet, we use the following 5 LLM-prompts: (1) “Describe
what a(n) {} looks like”, (2) “How can you identify a(n)
{}?”, (3) “What does a(n) {} look like?”, (4) “A caption of
an image of a(n) {}”, (5) “Describe an image from the inter-
net of a(n) {}”. Full LLM-prompts for all datasets as well
as example image-prompts are given the Appendix.
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std 75.54 55.20 77.53 69.31 93.08 32.88 93.33 93.24 78.53 77.45 60.07 71.10 95.59 78.26 50.43 73.43
# hw 80 8 8 2 1 2 1 34 1 48 28 18 18 18 1 268 175

CuPL (base) 76.19 58.90 76.49 72.74 93.33 36.69 93.37 93.45 78.83 77.74 60.24 68.96 95.81 78.47 51.11 74.15
� std +0.65 +3.70 -1.04 +3.43 +0.25 +3.81 +0.04 +0.21 +0.30 +0.29 +0.17 -2.14 +0.22 +0.21 +0.63
# hw 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 45 3

CuPL (full) 76.69 61.70 77.63 73.31 93.36 36.11 93.81 93.45 79.67 78.36 60.63 71.69 95.84 78.57 51.11 74.80
� std +1.15 +6.50 +0.10 +4.00 +0.28 +3.23 +0.48 +0.21 +1.14 +0.91 +0.56 +0.59 +0.25 +0.31 +0.63
# hw 5 6 9 3 3 2 2 3 2 5 4 5 3 4 3 59 45

Table 1. Performance of CuPL prompts compared to the standard, hand-written prompts in CLIP [42] on 15 zero-shot image
classification benchmarks. “�std” stands for the difference; green shows improvement. In addition to accuracy, we show number of
prompt templates that are hand-written (“# hw”) for each dataset using each method, as well as the total and unique number of hand-
written templates for each method (unique number only counts templates once even if used for multiple datasets). Note that CuPL (base)
uses just three hand-constructed sentence across all datasets compared to 175 in the standard method.

Figure 3. Performance of CuPL as models scale. (Top) Ima-
geNet Top-1 accuracy for various scales of CLIP. CuPL prompts
remain consistently better than standard prompts even we adjust
CLIP model size (ViT-B/32, ViT-B/16, ViT-L/14). GPT-3 model
set as DaVinci-002. (Bottom) ImageNet Top-1 accuracy for var-
ious scales of GPT-3 (ada, babbage, curie, davinci-002). Larger
models produce higher accuracy. CLIP model set as ViT-L/14.

3. Experiments and Results

We first discuss the details of our experimental setup.
We next show improvements on a wide range of image
classification benchmarks. We then examine the scaling
behavior with respect to the model size and report obser-

vations regarding hyperparameters such as the number of
hand-written prompts. Finally, we provide evidence that
the model is able to use CuPL prompts to place more im-
portance on the most relavent parts of the image.

3.1. Setup
Unless specified otherwise, we use CLIP with a back-

bone of ViT-L/14 [14] and the GPT-3 DaVinci-002 model.
Additionally, in order to perform open-vocabulary image
classification, each image category needs a natural language
label. This is sometimes provided by the dataset, but not al-
ways (e.g. ImageNet categories are described by an id num-
ber which can map to multiple synonyms). For this work,
we use the same natural language labels specified in [42].

We report our findings on 15 zero-shot image recognition
benchmarks: ImageNet [13], Describable Textures Dataset
(DTD) [11], Stanford Cars [26], Scene UNderstanding
(SUN397) [60], Food101 [4], FGVC Aircraft [32], Oxford
Pets [38], Caltech101 [16], Flowers 102 [36], UCF101 [52],
Kinetics-700 [8], Remote Sensing Image Scene Classifica-
tion (RESISC45) [10], CIFAR-10 [27], CIFAR-100 [27],
and Birdsnap [2]. For the two video datasets, we extract the
middle frame of the video, as is done in Radford et al. [42].

3.2. Results
Our results for the base prompts setting and the full

prompts setting are in Table 1. We present our method’s
performance on 15 different image classification bench-
marks, comparing both the classification accuracy and the
number of hand-written sentence templates needed for each
method. Note that for the standard method [42], the hand-
written sentences refer to the image-prompts, while for
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Standard CuPL Menon et al. [33]

75.54 76.69 75.00

Table 2. Comparison with Menon et al. [33] on Top-1 Imagenet
accuracy with ViT L/14.

CuPL the hand-written sentences refer to the LLM-prompts,
with which image-prompts are generated.

1. CuPL (base). In this setting, we see performance
gains in 13 out of the 15 examined datasets. Note this set-
ting uses just three hand-constructed sentence across all
datasets. This is in comparison to the nearly 175 unique
image-prompt templates that are hand-written across all of
these datasets in the standard setting. Additionally, in the
standard setting these hand-constructed prompts must be
very specific to the dataset (e.g., “a black and white photo
of a {}.”, “a plastic {}.”). In comparison, CuPL (base) re-
quires only the category type of the overall dataset and still
outperforms the hand-written, domain specified baseline in
almost all cases. Thus, we present this base prompt setting
as a simple standard that matches or exceeds prompt engi-
neering open-vocabulary models.

2. CuPL (full prompts). Here we see improvements
on all examined datasets. This includes large (over 1 per-
centage point) gains on ImageNet Top-1, DTD (texture
classification), SUN397 (scene classification), FGVC Air-
craft (fine-grained aircraft classification), and Flowers 102
(flower classification). While this setting requires more
hand-written prompts than setting (1), it still requires signif-
icantly fewer than the baseline method (5 sentences versus
80 sentence for ImageNet), and does not include knowledge
about the image domain. The full list of hand-constructed
sentences for CuPL (full prompts) and the baseline method
[42] can be found in the Appendix.

3.3. Analysis and Ablations

Other prompting techniques. Concurrent work by
Menon et al. [33] also explores LLM generated descrip-
tions for image classification. This work differs from CuPL
as it generates a structured list of identifying attributes in a
single generation, which are reformatted into multiple sen-
tences. In contrast, CuPL outputs a single sentence for
multiple generations, with no enforced format. The ben-
efit of the structured output used in Menon et al. [33] is
that the authors can examine the similarity of a given im-
age with each individual attribute to understand which ones
most contribute to a prediction. However, unlike CuPL,
this method performs worse than standard human-written
prompts, as shown in Table 2. This is potentially because
this work focuses on explainability, and therefore enforces
a strict format on the generated prompts, likely reducing

Figure 4. Ablation on number of LLM-prompts (top) and
image-prompts (bottom). (Top) As number of hand-written
LLM-prompts increases, so does accuracy. 10 image-prompts are
generated for each LLM-prompt. Note that CuPL outperforms the
baseline even with just one hand-written sentence. We add the
prompts in a greedy manner, at each step adding the 10 prompts
which lead to the largest performance gain. (Bottom) We adjust
the number of image-prompts generated by a fixed number (5) of
LLM-prompts. Even at 5 Image-prompts per LLM-prompt (25
prompts total), we outperform the baseline which uses 80 image-
prompts.

overall accuracy.
Model Size. In Figure 3, we show CuPL (full prompts)

at different model scales. As there are two different zero-
shot models in the CuPL algorithm, we show the effects
of varying each model individually. On the top, we vary
the CLIP model used while holding the LLM constant. We
see consistent gains across all model sizes. On the bottom,
we vary the size of the LLM. We plot the accuracy of the
baseline as well, which does not vary as it does not utilize an
LLM. We find larger models lead to higher accuracy, though
the 2nd and 3rd largest models perform similarly.

Number of Prompts. In Figure 4, we present abla-
tions on the number of LLM-prompts and image-prompts
for CuPL (full prompts). On the top, we show ImageNet
accuracy as we increase the number of LLM-prompts. This
also corresponds to the number of sentences that have to be
hand-written. Notably, this method outperforms the base-
line even when using prompts generated from a single hand-
written sentence. On the bottom, we hold the number of
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LLM-prompts constant at 5 and adjust how many image-
prompts we generate per LLM-prompt. We plot the accu-
racy given the total number of image-prompts (so 10 gen-
erated image-prompt per LLM-prompt corresponds to 50
total image-prompts). We see that CuPL begins to outper-
form the baseline at just 25 image-prompts, well below the
80 image-prompts used in the baseline.

Additional Analysis. In the Appendix, we provide com-
parisons between CuPL prompts and descriptive prompts
generated with definitions of ImageNet classes as well as
with Wikipedia descriptions of ImageNet classes. We find
that CuPL prompts outperform both of these baselines. Ad-
ditionally, we provide results of ensembling CuPL prompts
and the baseline hand-written prompts used in [42]. We find
that this ensemble outperforms just baseline prompts for
all datasets, and outperforms just CuPL prompts for some
datasets.

3.4. Shapley Value Analysis

We show that CuPL descriptions allow CLIP to place
more importance on image regions that are most relevant
for the correct classification. In order to measure the im-
portance of regions in the image, we invoke Shapley val-
ues [49], a tool from game theory that has become popu-
lar for understanding which input information contributes
to a model’s final prediction [31, 9]. Shapley values can
be computed for any model, and although there are meth-
ods designed specifically for vision transformers [12] (the
underlying architecture of CLIP), we use a simple model-
agnostic calculation [35]. We employ Shapley values to
understand the importance of different image regions with
CuPL prompts versus baseline prompts, and we find that
CuPL places more value on regions that are emphasized in
object descriptions, and thus are likely important for obtain-
ing correct classifications. We demonstrate this correlation
in two ways: (1) visualizing heatmaps of importance over
images, and (2) measuring the importance of segmented im-
age parts annotated by the PartImageNet Dataset [18].

Importance Heatmaps To understand how CuPL cap-
tions lead to a change in importance of different image
regions, we calculate the Shapley value of small image
patches when using CuPL prompts versus when using base-
line prompts. We calculate the Shapley values with respect
to a binary classification probability between the correct
class and a similar distractor class in order to understand
how CuPL corrects these errors. As shown in Figure 5,
we examine the important regions of an image of a dog
when classifying between two very similar dog categories:
a “Schipperke dog” versus a “Groenendael dog”. Both of
these classes are Belgian dogs that are black with pointy
ears. However, they have a few subtle differences includ-
ing the typical appearance of their tails. Additionally, we
show the important regions of an image when classifying

between a “Tree frog” and a “Tailed frog”, which also look
very similar.

For each binary classification, we show four heatmaps:
(1) the regions that contribute to a higher probability of the
correct class when using CuPL prompts, (2) the regions that
contribute to a higher probability of the incorrect class when
using CuPL prompts, (3) the regions that contribute to a
higher probability of the correct class when using baseline
prompts, (4) the regions that contribute to a higher proba-
bility of the incorrect class when using baseline prompts.
Interestingly, we find that not only does CuPL place impor-
tance on different regions of the image, but these regions
correspond to descriptions in the CuPL prompts. For exam-
ple, the tail of the dog is very important to the “Schipperke”
probability when using CuPL prompts, but not when us-
ing baseline prompts, and the tail of the Schipperke dog is
described 10 times in the CuPL descriptions of this class.
Similarly, we find that the eyes in the image of the frog
are much more important when classifying with CuPL than
with the baseline, and that the eyes are mentioned 10 times
in the CuPL description of a tree frog. We provide more
examples of this phenomenon in the Appendix.

Importance of Segmented Parts In order to understand
the correlation between the importance of an image region
and its frequency in CuPL prompts on a larger scale, we
utilize the PartImageNet Dataset [18]. This dataset contains
segmentation maps of the different parts of a class for a sub-
set of ImageNet classes. For example, the dog classes have
the parts: ‘head’, ‘body’, ‘leg’ and ‘tail’. We use these seg-
mentation maps to obtain the Shapley value for each part of
the animal with respect to the final probability of the ground
truth class. To understand the effect of changing to CuPL
prompts, we calculate the difference between the Shapley
values with CuPL prompts and with baseline prompts, and
we average across all images in a class. So for each part in
each examined class we calculate the following (where SV
denotes the Shapley value):

1

|class|
X

image2class

SVCuPL(image, part)�SVbase(image, part)

This gives us a score for how much more important a
part of an animal is to CuPL compared to the baseline for
classification. Additionally, we quantify how prevalent each
body part is in the CuPL descriptions. We do this using the
WordNet [34] database to tag each words as part of the ‘leg’,
‘head’, etc. More details of this tagging system are given in
the Appendix. We present our findings in Figure 6. We find
that the parts that are more important to CuPL are highly
correlated with the parts that are present in the descriptions
of the animals (and thus likely important to the identifica-
tion of the animal). For example, head-related attributes of
the Japanese Spaniel class are frequently mentioned in the
descriptions. Additionally, the ‘head’ in the image is much
more important to the final prediction for CuPL than for
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Region Importance with 
CuPL Prompts

Schipperke Prompt: Groenendael Prompt:

Original Image Region Importance with 
Baseline Prompts

GT Label:  
Schipperke

"A tree frog looks 
like a small frog 
with large eyes."

"The tailed frog is a 
small frog that is found 

in North America."

“A photo of a 
tree frog”

“A photo of a 
tailed frog”

GT Label:  
Tree Frog

Schipperke Prompt: Groenendael Prompt:

Tree Frog Prompt: Tailed Frog Prompt: Tree Frog Prompt: Tailed Frog Prompt:

Prediction: Tree Frog Prediction: Tailed Frog

Prediction: Schipperke Prediction: Groenendael dog

(A) (B) (C) (D) (E) (F)

Example Image of 
Distractor Class

"A Schipperke is a 
small, black Belgian 
dog with pointy ears 
and an upright tail."

"A Groenendael dog can 
be identified by its black 

coat and erect ears."

“A photo of a 
Schipperke”

“A photo of a 
Groenendael dog”

Example:  
Groenendael dog

Example:  
Tailed frog

Figure 5. CuPL prompts lead the model to focus on semantically important regions of the image. We use Shapley values (Section 3.4)
to visualize the importance of each region in a binary classification problem. We examine which parts of an image lead the model to classify
it as the correct class versus a commonly confused class. We present the original image (column A), as well as four heatmaps showing
which regions raise the probability of the correct class for the CuPL model (column B), the incorrect class for the CuPL model (column
C), the correct class for the baseline model (column D), and the incorrect class for the baseline model (column E). Additionally, we show
that the regions that are more important to CuPL than to the baseline correspond to regions mentioned in the CuPL prompts (i.e. “tail”
which is a commonly mentioned word in Schipperke Dog CuPL prompts and “eyes” which is a common word in Tree Frog prompts). We
also show an example image from the distractor class to demonstrate the level of similarity between these fine-grained classes (column F).
Finally, we see that CuPL scores the correct class higher, whereas the baseline scores the incorrect class higher. This series of observations
lead us to believe that CuPL is able to correct errors because the descriptive prompts cause the model to weigh semantically important
regions more heavily.

baseline. Thus, CuPL is able to extract important informa-
tion for identifying the animal from the text and incorporate
it into classification predictions.

4. Related Work
4.1. Natural Language Descriptions for Image Clas-

sification

Several prior works use text-based knowledge of image
categories to improve classification accuracy. [15] extract
visual information from unstructured text descriptions col-
lected from the internet to recognize parts of object and
classify them in a zero-shot way. [45] and [19] use natu-
ral language descriptions of bird types to train a multimodal
classification model. [21] use hand-collected attribute tags
to attend over relevant features in images. [39] extract

visual information from Wikipedia descriptions to enable
zero-shot bird classification. Additional works [50, 6]
show improvements on large datasets (e.g., ImageNet) us-
ing external information from external databases such as
Imagenet-wiki and Wordnet. While these works show the
effectiveness of augmenting zero-shot models with descrip-
tive text, all of these prior works rely on external natural
language databases for descriptions. This often limits the
possible categories that can be classified and can require
extensive preprocessing to extract visual descriptions from
noisy natural language.

4.2. Generated Text for Downstream Tasks

Recent work has utilized text generated from LLMs in a
number of ways. [47] use an LLM to paraphrase existing
image captions to use as data augmentation for CLIP. [30]
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Text Part importance: 
Number of mentions of 
part in CuPL prompts

Image Part importance: 
Difference between CuPL 
Shapley value of part and 

baseline Shapley value of part

"A tree frog is a small frog 
that has large toe pads 
that help it climb trees."

Tag: Legs

Tag: Legs

Japanese Spaniel Coucal Bird Tree Frog Gila monster Lizard

Figure 6. When specific parts of an animal/object are frequently mentioned in CuPL prompts, the CuPL model places more im-
portance on these parts in the image compared to the baseline model. The PartImageNet dataset [18] provides segmentation maps
of ImageNet images broken down into parts. For example, Tree Frog is broken down into the parts: ‘head’, ‘leg’, ‘body’ and ‘tail’. We
use the WordNet database [34] to tag words in CuPL prompts as belonging to one of these parts. We refer to the number of mentions
of the part as the Text Part Importance. We then use the PartImageNet segmentations to compare the Shapley value of each part when
using CuPL prompts and baseline prompts, which we call the Image Part Importance. We find a strong correlation between the Text Part
Importance and the Image Part Importance, leading to the conclusion that CuPL is able to take advantage of the knowledge contained in
the descriptions when making its predictions.

use GPT-3 to generate knowledge on a topic when given a
number of demonstrations, which is then used to improve
accuracy on common sense reasoning questions. [20] use
a LLM to add labels to text to improve text classification
accuracy. In [64], the outputs of a GPT-2 model are used to
train an encoder on top of a vision model to generate mul-
timodal image representations for a variety of tasks. [53]
utilize a language model to perform image captioning by
iteritively generating candidate image captions with a LLM
and then using feedback from an open-vocabulary model
to align it to a given image. Similarly, [62] use GPT-3
along with text descriptions of images for the Visual Ques-
tion Answering (VQA) task. However, unlike CuPL these
prior works are either purely language tasks (common sense
reasoning, text classification) or multimodal with some lan-
guage component (image captioning, VQA). Most simi-
larly, [33] use and LLM to generate a structured list of at-
tributes which are then reformatted into captions for CLIP.
However this work differs from ours as it does not improve
over human written templates. Additionally, [61] use an
LLM to generate a list of natural language attributes for Im-
ageNet classes and then select a subset of these attributes
for each class in a few-shot manner. Our work differs from
this as we remain in the zero-shot setting.

4.3. Prompt Engineering

Previous efforts have explored methods for obtaining
successful natural language prompts. For both open-
vocabulary image classification models as well as LLMs,

the format of prompts is known to highly affect accuracy
[48, 42, 5, 17]. This has led to a large effort to find op-
timal prompt formats. Proposed methods include crowd-
sourcing high performing prompts [1] as well as framing
prompts to induce models to give explanations as well as an-
swers [57, 25, 37]. Additional works have proposed learn-
ing prompts via gradient based methods [65, 41, 29, 28, 51],
retrieval from a database [46], or reformatting/rephrasing
existing prompts [24, 46].

Most relevant to this work are a number of methods for
designing optimal prompts for zero-shot image classifica-
tion with open-vocabulary models. These methods learn
prompts formats which yield high accuracy for image clas-
sification using either supervised [66, 43] or unsupervised
[22] methods. However, unlike these prior works this work
requires no additional training or labeled data.

5. Conclusion
We demonstrate that leveraging knowledge from an

LLM can immediately improve zero-shot accuracy on a va-
riety of image classification tasks, with much less hand-
engineering efforts to craft natural language prompts. Fur-
thermore, prompts can be customized to the desired cate-
gories, rather than a general template that applies to all cat-
egories. Finally, using prompts generated by LLMs lowers
the barrier of prior knowledge about the dataset, which is
often required when crafting prompt templates.

Querying an LLM for prompt construction is simple,
straightforward and as our results suggested, immediately
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beneficial. The hypothesis that a joint force of LLMs and
open vocabulary models would improve zero-shot image
classification is thoroughly tested in this work. We hope
these findings serve as a useful tool towards understanding
and improving zero-shot image classification, and more
generally, the consolidation of model capacities and modal-
ities through natural language.
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