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Abstract

This paper aims to develop an accurate 3D geometry
representation of satellite images using satellite-ground im-
age pairs. Our focus is on the challenging problem of
3D-aware ground-views synthesis from a satellite image.
We draw inspiration from the density field representation
used in volumetric neural rendering and propose a new ap-
proach, called Sat2Density. Our method utilizes the prop-
erties of ground-view panoramas for the sky and non-sky
regions to learn faithful density fields of 3D scenes in a
geometric perspective. Unlike other methods that require
extra depth information during training, our Sat2Density
can automatically learn accurate and faithful 3D geom-
etry via density representation without depth supervision.
This advancement significantly improves the ground-view
panorama synthesis task. Additionally, our study provides
a new geometric perspective to understand the relationship
between satellite and ground-view images in 3D space.

1. Introduction
The emergence of satellite imagery has significantly en-

hanced our daily lives by providing easy access to a com-
prehensive view of the planet. This bird’s-eye view offers
valuable information that compensates for the limited per-
spective of ground-level observations by humans. How-
ever, what specific information does satellite imagery pro-
vide, and why is it so crucial? In this paper, we propose
that the most critical insights come from the analysis of the
geometry, topology, and geography of cross-view observa-
tions captured by paired satellite and ground-level images.
Building on this hypothesis, we aim to address the chal-
lenging problem of synthesizing ground-level images from
paired satellite and ground-level imagery by leveraging den-
sity representations of 3D scenes.

The challenge of generating ground-level images from
satellite imagery is tackled by leveraging massive datasets
containing both satellite images and corresponding ground-
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Figure 1. Sat2Density trains with a collection of satellite-ground
image pairs, without depth, or multi-view supervision. Our 3d
GAN enables the synthesis of scenes conditioned on a satellite
image, producing multi-view-consistent ground-view renderings
and geometry. Please see the project page for more videos.

level panoramas captured at the same geographical coor-
dinates. However, the drastic differences in viewpoint be-
tween the two types of images, combined with the limited
overlap of visual features and large appearance variations,
create a highly complex and ill-posed learning problem. To
address this challenge, researchers have extensively stud-
ied the use of conditional generative adversarial networks,
which leverage high-level semantics and contextual infor-
mation in a generative way [19, 20, 33, 26, 12]. However,
since the contextual information used is typically at the im-
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age level, the 3D information can only be marginally in-
ferred during training, often resulting in unsatisfactory syn-
thesis results.

Recent studies [22, 11] have suggested that accurate 3D
scene geometry plays a crucial role in generating high-
quality ground-view images. With extra depth supervision,
Sat2Video [11] introduced a method to synthesize spatial-
temporal ground-view video frames along a camera trajec-
tory, rather than a single panorama from the center view-
point of the satellite image. Additionally, Shi et al. [22]
demonstrated that coarse satellite depth maps can be learned
from paired data through multi-plane image representation
using a novel projection model between the satellite and
ground viewpoints, but a coarse 3d representation can not
facilitate rendering 3D-aware ground-view images. Build-
ing on these insights, we aim to investigate whether it is
possible to achieve even more accurate 3D geometry using
the vast collection of satellite-ground image pairs.

Our study is motivated by the latest developments in
the neural radiance field (NeRF) [16], which has shown
promising results in novel view synthesis. Benefiting from
the flexibility of density field in volumetric rendering [8],
faithful 3D geometry can be learned from a large number
of posed images. Therefore, we adopt density fields as
the representation and focus on learning accurate density
fields from paired satellite-ground image pairs. More pre-
cisely, in this paper, we present a novel approach called
Sat2Density, which involves two convolutional encode-
decoder networks: DensityNet and RenderNet. The Den-
sityNet receives satellite images as input to represent the
density field in an explicit grid, which plays a crucial role in
producing ground-view panorama images using the Render-
Net. With such a straightforward network design, we delve
into the goal of learning faithful density field first and then
render high-fidelity ground-view panoramas.

While we employed a flexible approach to representing
geometry using explicit volume density and volumetric ren-
dering, an end-to-end learning approach alone is inadequate
for restoring geometry using only satellite-ground image
pairs. Upon examining the tasks and satellite-ground im-
age pairs, we identified two main factors that may impede
geometry learning, which has been overlooked in previous
works on satellite-to-ground view synthesis. Firstly, the sky
is an essential part of ground scenes but is absent in the
satellite view, and it is nearly impossible to learn a faith-
ful representation of the infinite sky region in each image
using explicit volume density. Secondly, differences in illu-
mination among the ground images during training make it
challenging to learn geometry effectively.

With the above intuitive observation, we propose two
supervision signals, the non-sky opacity supervision and
illumination injection, to learn the density fields in a vol-
umetric rendering form jointly. The non-sky opacity su-

pervision compels the density field to focus on the satel-
lite scene and ignore the infinity regions, whereas the illu-
mination injection learns the illumination from sky regions
to further regularize the learning density field. By learning
the density field, our Sat2Density approach goes beyond the
center ground-view panorama synthesis from the training
data and achieves the ground-view panorama video synthe-
sis with the best spatial-temporal consistency. As shown
in Figure 1, our Sat2Density continuously synthesizes the
panorama images along the camera trajectory. We evaluated
the effectiveness of our proposed approach on two large-
scale benchmarks [22, 34] and obtained state-of-the-art per-
formance. Comprehensive ablation studies further justified
our design choices.

The main contributions of our paper are:

• We present a geometric approach, Sat2Density, for
ground-view panorama synthesis from satellite images
in end-to-end learning. By explicitly modeling the
challenging cross-view synthesis task in the density
field for the 3D scene geometry, our Sat2Density is
able to synthesize high-fidelity panoramas on camera
trajectories for video synthesis without using any extra
3D information out of the training data.

• We tackle the challenging problem of learning high-
quality 3D geometry under extremely large viewpoint
changes. By analyzing the unique challenges that arise
with this problem, we present two intuitive approaches
non-sky opacity supervision and illumination injection
to compel the density learning to focus on the relevant
features in the satellite scene presented in the paired
data while mitigating the effects of infinite regions and
illumination changes.

• To the best of our knowledge, we are the first to
successfully learn a faithful geometry representation
from satellite-ground image pairs. We believe that not
only do our new findings improve the performance of
ground-view panorama synthesis, but the learned faith-
ful density will also provide a renewed understanding
of the relationship between satellite and ground-view
image data from a 3D geometric perspective.

2. Related Work

2.1. Satellite-Ground Cross-View Perception

Both ground-level and satellite images provide unique
perspectives of the world, and their combination provided
us with a more comprehensive way to understand and per-
ceive the world from satellite-ground visual data. How-
ever, due to the drastic viewpoint changes between the satel-
lite and ground images, poses several challenges in geo-
localization [34, 23, 24, 25], cross-view synthesis [22, 11,

3684



!
"
#
$
%&
'
(
"
&

)
*
+
,
*
-.

*
/

Rendered Depth Synthesized ImageInput Satellite

GAN, L1, L2, VGG

Volume Density

Volumetric

Rendering

Initial Panorama Real Image
Illumination

Inject

Opacity

Loss

Figure 2. Overview of Sat2Density. The generation consists of two components, DensityNet and RenderNet. We optimize Sat2Density
by reconstruction loss, adversarial loss, illumination injection loss, and opacity loss. See text for details.

12, 20, 26], overhead image segmentation with the assis-
tance of ground-level images [30], geo-enabled depth es-
timation [29], predicting ground-level scene layout from
aerial imagery [33].

To address this challenge, many previous works have
proposed various approaches to model and learn the drastic
viewpoint changes, including the use of homography trans-
forms [20], additional depth or semantic supervision [26,
12, 11], transformation matrices [34], and geospatial atten-
tion [30], among others. Despite effectiveness, these ap-
proaches mainly address the challenge on the image level
instead of the 3D scenes.

Most recently, Shi et al. [22] proposed a method to learn
geometry in satellite scenes implicitly using the height (or
depth) probability distribution map, which achieved better
results in synthesized road and grassland regions through
their geometry projection approach. However, their learned
geometry has limited effectiveness as the rendered satellite
depth cannot accurately recognize objects. We go further
along the line to focus on the 3D scene geometry conveyed
in the satellite-ground image pairs. We demonstrate that
the faithful 3D scene geometry can be explicitly decoded
and leveraged with an appropriate representation and super-
vision signals, to obtain high-fidelity ground-view panora-
mas. Besides, we believe that our study brings a novel
perspective to rethink satellite-ground image data for many
other challenging problems.

2.2. Neural Radiance Field

Benefiting from the flexibility of density field in volu-
metric rendering [16], faithful 3D geometry can be learned
from a dense number of posed images [4, 13, 1, 3]. Recent
works [2, 31, 32] based on NeRF have shown that 3D rep-
resentation can be learned even with only a few views. In a
co-current work [28], it is also pointed out that the flexibility
of the density field helps to learn the 3D geometric structure
from a single image by disentangling the color and geom-
etry, which allows neural networks to capture reliable 3D
geometry in occluded areas.

Our goal can be viewed as an extremely challeng-

ing problem of density-based few-view synthesis with ex-
tremely large viewpoint changes, which was not studied
well in previous works. In our study, we demonstrated the
possibility of learning faithful geometry in the volumetric
rendering formulation, shedding light on the most challeng-
ing cross-view configurations for novel view synthesis.

3. The Proposed Sat2Density
Figure 2 illustrates the computation pipeline for our pro-

posed Sat2Density. Given the input satellite image Isat ∈
RH×W×3 for the encoder-decoder DensityNet, we learn
an explicit volume of the density field Vσ ∈ RH×W×N .
We render the panorama depth and project the color of the
satellite image along rays in the ground view to generate
an initial panorama image and feed them to the RenderNet.
To ensure consistent illumination of the synthesis, the his-
togram of color in the sky regions of the panorama is used
as a conditional input for our method.

3.1. Density Field Representation

We encode an explicit volume density as a discrete rep-
resentation of scene geometry and parameterize it using a
plain encoder-decoder architecture in DensityNet Gdns to
learn the density field:

Vσ = Gdns(Isat) s.t. V·,·,· ∈ [0,∞). (1)

where the density information v = V (x, y, z) is stored in
the volume of V for the spatial location (x, y, z). For any
queried location that does not locate in the sample position
of the explicit grid, tri-linear interpolation is used to obtain
its density value. Suppose the size of the real-world cube is
(X,Y, Z) in the satellite image, two corner cases are con-
sidered: 1) for the locations outside the cube, we set their
density to zero, and 2) we set the density in the lowest vol-
ume (i.e., V(x,y,z=0)) to a relatively large value (103 in our
experiments), which made an assumption that all ground re-
gions are solid.

With the density field representation, the volumetric ren-
dering techniques [14] are applied to render the depth d̂ and
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opacity Ô along the queried rays by

d̂ =

S∑
i=1

Tiαidi, Ô =

S∑
i=1

Tiαi, (2)

where di is the distance between the camera location and the
sampled position, Ti denotes the accumulated transmittance
along the ray at ti, and αi is the alpha value for the alpha
compositing, written by

αi = 1− exp (−σ(xi)δi) Ti =

i−1∏
j=1

(1− αj) . (3)

Unlike NeRF [16] that learns the radiance field to render
the colored images, we take a copy-paste strategy to com-
pute the colored images by copying the color from the satel-
lite image along the ray via bilinear interpolation for image
rendering in

ĉmap =

S∑
i

Tiαici, (4)

where ci = c(xi, yi, zi) = Isat(
xi

Sx
+ H

2 ,
yi

Sy
+ W

2 ). Sx and
Sy are the scaling factors between the pixel coordinate of
the satellite image and the grid coordinate in Vσ . To keep
the simplicity of our Sat2Density, we did not use the hier-
archical sampling along rays for the computation of depth,
colors, and opacity.

Thanks to the flexibility of volumetric rendering, for the
end task of ground-view panorama synthesis, it is straight-
forward to render the ground-view depth, opacity, and the
(initial) colored image. For the subsequent RenderNet, it
takes the concatenated tensor of the rendered panorama
depth, opacity, and colors as input to synthesize the high-
fidelity ground-view images.

Learning density could draw precise geometry informa-
tion of the scene, but it is hard to acquire real density infor-
mation of the satellite scene only from the satellite-ground
image pairs. In our work, we propose two supervisions:
non-sky opacity supervision and illumination injection to
improve the quality of the 3D geometry representation.

3.2. Supervisions from Sky/Non-Sky Separation

Non-Sky Opacity Supervision. We draw inspiration from
the study of panorama image segmentation [15, 35], which
treats the sky region as a meaningful category in the seg-
mentation task. By taking the off-the-shelf sky segmen-
tation model [35] to obtain the sky masks for the training
panorama images, we tackle the infinity issue with a novel
non-sky opacity supervision proposed. Based on our dis-
cussion in Sec. 1, the pseudo sky masks provide a strong
inductive basis to faithfully learn the density fields for our
proposed Sat2Density in a simple way.

Denoted by R and R′ the non-sky/sky regions of the
ground-view panorama, the loss function Lsnop of our pro-
posed non-sky opacity supervision reads to

Lsnop =
∑
r∈R

∥∥∥Ô(r)− 1
∥∥∥
1
+

∑
r∈R′

∥∥∥Ô(r)
∥∥∥
1
. (5)

Illumination Injection from Sky Regions. While the
density field works well on images of static subjects cap-
tured under controlled settings, it is incapable of modeling
many ubiquitous, real-world phenomena for ground-view
panorama synthesis. More importantly, due to the lacking
of correspondence from the sky regions in ground-view im-
ages to the paired satellite image, we find that the variable
illumination in the ground images is a key factor preventing
the model to learn faithful 3D geometry.

Accordingly, we present an illumination injection from
sky regions of the panorama. For the sake of simplicity of
design, we choose the RGB histogram information in the
sky regions as the illumination hints. In our implemen-
tation, we first cut out the sky part from the ground im-
age, then calculate the RGB sky histogram with N bins.
To further exploit the representational ability of sky his-
tograms, we follow the style encoding scheme proposed in
SPADE [17] to transform the sky histogram into a fixed-
dim embedding, which allows our Sat2Density learn reli-
able information of complicated illumination from the sky
histogram for the RenderNet. From our experiments, we
also find that the injection of sky histogram into the Ren-
derNet could further improve the quality of explicit volume
density by encouraging the DensityNet to focus on the stuff
regions rather than being disturbed by the per-image illumi-
nation variations issue.

By combining the above two approaches, we solve the
per-image illumination variations and infinity issue, and let
our model focus on learning the scene geometry relation-
ship between satellite and ground view (see Figure 3). Be-
sides, thanks to the proposed sky histogram illumination in-
jection approach, our model could control illuminations.

3.3. Loss Functions

Sat2Density is trained with both reconstruction loss and
adversarial loss. For reconstruction loss, we follow GAN-
based syntheses works, using a combination of the percep-
tual loss [7], L1, and L2 loss. In the adversarial loss, we
use the non-saturated loss [9] as the training objective. Be-
sides, Lsnop is used for opacity supervision. For illumina-
tion learning, we follow the SPADE [18] use a KL Diver-
gence loss. Last, in the discriminator, we use the feature
matching loss & a modified multi-scale discriminator archi-
tecture in [27]. Details can be found in the supplemental
material.
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4. Experiments
4.1. Implementation Details

We train our model with 256×256 input satellite images
and output a 256 × 256 × 65 explicit volume density and
finally predict a 128 × 512 360° panorama image, which
is the same as the setting in [22] for a fair comparison. The
maximum height modeled by our implicit volume density is
8 meters, which is an empirical setup. We approximate the
height of the street-view camera as 2 meters with respect to
the ground plane, which follows Shi et al. [22]. The bins of
histogram in each channel are 90. The model is trained in an
end-to-end manner with a batch size of 16. The optimizer
we used is Adam with a learning rate of 0.00005, and β1 =
0, β2 = 0.999. Using a 32GB Tesla V100, the training time
is about 30 hours for 30 epochs. As for the architectures
of DensityNet and RenderNet, they share most similarities
with the networks used in Pix2Pix[6]. More details about
the model architecture and training details can be found in
the supplemental material.

4.2. Evaluation Metrics
We use several evaluation metrics to quantitatively assess

our results. The low-level similarity measures include root-
mean-square error (RMSE), structure similarity index mea-
sure (SSIM), peak signal-to-noise ratio (PSNR), and sharp-
ness difference (SD), which evaluate the pixel-wise similar-
ity between two images. We also use high-level perceptual
similarity [36] for evaluation as in previous works. Percep-
tual similarity evaluates the feature similarity of generated
and real images. We employ the pretrained AlexNet [10]
and Squeeze [5] networks as backbones for evaluation, de-
noted as Palex and Psqueeze, respectively.

4.3. Dataset for Ground View Synthesis
We choose CVUSA [34] and CVACT(Aligned) [22]

datasets for comparison in the central ground-view synthe-
sis setting, following Shi et al. [22]. CVACT(Aligned) is a
well-posed dataset aligned in Shi et al. [22], with 360° hor-
izontal and 180° vertical visualization in panorama ground
truth. Hence, we selected it for controllable illumination
visualization and controllable video generation. For the
dataset CVUSA, we only use it for center-ground view syn-
thesis as their upper and lower parts of the panoramic im-
age are trimmed for the geo-localization task, and the num-
ber of trimmed pixels is unknown [34]. During training
and testing, we considered the street-view panoramas in
the CVUSA dataset as having a 90° vertical field of view
(FoV), with the central horizontal line representing the hori-
zon. CVACT(Aligned) contains 26,519 training pairs and
6,288 testing pairs, while CVUSA contains 35,532 train-
ing pairs and 8,884 testing pairs. We did not choose other
available datasets built in the city scene, such as OP[21] and
VIGOR[37], since their GPS information is less accurate in

urban areas compared to open rural areas, and poorly posed
satellite-ground image pairs are not suitable for our task.

4.4. Ablation Study
In this section, we conduct experiments to validate the

importance of each component in our framework, includ-
ing non-sky opacity supervision, illumination injection, and
whether to concatenate depth with the initial panorama be-
fore sending it to the RenderNet. We first present quanti-
tative comparisons in Table 1 for the center ground-view
synthesis setting. It is evident that the illumination injec-
tion most affects the quantitative result, at the same time,
only adding non-sky opacity supervision will lead to a little
drop in the quantitative score. But combining the two ap-
proaches will lead to better scores. Moreover, the compar-
ison on whether concatenate depth to the RenderNet shows
almost equal results in terms of quantitative comparison.

Figure 3 shows some samples from the rendered
panorama video and their corresponding depth maps. The
results show that without the proposed components (base-
line), the rendered depth seems meaningless in the up-
per half, while the lower regions look good. We attribute
this phenomenon to the fact that the lower bound of the
panorama is the ray that looks down, which is highly re-
lated to the ground region near the shooting center in the
satellite. It can be easily learned by a simple CNN with a
simple geometry projection, which also explains why the
work in [22] can render the ground region well.

Compared to the baseline, adding the illumination injec-
tion can make the rendered depth look better, but the trees’
density looks indistinct, and the sky region’s density is still
unclear. While only adding non-sky opacity supervision,
the air region’s opacity turns to zero, but the area between
air and the ground is still barely satisfactory. The super-
vision did clear the sky region in the volume density, but
the inner region between the sky and the ground is also
smoothed. This is because such coarse supervision cannot
help the model recognize the complex region.

By combining both strategies (Baseline+Illu+Opa), we
can achieve a plausible 3D geometry representation that can
generate a depth map faithful to the satellite image and the
reference illumination. The volume density is clear com-
pared to the above settings, and we can easily distinguish
the inner regions.

Furthermore, when depth is incorporated into the ren-
dering process, the resulting images tend to emphasize re-
gions with depth information. This reduces the likelihood
of generating objects in infinite areas randomly and leads to
a synthesized ground view that more closely resembles the
satellite scene, which can be observed from the video.

4.5. Center Ground-View Synthesis Comparison
In the center ground-view synthesis setting, we com-

pare our method with Pix2Pix [6], XFork [19], and Shi et
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(a) input & track (b) Baseline (c) Baseline+Opa (d) Baseline+Illu (e) Baseline+Illu+Opa (f) Sat2Density

(g) Baseline (h) Baseline+Opa (i) Baseline+Illu (j) Baseline+Illu+Opa (k) Sat2Density

Figure 3. Ablation study on CVACT (Aligned) dataset. In the first row, the picture on the upper left is the input image. Each point from left
to right is related to the bottom four rows from up to down. The remaining five images in the first row are the density rendered from the
input satellite image following the setting (b-f) one by one. The images in the second row are the satellite depth calculated following the
setting (b-f) one by one. ‘Baseline’ means baseline, ‘Opa’ means add non-sky opacity supervision, ‘Illu’ means add illumination injection,
and ‘Sat2Density’ is our final result, compared to ‘Baseline+Illu+Opa’, we concatenate the depth map and initial panorama together to
send to the RenderNet rather than only the initial panorama. The video could be seen in the project page.

3688



(a) Isat (b) Pix2Pix [6] (c) XFork [19] (d) Shi et al. [22] (e) Sat2Density (f) Ground Truth

Figure 4. Example images generated by different methods in center panorama synthesis task. The top two rows show the results on CVACT
(Aligned) dataset, and the bottom two rows show the results on the CVUSA dataset.

Comparison RMSE ↓ SSIM↑ PSNR↑ SD ↑ Palex ↓ Psqu ↓
Base 48.40 0.4491 14.67 12.76 0.3772 0.2486
Base+Opa 48.39 0.4431 14.63 12.70 0.3847 0.2525
Base+Illu 41.62 0.4689 15.96 12.90 0.3497 0.2225
Base+Opa+Illu 40.71 0.4710 16.16 12.83 0.3329 0.2154
Sat2Density 39.76 0.4818 16.38 12.90 0.3339 0.2145

Table 1. Ablation study results on CVACT (Aligned) dataset.
‘Base’ means baseline, ‘Opa’ means add non-sky opacity super-
vision, ‘Illu’ means add illumination injection, and ‘Sat2Density’
is our result, compared to ‘Baseline+Opa+Illu’, we concatenate
the depth map and initial panorama together to send to the Ren-
derNet rather than only the initial panorama.

Method RMSE ↓ SSIM↑ PSNR↑ SD ↑ Palex ↓ Psqueeze ↓ Inference
time/ms

C
VA

C
T

(A
li.

) Pix2Pix [6] 49.75 0.3852 14.38 12.09 0.4654 0.3096 10.29
XFork [19] 48.95 0.3710 14.50 12.32 0.4638 0.3262 17.24

Shi et al. [22] 48.50 0.4272 14.59 12.31 0.4059 0.2708 109.88
Sat2Density 47.13 0.4586 14.92 12.77 0.3842 0.2573 -

Sat2Density-oracle 39.76 0.4818 16.38 12.90 0.3339 0.2145 33.12

C
V

U
SA

Pix2Pix 55.27 0.2946 13.48 11.97 0.5092 0.3902 -
XFork 54.11 0.2873 13.68 12.15 0.5144 0.4041 -

Shi et al. 53.75 0.3451 13.75 12.06 0.4639 0.3506 -
Sat2Density 53.30 0.3301 13.78 12.38 0.4504 0.3365 -

Sat2Density-oracle 48.75 0.3584 14.66 12.53 0.4163 0.3058 -

Table 2. Quantitative comparison with existing algorithms on the
CVACT (Aligned) and CVUSA datasets in center ground-view
synthesis setting. ‘Sat2Density’ means we randomly choose nine
histograms from the test set when inference and then average it.
‘Sat2Density-oracle’ means the histogram is from the GT ground
image. The inference time was tested on a Tesla V100.

al. [22]. Pix2Pix and XFork are classic GAN-based models
for image-to-image translation, but ignore the 3D geome-
try connections between the two views. Shi et al. [22] is the
first geometry-guided synthesis model, which represents the
3D geometry in the depth probability MPI, showing brilliant
results in the center ground-view synthesis setting.

Quantitative Comparison. As presented in Table 2, it is
evident that Sat2Density achieves the best performance on
all scores, including both low-level and perceptual similar-
ity measures. Even choosing illumination hint randomly,

our model still outperforms other methods.
Moreover, a combined analysis of the quantitative results

of Sat2Density-sin and controllable illumination in Figure 5
reveals that illumination can significantly affect both com-
mon low-level and perceptual similarity measures, although
the objects in the scene remain unchanged. As a result, it
is more important to consider qualitative comparisons and
video synthesis results.

Qualitative Comparison. In Figure 4, we find that the
condition-GAN based methods can only synthesize good-
looking ground images, but can not restore the geometry
information from the satellite scene. Shi et al. [22] learn
a coarse geometry representation, so the 3D information in
the ground region is more reliable. For our method, as dis-
cussed in the ablation study, the high-fidelity synthesis (es-
pecially in the most challenging regions between the sky
and the ground) is approached by learning faithful density
representation of the 3D space.

4.6. Controllable Illumination
As shown in Figure 5, the sky histogram could easily

control the image’s illumination, while the semantics did
not change, e.g. The road’s color was changed by giving dif-
ferent illumination, but the shape remains unchanged. Be-
sides, the illumination interpolation results can be seen on
the project page, which also show the superiority of illumi-
nation injection.

4.7. Ground Video Generation
In Figure 6, we compare the rendered satellite depth, and

synthesized ground images from a camera trajectory with
the expansion of Shi et al. [22]. Shi et al. [22] focus on
synthesizing ground panorama in the center of the satellite
image, as they learn geometry by depth probability map,
we expand their work by moving the camera position when
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Figure 5. Controllable illumination synthesis: each row shows the results rendered from the same satellite image, and each column shares
the same illumination from the same ground image.

(a) input image & track (b) Ours sat depth (c) Shi et al. sat depth

(d) Our ground depth (e) Our ground (f) Shi et al.

Figure 6. Synthesized video & depth comparison. (a) is the input
satellite image, the red curve is the camera trajectory to synthesize
video, the red point is chosen for visualization in (d-f), (b-c) is the
rendered satellite depth by our method and Shi et al., (d) is the
rendered depth of the ground image by our method, (e), (f) are the
rendered ground image by our method and Shi et al. separately.
The video can be seen in the project page.

inference. We also show the rendered depth maps. It is
worth noting that Shi et al. [22] cannot generate a depth
map for novel views, due to the intrinsic flaw of the depth
probability representation.

From the synthesized satellite depth, we observe that Shi
et al. [22] can only render a very coarse satellite depth,
and is hard to recognize most regions. In contrast, trees
and ground regions can easily distinguish from our satel-
lite depth, and the depth in ground regions appears smooth.
Additionally, we can render depth in any view direction by

volume rendering, as shown in Figure 6 (d).
Furthermore, we find that the rendered ground video by

the expanded Shi et al. [22] has little consistency due to the
unfaithful 3D geometry representation, as evidenced by the
inconsistencies present in the trees and sky. These results
demonstrate that Sat2Density is capable of rendering tem-
poral and spatially consistent videos.

5. Discussion and Limitations
Although Sat2Density is advancing the state-of-the-art,

it still has some limitations. For instance, the tree density
and visibility of houses are not perfect in our results, which
would come down to the following reasons. Firstly, the one-
to-one satellite and ground image pairs are not optimal for
training, as having multiple ground images corresponding
to one satellite image would be better. Additionally, images
taken on different days may introduce transient objects that
our approach is unable to handle. Then, the projected color
map sent to the RenderNet may be too coarse in the region
between sky and ground, which could impact the final re-
sult. Finally, well-aligned image pairs are required to learn
geometry, so we are unable to evaluate the effectiveness of
our approach in city scenes for more coarse GPS precision
in the city. Therefore, while our work is a promising start
for learning geometry from cross-view image pairs, there
are still many challenges that need to be addressed.

6. Conclusion
In this paper, we propose a method, i.e. Sat2Density,

to learn a faithful 3D geometry representation of satel-
lite scenes from satellite-ground image pairs through the
satellite-to-ground-view synthesis task. Our approach tack-
les two critical issues, the infinity issue and the illumination
difference issue, to make geometry learning possible. By
leveraging the learned density, our model is capable of syn-
thesizing spatial and temporal ground videos from satellite
images even with only one-to-one satellite-ground image
pairs for training. To the best of our knowledge, our method
represents the first successful attempt to learn precise 3D
geometry from satellite-ground image pairs, which signif-
icantly advances the recognition of satellite-ground tasks
from a geometric perspective.
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