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Figure 1: Mesh-aware rendering of radiance fields. We place a cubic mesh with reflective textures and other synthetic mesh
objects in the MipNeRF-360 Garden [5] scene. Our mesh-aware rendering explicitly computes the rays bouncing inside the
mirror room, creating an ‘infinite mirror room’ visual effect.

Abstract

Embedding polygonal mesh assets within photorealistic
Neural Radience Fields (NeRF) volumes, such that they can
be rendered and their dynamics simulated in a physically
consistent manner with the NeRF, is under-explored from
the system perspective of integrating NeRF into the tradi-
tional graphics pipeline. This paper designs a two-way cou-
pling between mesh and NeRF during rendering and simu-
lation. We first review the light transport equations for both
mesh and NeRF, then distill them into an efficient algorithm
for updating radiance and throughput along a cast ray with
an arbitrary number of bounces. To resolve the discrep-
ancy between the linear color space that the path tracer
assumes and the sRGB color space that standard NeRF
uses, we train NeRF with High Dynamic Range (HDR) im-
ages. We also present a strategy to estimate light sources
and cast shadows on the NeRF. Finally, we consider how
the hybrid surface-volumetric formulation can be efficiently
integrated with a high-performance physics simulator that
supports cloth, rigid and soft bodies. The full rendering
and simulation system can be run on a GPU at interactive
rates. We show that a hybrid system approach outperforms
alternatives in visual realism for mesh insertion, because it
allows realistic light transport from volumetric NeRF me-

dia onto surfaces, which affects the appearance of reflec-
tive/refractive surfaces and illumination of diffuse surfaces
informed by the dynamic scene.

1. Introduction
Creating high-quality 3D environments suitable for pho-

torealistic rendering entails labor-intensive manual work
carried out by skilled 3D artists. Neural Radiance Fields
(NeRF) [46] provide a convenient way to capture a volumet-
ric representation of a complex, real-world scene, paving
the way for high-quality novel view synthesis and inter-
active photorealistic rendering [49]. These qualities make
NeRF exceptionally adept at modeling background environ-
ments. On the other hand, existing methods for physically-
based simulation and rendering of complex material and
lighting effects are primarily based on surface mesh rep-
resentations. Integrating neural field representations with
well-established traditional graphics pipelines opens up
many possibilities in VR/AR, interactive gaming, virtual
tourism, education, training, and computer animation.

Volume rendering [56] has demonstrated its capability
to produce visually captivating results for participating me-
dia [53]. However, integrating NN-based NeRF into this
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Figure 2: Light transport on the surface (left) and in the
medium (right).

pipeline while maintaining realistic lighting effects such as
shadows, reflections, refractions, and more, remains a rel-
atively unexplored area. In terms of simulation, while the
geometry of NeRF is implicit in its density field, it lacks
a well-defined surface representation, making it difficult to
detect and resolve collisions. Recent works have delved
into enhancing the integration between NeRF and meshes,
aiming to combine the photorealistic capabilities of NeRF
with the versatility of meshes for rendering and simulation.
Neural implicit surfaces [87, 80, 59, 19] are represented
as learned Signed Distance Fields (SDF) within the NeRF
framework. Meanwhile, methods like IRON [94] and NVD-
iffRec [52] extract explicit, textured meshes that are directly
compatible with path tracing, offering practical benefits at
the expense of a lossy discretization. Nerfstudio [72] ren-
ders NeRF and meshes separately, then composites the ren-
der passes with an occlusion mask. Unfortunately, this de-
coupled rendering approach offers no way to exploit the
lighting and appearance information encoded in the NeRF
volume to affect the rendered mesh appearance. Figure 6
visually compares our hybrid method to naively combining
NeRF and surface rendering, and pure surface rendering.

We introduce a hybrid graphics pipeline that integrates
the rendering and simulation of neural fields and meshes.
for both representations, we consider lighting effects and
contact handling for physical interaction. By unifying
NeRF volume rendering and path tracing within the linear
RGB space, we discover their Light Transport Equations
exhibit similarities in terms of variables, forms, and princi-
ples. Leveraging their shared light transport behavior, we
devise update rules for radiance and throughput variables,
enabling seamless integration between NeRF and meshes.
To incorporate shadows onto the NeRF, we employ differ-
entiable surface rendering techniques [28] to estimate light
sources and introduce secondary shadow rays during the ray
marching process to determine visibility. Consequently, the
NeRF rendering equation is modified to include a point-
wise shadow mask.

For simulation, we adopt SDFs to represent geometry
of neural fields, which is advantageous for physical contact
handling and collision resolution. We then use position-
based dynamics [42] for time integration. Our efficient
hybrid rendering and simulation system is implemented in
CUDA. To enhance usability, we have also incorporated

user-friendly Python interfaces. In summary, the key con-
tributions of this work are:

• A two-way coupling between NeRF and surface repre-
sentations for rendering and simulation.

• Integration with HDR data which can unify the color
space of the path tracer and NeRF, with a strategy to
estimate light sources and cast shadows on NeRF.

• An efficient rendering procedure that alternates ray
marching and path tracing steps by blending the Light
Transport Equations for both NeRF and meshes.

• An interactive, easy-to-use implementation with a
high-level Python interface that connects the low-level
rendering and simulation GPU kernels.

2. Related Work
2.1. Neural Fields and Surface Representations

Rendering of participating media has been extensively
studied [57, 53] in classic graphics pipelines [58, 63,
50, 25]. In recent years, significant advancements have
been made in this area [47, 55], yielding remarkable vi-
sual outcomes. Our work aims to expand upon this
progress by incorporating the emergent Neural Radiance
Fields (NeRF) [46], which have gained substantial popu-
larity, into this exciting domain. Within the volume ren-
dering framework, NeRF bakes the plenoptic function and
volumetric density into spatial points. These points can
be effectively parameterized by an an MLP [46], convo-
lutional networks [8], hash grid [49], point cloud [84],
voxel [36, 70], or tensors [9]. It allows users to recon-
struct photorealistic 3D static [71, 76, 66, 33, 81] or dy-
namic scenes [61, 83, 60, 20, 38] by casually capturing a
few images [1]. Original NeRF takes seconds to render one
single frame, while follow-up works have accelerated ren-
dering speed [24, 78, 12, 21, 51, 88, 89, 3, 2, 79].

NeRF simplifies the creation of 3D content compared to
classical mesh-based pipelines. However, addressing chal-
lenges of editing [93, 31] and decomposing the baked in-
formation [44, 68, 69, 85] is not trivial. Effort has been
directed toward reconciling the advantages of both NeRF
and surface-based paradigms. In rendering, [94] and [52]
propose to use surface-based differentiable rendering to re-
construct textured meshes [23] from neural fields. Their re-
constructed meshes can be imported to a surface rendering
pipeline like Blender [15], but the original NeRF represen-
tation cannot be directly rendered with meshes. For simu-
lation, NeRFEditting [92] proposes to use explicit mesh ex-
tracted by [80] to control the deformation of Neural Fields.
Qiao et al. [65] further add full dynamics over the extracted
tetrahedra mesh. Chu et al. [13] integrates the dynamics of
smoke with neural fields. [14] also connects differentiable
simulation to NeRF, where the density field and its gradient
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Figure 3: Pipeline overview. Our method takes an optimized radiance field model and surface meshes as inputs. We can run a
physics simulation between the NeRF and meshes. The updated mesh vertices and NeRF transformations are synchronized to
the renderer, which uses Monte Carlo simulation to sample ray paths. As the ray travels through space, it alternates between
surface rendering (ray-tracing) and NeRF rendering (ray-marching), both updating its radiance.

are used to compute the contact. These methods aim to con-
struct an end-to-end differentiable simulation and rendering
pipeline, yet they have yet to couple the rendering.

2.2. Scene Editing and Synthesis

Our method enables inserting mesh assets into NeRF
models of real-world captures. Editing of existing scenes
is an active topic of study. For neural field representations,
ray bending [75, 64, 34] is widely used to modify an opti-
mized NeRF. It is possible to delete, add, duplicate, or ac-
tuate [10, 62, 82, 37] an area by bending the path of the
rendering ray. [22] propose to train a NeRF for each ob-
ject and compose them into a scene. ClimateNeRF [35] can
change weather effects by modifying the density and radi-
ance functions during ray marching. These methods study
editing of isolated NeRF models. There are also inverse
rendering works that decompose [86, 6] the information
baked into NeRF, which can then be used to edit lighting
and materials [32]. Such decomposition is useful, but as-
sumes information like a priori knowledge of light sources,
or synthetic scenes. They do not address inserting mesh into
NeRF scenes. Besides NeRF, [30] inserts a virtual object
into existing images by estimating the geometry and light
source in the existing image. [11] insert vehicles in street
scenes by warping textured cars using predicted 3D poses.

3. Method

In this section, we describe how radiance fields and
polygonal meshes can be integrated into a unified rendering
and simulation pipeline, an overview of which is visualized
in Figure 3.

3.1. Rendering

NeRF can photorealistically reconstruct a 3D scene from
a set of images, making it an appealing candidate for mod-
eling environments and potentially valuable for traditional
surface-based rendering. One possible approach to bridge
these disparate representations is to render the meshes and
NeRF volume in separate passes, and composite the results
together in 2D image space. However, compositing in
image space is susceptible to incorrect occlusion masks and
inaccurate lighting. A more physically principled approach
to this problem is identifying and exploiting the similarities
in their respective light transport equations, which directly
allows the radiance field and mesh to be incorporated in 3D
space.

Surface Rendering Equation. The Light Transport Equa-
tion (LTE) for surface rendering is:

L(p, ωo) = Le(p, ωo) + Lr(p, ωo) (1)

Lr(p, ωo) =

∫
S2

fs(p, ωo, ωi)Li(p, ωi) |cos θi| dωi (2)

Li(p, ωi) = L(t(p, ωi),−ωi) (3)

where p is a surface point; ωi, ωo are the directions of in-
cident (incoming) and exitant (outgoing) radiance; S2 is
the unit sphere sampling space for directions; L,Le, Li, Lr

are the exitant, emitted, incident, and reflected radiance,
respectively; θi is the angle of incidence of illumina-
tion; fs(p, ωo, ωi) is the bidirectional scattering distribution
function (BSDF); and t(p, ω) is the ray-casting function that
computes the first surface intersected by the ray cast from p
in the direction ω.
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Figure 4: Shadow Casting. We estimate the geometry and light source of the scene and insert a metal basket onto the desk.
Our pipeline can render the realistic reflection and shadow effects caused by the synthetic mesh.

If a scene is represented solely by surfaces, the LTE in
Equation 1 can be solved by Monte Carlo path tracing: for
each pixel, a ray is randomly cast from the camera, its path
constructed incrementally each time it hits, and bounces off
of a surface. A natural but memory-inefficient way to im-
plement this algorithm is to recursively compute Equation 1
and spawn a new ray upon each ray-surface intersection.
Noticing thatLi(p, ωi) is independent of previous paths, the
recursive process can be transformed into a weighted sum of
radiance on each ray-surface intersection pk. These weights
T (pk) are called throughput, and they depend on their pre-
decessors’ BSDF fs(p, ωo, ωi), illumination angle |cos θi|,
and probability density function P of the scattering:

T (pk) =
T (pk−1) · fs(pk, ωk−1, ωk) |cos(θk)|

P
(4)

T (pk) and Li(pk, ω) are the only variables essential to
track and integrate for each bounce.

Volumetric Rendering Equation. The light transport
equation for the volumetric medium is:

L(p, ωo) =

∫ tf

t=0

exp
(
−
∫ t

s=0

σt(ps)ds
)
Li(pt, ωo)dt (5)

Li(pt, ωo) =Le(pt, ωo) + Ls(pt, ωo) (6)

Ls(pt, ωo) = σs(pt)

∫
S2

fp(pt, ωo, ωi)L(pt, ωi)dωi (7)

where Ls is the (weighted) scattered radiance, σt and σs are
the attenuations and scattering coefficients, fp is the phase
function of the volume, and ps is on the ray ps = p+ s · ωo

(similar to pt). All other terms share the same definition as
in surface rendering.

The integral in the volumetric LTE could again be solved
using Monte Carlo methods. However, stochastic simu-
lation of volumetric data is more challenging and expen-
sive than surface data. A photon may change direction
in a continuous medium, unlike the discrete bounces that
occur only at surfaces. Therefore, rather than simulating
the path of photons using Monte Carlo sampling, meth-
ods like NeRF [46] instead bake the attenuation coefficient
σ(p) = σt(p) and view-dependent radiance r(p, ω) onto
each spatial point, and so there is no scattering. This cir-
cumvents solving Equation 7, thereby avoiding considering
light transport, light sources, and material properties. Vol-
ume rendering under the NeRF formulation becomes:

r(p, ω) =

∫ tf

0

T (t)σ(pt)r(pt, ω)dt, (8)

T (t) = exp
(
−
∫ t

0

σ(ps)ds
)

(9)

In Equation 8, the radiance and throughput are being up-
dated, similar to surface rendering. However, note that the
volumetric LTE denotes incident radiance at point p from
direction ω as Li(p, ω), while NeRF denotes the same as
r(p, ω). This terminology is indeed overloaded, as r(p, ω)
in the NeRF formula represents sRGB color, i.e. the re-
sult of applying a nonlinear tone-mapping function to the
raw radiance value. The terms are related in that r(p, ω) =
ψ(Li(p, ω)), where ψ(·) represents a tone-mapping func-
tion from linear to sRGB color space.
Unifying color space of path tracing and ray marching.
The standard NeRF model accumulates sRGB color along
rays cast from the camera into the volume: each point’s
color is represented by three 8-bit values, one for each color
channel. Integrating these colors along the ray (weighted
by transmittance) produces a final 8-bit color value, the ren-
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dered pixel color, which is compared to the corresponding
ground truth 8-bit pixel color to supervise NeRF training.

In contrast, path tracing assumes radiance values are ex-
pressed in linear color space. To relate NeRF and sur-
face rendering in a physically meaningful way, they should
ideally operate in a standard color space. To reconcile
this difference, we train an HDR variant of NeRF, super-
vised with 32-bit HDR images directly rather than the stan-
dard 8-bit NeRF. The resulting HDR NeRF produces a 3-
channel radiance in 32-bit linear color space at each sam-
pled point. For details regarding HDR data acquisition,
preprocessing, and HDR NeRF implementation, see Ap-
pendix E. As our focus here is to articulate the advan-
tage of HDR NeRF in the context of the overall system,
we forego a more general discussion of training NeRF in
HDR and refer interested readers to [45] for a deep dive.
The HDR NeRF rendering equation can thus be written as:
Li(p, ω) =

∫ tf
0
T (t)σ(pt)Li(pt, ω)dt where the transmit-

tance term T (t) remains unchanged.
With this simple adjustment, the NeRF equation can now

directly relate to the surface rendering equation. If captur-
ing HDR training data is impractical, one can still use stan-
dard (LDR) NeRF. Since the NeRF volume acts as the only
light source, and the total energy is dissipative during the
light transport, Li(p, ω) will never exceed the NeRF vol-
ume’s maximal radiance. ψ(·) would then degenerate to
an identity mapping such that L(p, ω) = r(p, ω). In other
words, in many practical cases, reasonable visual results
could still be obtained if standard NeRF is used with our
system, despite the resulting inaccuracy in the light trans-
port simulation.
Estimating light sources with differentiable surface ren-
dering. Sampling light sources for computing the shadow
pass requires an approximate representation of the light
sources (emitters) of the scene. Note that NeRF’s volume
rendering formulation bakes appearance into each point in
the volume rather than simulating physically based light
transport. To recover an explicit representation of light
sources, we first reconstruct the scene’s geometry as a neu-
ral SDF using MonoSDF [91], from which we extract an
explicit mesh. Then, we employ a differentiable path tracer,
Mitsuba3 [28, 29], to estimate a UV Emission Texture for
the mesh. We follow the general approach of [54], though
we customize the optimization procedure since our goal
is to estimate only the light sources, as opposed to a full
BRDF estimation (more details about the optimization can
be found in Appendix D).

Once the light source estimation has converged, we
prune faces whose emission falls below a threshold from
the explicit mesh, which is necessary for efficiency, as most
faces in the explicit mesh do not emit light. The hybrid ren-
derer then consumes the pruned mesh.
Shadow rays. We query additional rays during ray-

(a) HDR (c) LDR

(b) HDR [-3.5 EV] (d) LDR [-1.5 EV]

Figure 5: HDR Volumetric Radiance Map. The diffuse
sphere is rendered using our hybrid algorithm. Images ren-
dered using the NeRF trained in 32-bit HDR (a, b) achieve
a higher level of lighting realism than those rendered with
8-bit LDR (c, d).

marching to cast shadows on NeRF. For each sampled point
pt in NeRF, we shoot a secondary ray from pt to the light
source (see the following subsection for details on estimat-
ing lighting sources). If an inserted mesh blocks this ray,
then this pt has a shadow mask m(pt) = 1 − rsrc, where
rsrc is the intensity of the light source. Non-blocked pixels
havemshadow = 1. The contribution of this point in Eq. 8 is
then T (t)σ(pt)m(pt)r(pt, ω). Fig. 4 shows that an inserted
metal basket casts shadows on the NeRF desk.

Hybrid Rendering Algorithm Based on the Light Trans-
port Equations mentioned above, we note that both surface
and NeRF rendering integrate the throughput T (p) and ra-
diance r(p, ω) = Li(p, ω). The differences are: (1) Surface
rendering updates those values on discrete boundaries while
NeRF accumulates them in the continuous space; (2) T (p)
and r(p, ω) are governed by the BSDF parameters in sur-
face rendering, while by neural fields in NeRF. Therefore,
we can alternate between the surface and NeRF rendering
rules as they travel in space. Algorithm 1 is a summary of
the hybrid rendering of NeRF and surface representations:

1. We use Monte Carlo path tracing to sample the ray-
surface-intersections p0 → p1 → ... → pn, where
p0 is the camera center, and pn is the termination
of the path. At the beginning of the path, initial-
ize accumulated throughput T (p0) = 1 and radiance
r(p0, ω0) = (0, 0, 0). The termination conditions will
be discussed in (4).

2. If shadows are needed, we estimate light source ge-
ometry and intensity rsrc with differentiable surface
rendering.
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3. For each ray segment pj → pj+1, we use the ray-
marching algorithm to sample and integrate the NeRF
medium. For the sampled points pt on the ray, we
shoot a ray from pt to the light source (if any). If
meshes block this point, set its shadow mask to be
m(pt) = 1−rsrc (or simply a constant close to 0), oth-
erwise m(pt) = 1. Then the throughput and shadow
masked radiance between surface intersections pj and
pj+1 can be computed as,

T ′(pj+1) = T (pj) · exp
(
−
∫
pt

σ(pt)dt
)

(10)

L(pj+1, ωj) = L(pj , ωj) +∫
pt

T (t)σ(pt)m(pt)r(pt, ω)dt
(11)

where pt ∈ (pj , pj+1] and

T (t) = T (pj) · exp
(
−
∫ t

0

σ(ps)ds
)

is also accumulated from pj .
4. At the end of a ray segment, we reach the interface
pj+1 where the surface-rendering procedures occur.
The direction ωj+1 of the next ray is determined by
sampling the BSDF, and the weighted illumination and
emitted light at this point are added to the radiance:

L(pj+1, ωj+1) = L(pj+1, ωj) + T (pj)Le(pj+1, ωj)
(12)

The throughput weight is updated as:

T (pj+1) =
T ′(pj+1) · fs(pj+1, ωj , ωj+1) |cos(θj+1)|

P
(13)

where P is the scattering probability density function.
5. In the end, the ray terminates at (pe, ωe) if (1) it runs

out of the scene; (2) current throughput T (pe) is lower
than a threshold; or (3) it meets the bounce limit.

6. As the rendering procedure is carried out over a linear
32-bit color space after the path tracing terminates for
a given pixel, we can apply a nonlinear tone-mapping
function, which we denote as ψ, to map from linear
radiance to final sRGB color r(pe, ωe) which is more
suitable for displaying on a monitor:

r(pe, ωe) = ψ(L(pe, ωe)) (14)

3.2. Simulation

We incorporate a dynamics simulator that supports rigid
bodies, cloth, and deformable solids. Neural fields and
meshes can be connected in the simulation pipeline by

Algorithm 1 Hybrid Rendering Pipeline

Require: Meshes and pretrained NeRF of the scene.
Estimate light sources with differentiable surface render-
ing.
for each pixel (u, v) in parallel do

Initialize p0, ω0 based on (u, v) and camera center.
Set throughput T (p0) = 1.
Set radiance L(p0, ω0) = (0, 0, 0).
for j ∈ {1, ..., nbounces} do

Cast ray to find next intersection pj (Eqn. 3).
March along ray pj−1 → pj .
Cast shadow rays to light sources.
Integrate T ′(pj) and L(pj , ωj−1) (Eqn. 10, 11).
Sample BSDF at pj to get next ray direction ωj

Update T (pj) and L(pj , ωj) (Eqn. 13, 12).
break if termination conditions satisfied.

end for
(Path tracing endpoint denoted as (pe, ωe))
Apply tone-mapping function r = ψ(L(pe, ωe)).

end for

Signed Distance Fields (SDF) or reconstructed surface
mesh. The SDF of the NeRF can be obtained in several
ways during pre-processing. On the one hand, existing
methods can directly learn the SDF, like NeuS [80] and
VolSDf [87]. On the other hand, it is common to set a
threshold value for the density field and extract the sur-
face mesh through Marching Cube [40]. And the SDF can
be converted from the mesh. The learned SDF has better
quality but takes more time. We also implement an Instant-
NGP version of NeuS (called NeuS-NGP) and accelerate
the original code by more than 10 times. Users can make
the trade-off depending on their needs.

We employ extended position-based dynamics
(XPBD) [43, 48] to simulate the objects during run-
time. We choose this dynamics model because it is fast and
can support various physical properties. Collision detection
is performed by querying the SDF of all vertices. All of
these queries can be computed efficiently in parallel on a
GPU. Given a detected collision from the SDF, we can also
get the penetration depth and normal, which can be used to
compute the contact forces.

In some scenarios, NeRF can represent movable objects
(e.g. a scene can be a composition of several NeRF ob-
jects [73]) instead of a static background. We can get the
homogenous transformation t ∈ R4×4 of the NeRF from
simulation in each time step, which is used to inverse trans-
form the homogenous coordinates t−1 ·p [64] when query-
ing the color/density and sampling rays in the Instant-NGP
hash grid. In Fig. 8 (b), we control a ball to interact with a
NeRF chair [46] in real-time. The supplementary video fur-
ther shows how the collision effect changes when the ball
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(a) Original rendering (b) Ours (c) NVDiffrec (d) Nerfstudio

Figure 6: Rendering comparison for virtual object insertion. We insert a reflective metal ball into the Garden and Bicycle
scenes from the Mip-NeRF 360 dataset [5]. (b) Our hybrid method produces results of superior visual quality with fewer
artifacts. (c) We extract the foreground mesh using NVDiffRec, then insert the synthetic ball and render using ray tracing.
Extracting an explicit mesh object results in noticeable artifacts such as the noisy table surface, and missing thin structures
like the bicycle’s wheel and the bench. (d) The 2D compositing workflow of Nerfstudio suffers from non-3D-aware occlusion
masks and a limited ability to accommodate realistic interreflection.

and chair have different relative mass and velocities.

3.3. Implementation Details

The entire pipeline employs CUDA backends for compu-
tation and Python interfaces for interaction. For rendering,
NeRF is trained with the default configuration using Instant-
NGP [49]. We also implement an instant-NGP [49] version
of NeuS [80] for efficient learning of the implicit SDF ge-
ometry. The path tracing algorithm is implemented using
CUDA, embedded in Instant-NGP’s ray-marching proce-
dures. We incorporate refractive, reflective, and Lamber-
tian BSDF models. Physics simulation utilizes Warp [41],
which just-in-time compiles Python code into CUDA ker-
nels. The connection between rendering and simulation is
facilitated by a Python interface using pybind11 [27]. Scene
parameters can be easily created or modified through config
files or Python APIs.

Our method can achieve a runtime of 1 to 40 frames per
second, contingent upon the resolution, scene complexity,
and dynamics. Figure 8 demonstrates a real-time game on
a laptop that has been developed within our pipeline. The
code for rendering, simulation, and fast SDF learning will
be released as open-source software.

4. Experiments
4.1. Comparisons

Rendering Comparisons. In this section, we compare with
other surface-based modeling and rendering methods in the

virtual object insertion task. Given a set of images, the tra-
ditional graphics pipeline would first reconstruct the sur-
face.However, the 3D reconstruction step will usually in-
troduce tremendous noise and errors. Our technique can
directly render the virtual object in the photorealistic 3D
scene without meshing the entire scene.

NVdiffrec [52] and IRON [94] are state-of-the-art tex-
tured mesh reconstruction methods. They combine neu-
ral fields and differentiable rendering methods to estimate
the geometry and appearance of the objects from images.
However, neither of them works on the full image because
the topology of the background is too complex to optimize
(e.g. the vegetation). We further provide the per-frame fore-
ground mask to the comparison methods, and NVdiffRec
can reconstruct foreground models.

In Figure 6 (c), we import the extracted mesh into
Blender with a metallic ball and environment map, then ren-
der the scene with Cycles, a physically-based render. Both
(b) ours and (c) NVDiffRec can model the reflection on the
ball, but our object has better surface quality.

We also compare to Nerfstudio [72], a software library
that allows users to train their own NeRF models. The user
can export a camera path moving through the trained NeRF
scene and a coarsely reconstructed mesh and import these
into Blender [15] using the Nerfstudio Blender plugin. The
user may then create their 3D content directly in Blender,
using the imported camera path and mesh as a reference,
and then render their 3D content, which is then composited
in 2D over the rendered NeRF trajectory. However, while
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(a) Soft body (b) Cloth

Figure 7: Qualitative results for simulation. In addition to
rigid body simulation (Fig. 8), our method can also simulate
soft bodies. (a) is a twisting Neo-Hookean FEM mesh. (b)
is a thin shell cloth covering the fox. Please see the supple-
mentary video for more simulation results.

the coarse mesh may be used to generate a visibility mask
to produce occlusion, this approach is limited in that the
coarsely reconstructed mesh is likely not accurate enough
to provide clean-looking occlusion results, more complex
occlusion situations such as occluding objects at multiple
layers of depth will be challenging to generate individual
visibility masks, and this requires manual effort to compos-
ite the results. Appendix F includes some more quantitative
comparisons with those methods. Moreover, LumaAI re-
cently released a closed-source UE plugin, and we run a
comparison against it.

Rendering with HDR NeRF. We provide a qualitative
comparison between rendering using the standard (LDR)
NeRF and its HDR counterpart, shown in Figure 5. No-
tice that in the images rendered with the HDR model, the
lighting cast from the environment onto the mesh appears
much more faithful to the scene’s true intensity (and there-
fore directionality). This is also not surprising, considering
the longstanding use of High Dynamic Range Image-Based
Lighting in the traditional graphics pipeline [16]. HDR im-
ages are often created by recovering the unknown nonlinear
tone-mapping function from a series of bracketed-exposure
LDR images with known exposure duration, then using the
inverse function to map the images back to linear color
space, and merging them into a single 32-bit result, as in-
troduced by Debevec and Malik [17]. As a result, HDR im-
ages are much better suited to capture a scene’s full range of
absolute and relative radiance values and avoid highly lossy
clipping, which can be especially problematic in very bright
parts of an image. HDR NeRF may therefore be interpreted
as a volumetric HDR lighting map.

Importantly, our hybrid rendering algorithm allows us to
utilize such an HDR volumetric radiance map fully. As an
HDR radiance map is particularly useful for representing
the indirect bounce lighting of the scene, future work on ex-
tending such learned lighting models to direct lighting (e.g.
directional or point sources that cast hard shadows) would

(a) Static NeRF background (b) NeRF (chair) as dynamic object

Figure 8: Real-time photorealistic gaming on a laptop.
Our rendering and simulation engine can be interactive and
run in real-time on a laptop with an NVIDIA GeForce RTX
2070 Max-Q GPU. In this example, a user can control the
motion of the synthetic glass ball and interact with the back-
ground (collision and light effect).

be a promising direction. Our hybrid rendering algorithm is
crucial to enable such an investigation.

Simulation Comparisons. Besides static scenes, our
pipeline can also simulate dynamic scenes with SDF-based
contact handling. Appendix B shows that the SDF-based
representation has better collision handling than vanilla
NeRF density fields. We also compare with NeRF-based
simulation [14, 65] in Appendix C and ours achieves better
performance.

4.2. Performance

In this section, we will show how our method can be
used in photorealistic real-time gaming and physically-
based simulation. A detailed profiling of our rendering and
simulation modules can also be found in Appendix A.

Photorealistic Real-time Gaming. In addition to photore-
alistic rendering, our pipeline is fast, aiming to serve as a
real-time neural-fields game engine. As shown in Figure 8,
we have implemented an interactive game where players
can control the ball’s motion using a keyboard and adjust
camera viewing angles using a mouse. The background
scene, excluding the green ball, is modeled by NeRF. The
ball can have contact with the table and bulldozer. Players
can also observe the bending of rays as they pass through
the refractive glass ball. Supplementary material includes
a recording of the real-time game. The game runs on a
laptop with an NVIDIA GeForce RTX 2070 Max-Q GPU.
Through our pipeline, game developers can seamlessly in-
tegrate animatable objects with photorealistic NeRFs.

Qualitative Results. Our method can simulate different
types of dynamics with the support of Warp [41]. In Fig-
ure 7, the background fox is modeled as NeRF. (a) is a cube
modeled by Neo-Hookean FEM mesh, where we can also
see the changing light effect as it is twisted. (b) is a piece of
cloth falling down to the fox. Our pipeline can handle the

392



collision and light effects of such thin shells.

4.3. Applications

Our methods could be applied to many situations, where
NeRFs can improve the realism of synthetic scenes.

Driving simulation is important for developing, training,
and testing autonomous driving systems. With the large
number of images captured around roads, people can train
NeRF for street views [71]. With our method, people can set
up the driving simulation inside those Photorealistic NeRFs
(see Figure 9 (a)) and insert synthetic vehicles [4, 74]. Such
realistic virtual environments can help minimize the sim-to-
real gap in self-driving cars.

Room layout design can help users design their homes
and purchase furniture. After taking pictures and building
a NeRF model for their room, customers can shop furni-
ture [26, 67] virtually and design the room layout as shown
in Figure 9 (b).

Virtual try-on using our methods can dynamically simulate
the cloth on a human body captured by NeRF. In Figure 9
(c), we place a cloak on the human body and simulate how
it swings in the wind.

Digital human applications are one of the key interests in
VR/AR and the metaverse. With our methods, users can
easily collect and build their virtual world by NeRF and then
render their human-body model in that scene. This could be
useful for movie making, webcasting, virtual performance,
cyber-tourism, etc. Figure 9 (d) renders a futuristic ‘mer-
cury man’ [39] jumping in the park using NeRF.

5. Conclusion

In summary, motivated by integrating NeRF into the tra-
ditional graphics pipeline, our hybrid rendering method can
render dynamically changing meshes in a photo-realistic
NeRF environment, without costly surface reconstruction.
We also equip the resulting renderer with a simulator, mak-
ing it suitable as a real-time NeRF-based game engine.

There are some limitations in this work. (1) The cur-
rently implemented renderer cannot cast shadows and illu-
mination on NeRF points. Decomposing NeRFs can make
the relighting more realistic. (2) Our renderer offers ba-
sic, essential functions; support for environment maps, UV
maps, and image textures for higher rendering quality can
be a natural extension. (3) Additional interfaces can also en-
able users to take advantage of more mature infrastructures
if integrated into more widely-used platforms, e.g. Blender,
Unreal, etc. (4) We can further improve the runtime perfor-
mance and integrate the pipeline with larger-scale NeRFs.
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Figure 9: Application of mixing NeRF with meshes. Our
method can be used for realistic driving simulation, room
layout design, virtual try-on, and digital humans.
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Hinkenjann, and Emanuele Rodolà. Kiloneus: Implicit neu-
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