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Abstract

The performance of the Vision-and-Language Naviga-
tion (VLN) tasks has witnessed rapid progress recently
thanks to the use of large pre-trained vision-and-language
models. However, full fine-tuning the pre-trained model
for every downstream VLN task is becoming costly due to
the considerable model size. Recent research hotspot of
Parameter-Efficient Transfer Learning (PETL) shows great
potential in efficiently tuning large pre-trained models for
the common CV and NLP tasks, which exploits the most
of the representation knowledge implied in the pre-trained
model while only tunes a minimal set of parameters. How-
ever, simply utilizing existing PETL methods for the more
challenging VLN tasks may bring non-trivial degeneration
to the performance. Therefore, we present the first study to
explore PETL methods for VLN tasks and propose a VLN-
specific PETL method named VLN-PETL. Specifically, we
design two PETL modules: Historical Interaction Booster
(HIB) and Cross-modal Interaction Booster (CIB). Then
we combine these two modules with several existing PETL
methods as the integrated VLN-PETL. Extensive experimen-
tal results on four mainstream VLN tasks (R2R, REVERIE,
NDH, RxR) demonstrate the effectiveness of our proposed
VLN-PETL, where VLN-PETL achieves comparable or even
better performance to full fine-tuning and outperforms
other PETL methods with promising margins. The source
code is available at https://github.com/YanyuanQiao/VLN-
PETL

1. Introduction
Large-scale pre-trained models have shown remarkable

success in both computer vision (CV) and natural language

processing (NLP) domains, and have largely improved the

performance of a variety of visio-linguistic tasks [17, 32,

44]. These models follow a standard pretrain-and-finetune

paradigm, which first pretrains the model on large-scale un-
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Figure 1: Comparison of full fine-tuning and our proposed

PETL training for VLN tasks. By updating only a small

subset of parameters, our proposed VLN-PETL can achieve

a comparative performance compared to full fine-tuning

labeled data and then finetunes it on each downstream task.

Since the size of such models is growing rapidly [4, 39],

even fully finetuning and storing a copy of the entire pre-

trained model for each downstream becomes costly.

To alleviate this problem, Parameter-Efficient Transfer

Learning (PETL) has been proposed as an alternative train-

ing strategy [3, 10, 14, 15, 28, 29] and initially achieved

great progress in NLP community. These methods aim to

exploit the representation knowledge in the large pretrained

models by freezing most parameters of the model and only

tuning a small set of parameters, which can achieve compa-

rable or even better performance to full fine-tuning. Several

approaches have attempted to apply PETL techniques to CV

and V&L domains [11, 33, 40, 43] and achieved promis-

ing results on various downstream tasks. Recent works

[9, 31, 45] find that different PETL methods have different

characteristics and performance on the same downstream

task and thus combining multiple PETL techniques may be

more effective in improving the performance.

Vision-and-Language Navigation (VLN), which deals

with visual, linguistic and robotic action inputs simulta-

neously, could benefit from the pre-trained large models

while suffering from the considerable model size during

the downstream tasks fine-tuning. Considering downstream

VLN agents are complex enough, full finetuning them with

the large pre-trained models for each downstream VLN task

becomes expensively, in which case the technique of PETL
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shows great potential. Unlike most NLP, CV, and V&L

tasks, VLN is a dynamic action decision-making task rely-

ing on the current environment and previous history knowl-

edge of the chosen actions. Specifically, given the instruc-

tion in natural language, the VLN agent perceives a new vi-

sual observation according to the chosen action at the previ-

ous timestep and should choose the next action to perform at

the current timestep. Thus, how to effectively learn history

knowledge is crucial to adapting PETL methods for VLN

tasks. Moreover, the cross-modal interaction which plays

a vital role in action prediction should be also enhanced

during the process of efficient tuning. In addition, our ex-

periments show that directly applying some existing PETL

methods to VLN tasks may bring non-trivial performance

degeneration.

Considering these reasons, we propose a VLN-specific

PETL method named VLN-PETL. Specifically, we design

two tailored PETL modules for VLN: Historical Interaction

Booster (HIB) and Cross-modal Interaction Booster (CIB).

Both these two modules mainly consist of bottleneck lay-

ers and multi-head cross-attention layers. HIB enhances the

interaction between the observation and the previous histor-

ical knowledge in a recurrent pattern. While CIB adopts

a two-stream structure to focus on the interaction of cross-

modal knowledge. Similar to adapters which inject bottle-

neck layers into transformer blocks for efficient tuning, we

insert HIB and CIB into the visual encoder and cross-modal

encoder separately in the pre-trained model for VLN. Dur-

ing the training process, the original weights of the large

pre-trained model are frozen and only weights of these

newly injected modules are trained and updated for differ-

ent downstream VLN tasks. In addition to HIB and CIB,

VLN-PETL also adopts vanilla adapters to efficiently tune

the language encoder and the LoRA to further improve the

parameter-efficient tuning’s performance as previous work

declared [9, 31, 45] for downstream VLN tasks.

We conduct extensive experiments on four mainstream

VLN tasks: R2R [2], REVERIE [36], NDH [41], and

RxR [16]. The results show that VLN-PETL not only sur-

passes other PETL methods with promising margins but

also achieves comparable or even better performance com-

pared to full fine-tuning, especially on R2R (Ò 1.3% SR

on validation unseen set, updating only 2.82% params, see

Figure 1) and on NDH (Ò 1.08 GP on test unseen set which

achieves the top position in the leaderboard). We also con-

duct ablation studies to evaluate the contribution of each

component of VLN-PETL and validate the superiority of

HIB and CIB to counterpart PETL methods.

In summary, our contributions are as follows: (1) We

present the first study that explores Parameter-Efficient

Transfer Learning (PETL) techniques for Vision-and-

Language Navigation (VLN) tasks; (2) We propose a VLN-

specific PETL method named VLN-PETL, which incorpo-

rates existing PETL methods with two tailored PETL mod-

ules for VLN tasks: Historical Interaction Booster (HIB)

and Cross-modal Interaction Booster (CIB); (3) Extensive

experiments on four VLN downstream tasks demonstrate

the effectiveness of our proposed VLN-PETL, which out-

performs other PETL methods and keep competitive to full

fine-tuning with much fewer trainable parameters.

2. Related work
Vision-and-Language Navigation In the past few years,

VLN has received great attention and many methods have

been proposed [12, 13, 21, 22, 34, 35]. Early works were

mainly based on the encoder-decoder frameworks [2, 6, 26].

While subsequent works approached VLN research in a

variety of ways, such as data augmentation [6, 19, 23]

to improve the robustness of the agent, progress monitor-

ing [26, 42, 46] to estimate the completeness of instruction-

following, and back-tracking [24, 27] to help the agent

learn to decide when to perform backtracking depending on

the state of the agent. Recently, BERT-based pre-training

methods have significantly improved the agents’ perfor-

mance in VLN tasks [7, 20]. These methods follow the

pretraining-and-finetuning paradigm, which first pre-trains

a vision-and-language model on a great many text-image

pairs of instructions and trajectories with specifically de-

signed proxy tasks, and then fully finetunes the pre-trained

model for every downstream VLN task. VLNBERT [30]

first utilizes this paradigm to solve different downstream

VLN tasks, which introduces an extra proxy task of scoring

path-instruction pairs in addition to the Masked Language

Modeling task. PREVALENT [8] introduces a single-

step action prediction proxy task, aiming to learn action-

oriented generic visio-linguistic representation. HOP [37]

and HOP+ [38] exploits past observations to enhance the

learning of temporal order modeling and historical infor-

mation by introducing three VLN-specific proxy tasks.

HAMT [5] encodes past panoramic observations as histori-

cal information explicitly.

Though these pretraining-and-finetuning methods have

attempted to utilize vital historical knowledge for action

prediction, the exploration is still limited due to the gap be-

tween pretraining and finetuning. Meanwhile, these meth-

ods face the same challenge in the fine-tuning stage: over-

sized parameters for efficient tuning. Specifically, all pa-

rameters of the full pre-trained model will be trained and

stored for each downstream VLN task. This may hinder the

application of VLN in real-world scenarios since realistic

robots will have difficulty in training and storing such huge

parameters for every new task. Recent works of Parameter-

Efficient Transfer Learning (PETL) show great potential in

solving this problem, which freeze most parameters in the

large pre-trained model while only training and storing min-

imal parameters for every downstream task. Thus, we pro-
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pose the first work that studies and applies PETL methods

to VLN named VLN-PETL.

Parameter-Efficient Transfer Learning Recently, with

the rapid increase of pre-trained models’ size, how to effi-

ciently tune the large pre-trained models has received great

attention and Parameter-Efficient Transfer Learning (PETL)

has become a popular research area. One category of PETL

methods adds new parameters into the pretrained model and

only trains these parameters. For example, Adapter [14] in-

troduces bottleneck layers after attention layers and feed-

forward layers in the transformer block. LoRA [15] in-

jects trainable low-rank decomposition matrices into lin-

ear projection layers to approximate the update of large

amount of parameters. Prompt Tuning [18] prepends train-

able prompts to the model’s input. Another kind of PETL

method does not add new parameters and selects a subset

of the pretrained model’s parameters to update, such as Bit-

Fit [3], which only trains the bias term in the model. Recent

works [9, 31, 45] find that incorporating different PETL

methods as sub-modules may help improve the integrated

performance for different downstream tasks in NLP and CV.

However, VLN is a dynamic task of action prediction

relying on both the current observations and previous ac-

tion decisions, which is more challenging than other static

NLP, CV and V&L tasks. In other words, the previous de-

cision of action will influence the current environment ob-

served by the agent as well as the choice of the next action

to perform. Thus, it is important to effectively utilize the

historical knowledge of the previous trajectory when apply-

ing PETL methods to VLN. Furthermore, the cross-modal

interactions of the language and vision also have a great

impact on action predictions, which should be enhanced es-

pecially when most parameters of the pre-trained model are

frozen for efficient tuning. Therefore, we specifically de-

sign two PETL modules for VLN tasks to enhance the his-

tory knowledge interactions and cross-modal knowledge in-

teractions, namely Historical Interaction Booster (HIB) and

Cross-modal Interaction Booster (CIB). In addition, VLN-

PETL also incorporates vanilla adapters to efficiently tune

the language encoder and LoRA to further improve the per-

formance.

3. Preliminaries
3.1. Problem Definition of VLN

Given a natural language instruction I and the current

node on the connectivity graph of the environment, the VLN

agent should predict an action at at each time step t. Specif-

ically, at the time step t, the agent receives a panoramic

view of the surrounding environment as the visual observa-

tion Ot. Ot consists of N single-view images and can be

represented as a set of features: Ot “ tpvon; aonqu, where

von represents the feature of the n-th single-view image and

aon represents the corresponding angle feature. The history

Ht “ tpOi; a
h
i qu that consists of every observation Oi and

the performed action ahi (i.e. the turned angles) at each time

step i before t also plays a vital role in the agent’s action

prediction. Based on I, Ot and Ht, the VLN agent predicts

the next action at at each time step t to navigate to the tar-

get goal until the special [STOP] action is selected, or the

step reaches the maximum length. Some VLN tasks such

as REVERIE [36] additional require the agent to return a

target object location, while some others such as the NDH

[41] use dialogue instructions.

3.2. PETL Methods

Adapter inserts trainable bottleneck layers after the multi-

head attention layers or feed-forward layers in the trans-

former blocks. The bottleneck layer of an adapter consists

of a linear down-projection with Wdown P R
DhiddenˆDmid ,

a non-linear activation function σp¨q and a linear up-

projection Wup P R
DmidˆDhidden . Given the input feature fin,

the adapter first projects fin into the Dmid bottleneck dimen-

sion and then recovers it back into Dhidden dimension as:

fout “ W ᵀ
upσpW ᵀ

downfinq. (1)

Bias terms are omitted for brevity. The parameters of layer

normalization are usually tuned together with the adapter.

Besides, the adapter can be inserted into the transformer

layers in a sequential manner or in a parallel manner, while

the latter one is proved superior to the former one as in [9].

LoRA injects trainable low-rank decomposition matrices

to represent the weight updates of the frozen parameters

in the transformer’s linear projection layers. Specifically,

for a weight matrix W P R
DhiddenˆDhidden in the pre-trained

model, the weight update ΔW P R
DhiddenˆDhidden is approxi-

mated by two low-rank matrices Wdown P R
DhiddenˆDmid and

Wup P R
DmidˆDhidden as follow:

W ` ΔW “ W ` WdownWup, (2)

and the forward pass of LoRA can be formulated as:

fout “ pW ᵀ ` γW ᵀ
upW

ᵀ
downqfin. (3)

where γ is a fixed scalar hyperparameter for scaling.

Prompt Tuning prepends a sequence of randomly initial-

ized continuous prompts fprompt into the input feature fin.

During training, only these prompts are optimized by up-

dating a learnable projection matrix Wprompt P R
1ˆDhidden .

The forward pass can be formulated as:

fprompt “ W ᵀ
promptX, (4)

fout “ TRMprfprompt,finsq. (5)

where X represents discrete prompt tokens, r¨s represents

concatenation, TRMp¨q represents the transformer block.

BitFit does not introduce new parameters or inputs for tun-

ing. It only tunes the bias terms in the pretrained models,

which shows promising performance in some NLP tasks.
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4. Method
4.1. Baseline Model

We use a large pre-trained model of HAMT [5] as our

baseline, which is pre-trained on plentiful text-image pairs

of instructions and the corresponding trajectories. As illus-

trated in Figure 2, HAMT adopts a two-stream architecture,

which consists of a language encoder and a vision encoder

to extract single-modal features, and a cross-modal encoder

to fuse multi-modal features for action prediction.

Language Encoder Following the practice of BERT, the

language encoder first embeds the instruction I into lan-

guage embedding Ex by summing the word embedding, po-

sition embedding, and type embedding of each word xi in

the instruction. Then, Ex is passed through NL transformer

blocks which consist of a multi-head self-attention layer and

feed-forward layer to generate the language feature fx.

Vision Encoder The vision encoder mainly consists of ob-

servation encoding and history encoding. At time step t,
the panoramic image feature vot and the corresponding an-

gle feature aot are projected into Eo
v and Eo

a followed by the

layer normalization. Then, Eo
v and Eo

a are summed up as the

current observation feature ot. Meanwhile, the panoramic

image feature vht´1 and the corresponding turned angle fea-

ture aht´1 of the previous time step are taken as the input

for history encoding. Similarly, vht´1 and aht´1 are first pro-

jected into Eh
v and Eh

a . Then, Eh
v and Eh

a are summed up

and passed through NH transformer blocks to generate ht,

which is appended into the tail of xh1, ..., ht´1y as the cur-

rent time step’s history feature ht. Indeed, the history en-

coding only re-encodes the previous time step’s observation

statically without any other interactions. Thus, this manner

of history feature’s generation and update may neglect the

temporal knowledge embodied in the navigation trajectory.

Cross-modal Encoder At the time step t, the observation

feature ot and the history feature ht are first concatenated

as the visual feature fv . Then, fx and fv are passed through

NC cross-modal transformer blocks that consist of two-

stream multi-head cross-attention layers, multi-head self-

attention layers, and feed-forward layers to generate cross-

modal features for action prediction.

4.2. VLN-PETL
Not all the aforementioned PETL methods perform well

in the complicated VLN tasks, such as BitFit and Prompt

Tuning, which bring performance degeneration to VLN

tasks (see Sec. 6 for evaluation and explanation). Thus,

as shown in Figure 2, we only incorporate the adapter

and LoRA as the PETL components of our integrated

VLN-PETL. Furthermore, two block-level PETL mod-

ules are specially designed for VLN tasks considering the

unique characteristics of VLN tasks and parameter effi-

ciency, namely Historical Interaction Booster (HIB) and

Cross-modal Interaction Booster (CIB). Based on the bot-

Multi-Head 
Attention

Feed 
Forward Adapter

Historical 
Interaction 

Booster

Adapter Multi-Head
Attention

Feed 
Forward

Multi-Head Attention
LoRA

LoRA LoRA

Action Prediction Head

Cross-modal
Interaction 

Booster

Feed Forward

CONCAT

Language Encoder Vision Encoder

Cross-modal Encoder

Figure 2: Illustration of the framework of our proposed

VLN-PETL. The pre-trained model of HAMT mainly con-

sists of a language encoder, a vision encoder and a cross-

modal encoder. The blue color denotes the frozen parame-

ters in the pre-trained model and the green color denotes the

trainable parameters of injected PETL modules.

tleneck structure of the adapter, these two modules respec-

tively strengthen the historical interaction and cross-modal

interaction by incorporating the multi-head cross-attention

mechanism and gating mechanism.

Language Encoder Adapter As shown in Figure 3a, the

Language Encoder Adapter (LEA) is inserted into the multi-

head self-attention layers and feed-forward layers in paral-

lel. Concretely, for the l-th transformer block in the lan-

guage encoder, the input feature f l´1
x is first passed through

the adapter and summed with the output feature of the

multi-head self-attention layer as fatt:

fatt “ LN
`
MSApf l´1

x q ` ADAPTERpf l´1
x q˘

, (6)

where MSAp¨q represents the multi-head self-attention

layer, ADAPTERp¨q represents the adapter block shown in

Eq.1 and LNp¨q represents the layer normalization. Simi-

larly, another adapter is inserted into the feed-forward layer

which takes fatt as input:

fffn “ LN
`
FFNpfattq ` ADAPTERpfattq

˘
, (7)

where FFNp¨q represents the feed-forward layer. fffn is used

as the final output feature f l
x of the l-th transformer block:

f l
x “ fffn. (8)

Historical Interaction Booster As shown in Figure 3b, the

Historical Interaction Booster (HIB) adopts the multi-head
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Multi-Head
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Feed Forward

(a) Language Encoder Adapter (LEA).

G GMHA MHA GMHATRM

(b) Historical Interaction Booster(HIB).

G GMHA MHATRM
GMHA

(c) Cross-modal Interaction Booster(CIB).

Figure 3: Detailed components of VLN-PETL. TRM represents the transformer block, MHA represents the multi-head

attention layer, σ represents the activation layer and G represents the learnable gate.

cross-attention mechanism to enhance the historical interac-

tion between the observation feature and the history feature

at each timestep t in a recurrent pattern. Specifically, for the

l-th transformer block in the vision encoder, the input obser-

vation feature f l´1
h and the previous history feature ht´1

are first downsampled into fdown and hdown with Dmid di-

mension by projection matrices Wdown_f and Wdown_h:

fdown “ W ᵀ
down_ff

l´1
h , (9)

hdown “ W ᵀ
down_hht´1, (10)

Then, the history knowledge is encoded into the observation

feature by the multi-head cross-attention between fdown and

hdown followed by a learnable gate α:

f 1
down “ ReLUpfdownq, (11)

fcross “ MHApfdown,hdownq, (12)

α “ Sigmoidp θ
T

q, (13)

fv_h “ α ˚ f 1
down ` p1 ´ αq ˚ fcross, (14)

where MHAp¨q represents the multi-head cross-attention

layer of which the query is fdown while the key and value

are hdown, θ is a learnable scalar initialized by zero and T
is fixed as 0.1 representing the temperature hyperparameter.

Next, the attended visual-and-historical feature fv_h is up-

sampled into Dhidden dimension and summed with the orig-

inal output feature f̂ l
t of the l-th transformer block:

f̂ l
h “ TRMpf l´1

h q, (15)

f l
h “ LNpf̂ l

h ` W ᵀ
upfv_hq, (16)

where TRMp¨q represents the transformer block in the vi-

sion encoder. The final output history feature ht at the cur-

rent timestep t is obtained as follow:

ht “ fL
h , (17)

where L represents the number of transformer blocks.

Cross-modal Interaction Booster As shown in Figure 3c,

to enhance the interaction between language and visual

modalities, Cross-modal Interaction Booster (CIB) adopts

a two-stream multi-head cross-attention mechanism. To be

specific, for the l-th transformer block in the cross-modal

encoder, the input language feature f l´1
x and the visual fea-

ture f l´1
v are first downsampled into fdown_x and fdown_v

with Dmid dimension by projection matrices Wdown_x and

Wdown_v as Eq.9 and Eq.10. Then, a two-stream multi-head

cross-attention is implemented by exchanging the query for

the key and value as follows:

fcross_x “ MHApfdown_x,fdown_vq, (18)

fcross_v “ MHApfdown_v,fdown_xq, (19)

Two learnable gates αx and αv are used to obtain cross-

attended language feature fx_v and visual feature fv_x:

fx_v “ αx ˚ f 1
down_x ` p1 ´ αxq ˚ fcross_x, (20)

fv_x “ αv ˚ f 1
down_v ` p1 ´ αvq ˚ fcross_v, (21)

where f 1
down_x and f 1

down_v are obtained by passing fdown_x

and fdown_v through ReLU layer as Eq.11. At last, fx_v and

fv_x are respectively upsampled into Dhidden dimension and

summed with the original output language feature f̂ l
x and

visual feature f̂ l
v as the final output feature f l

x and f l
v of the

l-th transformer block:

f̂ l
x, f̂

l
v “ TRMpf l´1

x ,f l´1
v q, (22)

f l
x “ LNpf̂ l

x ` W ᵀ
up_xfx_vq, (23)

f l
v “ LNpf̂ l

v ` W ᵀ
up_vfv_xq. (24)

where TRMp¨q represents the transformer block in the

cross-modal encoder.

Incorporating LoRA in VLN-PETL The multi-head at-

tention layers account for a large portion of parameters in
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Figure 4: Illustration of injecting LoRA in the Multi-head

Attention layer.

the transformer. Thus, as shown in Figure 4, VLN-PETL

incorporates LoRA as an independent PETL component in

addition to LEA, HIB and CIB to further improve the per-

formance on downstream VLN tasks. Specifically, we glob-

ally inject LoRA layers into query matrices WQ and value

matrices WV of all multi-head attention layers in the pre-

trained model. Given the input feature fin_q and fin_v for

linear projection in the multi-head attention layer, the out-

put feature Q and V can be computed as follow:

Q “ pW ᵀ
Q ` γW ᵀ

up_qW
ᵀ
down_qqfin_q, (25)

V “ pW ᵀ
V ` γW ᵀ

up_vW
ᵀ
down_vqfin_v. (26)

5. Experimental Setup
5.1. Downstream tasks

To comprehensively evaluate PETL methods for VLN,

we conduct experiments on four downstream tasks: Room-

to-Room (R2R) [2], REVERIE [36], NDH [41] and Room-

across-Room (RxR) [16]. These downstream tasks evaluate

the agent from different views: (1) R2R and RxR require

the agents to follow detailed instructions to navigate from

one room to another; (2) REVERIE gives a concise, high-

level instruction referring to a remote object, which focuses

on grounding remote target objects; (3) NDH requires an

agent to reach target regions based on the dialog history,

which contains multiple question-and-answer interactions

between the agent and an oracle.

5.2. Evaluation metrics

We follow previous work and adopt the most commonly

used metrics for evaluating VLN agents as follows: TL
(Trajectory Length) measures the average length of all the

predicted navigation trajectories in meters. NE (Naviga-

tion Error) is the mean the average distance in meters be-

tween the agent’s final location and the target location.

SR (Success Rate) measures the ratio of successful tasks,

of which the agent’s stop location is less than 3 meters

away from the target location. SPL (Success weighted

by Path Length [1]) trades-off SR (Success Rate) against

TL (Trajectory Length), which measures both the accuracy

and efficiency of navigation. OSR (Oracle Success Rate)

measures the ratio of tasks of which one of its trajectory

viewpoints can observe the target object within 3 meters.

RGS (Remote Grounding Success rate) measures the ratio

of tasks that successfully locate the target object. RGSPL
(RGS weighted by Path Length) is RGS weighted by Path

Length. GP (Goal Progress) measures the average progress

of the agent towards the target. nDTW (Normalized Dy-

namic Time Warping) penalizes deviations from the ref-

erence path. sDTW (Success weighted by normalized Dy-

namic TimeWarping) constrains nDTW to only successful

episodes and effectively captures both success and fidelity.

5.3. Implementation details

We choose existing PETL methods of BitFit, Prompt

Tuning, Adapter and LoRA for comparison with our inte-

grated VLN-PETL. We use the same learning rate of 1e´4,

and AdamW [25] optimizer for all PETL methods. The

batch size is set as 4 for REVERIE and 8 for the other three

VLN tasks. For Prompt Tuning, we respectively add 20

prompt tokens in front of the inputs of the language encoder

and vision encoder. For the setting of both Adapter and

LoRA, the bottleneck dimension Ddim is set as 64, which

brings comparative parameters for a fair comparison with

VLN-PETL. While for VLN-PETL, the bottleneck dimen-

sions Ddim of the Language Encoder Adapter (LEA), His-

tory Interaction Booster (HIB), and Cross-modal Interac-

tion Booster (CIB) is set as 64 while the bottleneck dimen-

sion of the incorporated LoRA is set as 8 for REVERIE

while 16 for other VLN tasks. The attention heads number

of both HIB and CIB is set as 4. For all PETL methods, the

prediction heads of the pre-trained model are also trained.

For a fair comparison, we follow HAMT [5] to use Rein-

forcement Learning (RL) and Imitation Learning (IL).

6. Experimental Results
6.1. Comparison of PETL methods for VLN

As shown in Table 1-4, we compare our proposed VLN-

PETL with finetuning, Bitfit [3], Prompt Tuning [18],

LoRA [15], and Adapter [14] in performance and trainable

parameter amounts on different VLN tasks.

We can see that Prompt Tuning with the least updated

parameters works poorly for all VLN downstream tasks.

One possible reason may be the limited trainable parame-

ters. More importantly, the training instability of Prompt

Tuning as previous work declared should also be responsi-

ble for the poor performance. In fact, training VLN agents

itself is not always stable and easy, where reinforcement

learning plays a vital role. BitFit surpasses Prompt Tun-

ing with a non-trivial margin on all tasks with comparable

amounts of trainable parameters. However, the performance

of BitFit still falls far from finetuning, LoRA, and Adapter

on all VLN tasks especially on RxR in high demand for lan-
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Methods
Updated Validation Seen Validation Unseen Test Unseen

Params(%) TL NE Ó SR Ò SPL Ò TL NE Ó SR Ò SPLÒ TL NE Ó SR Ò SPL Ò
Fine-Tuning 100 11.48 2.94 72.67 69.17 11.62 3.64 64.24 59.25 12.20 4.09 63.20 58.55

BitFit [3] 0.46 11.61 3.78 63.47 60.35 12.22 4.18 59.17 54.67 12.96 4.63 57.15 53.03

Prompt Tuning [18] 0.37 10.67 4.24 61.02 58.59 11.14 4.63 56.49 52.32 11.60 4.88 54.47 50.91

LoRA [15] 3.02 11.73 3.14 70.13 66.00 12.25 3.84 63.60 57.59 12.99 4.15 61.44 55.96

Adapter [14] 3.08 11.70 3.34 67.38 64.42 12.66 4.00 63.01 57.42 13.19 4.27 60.69 55.88

VLN-PETL(ours) 2.82 11.39 2.93 72.28 68.50 11.52 3.53 65.47 60.01 12.30 4.10 63.22 58.25

Table 1: Performance of PETL methods on R2R. For each method, we report the percentage of trainable parameters compared

to full fine-tuning. Bold and underline denote the best and runner-up results. SPL is the main metric.

Methods

Updated REVERIE Validation Seen REVERIE Validation Unseen REVERIE Test Unseen

Navigation
RGSÒ RGSPLÒ Navigation

RGSÒ RGSPLÒ Navigation
RGSÒ RGSPLÒ

Params(%) SRÒ OSRÒ SPLÒ TL SRÒ OSRÒ SPLÒ TL SRÒ OSRÒ SPLÒ TL

Fine-Tuning 100 46.73 52.35 42.75 13.37 30.64 27.91 32.63 37.82 28.92 15.66 18.66 16.06 33.09 37.82 27.02 12.83 15.04 13.32

BitFit [3] 0.80 33.52 37.81 31.84 11.45 19.96 18.93 24.65 27.46 21.34 12.36 10.85 9.43 21.50 24.95 18.85 12.53 9.87 8.62

Prompt Tuning [18] 0.71 25.86 33.17 23.21 12.15 8.29 7.44 19.94 25.08 17.75 12.43 5.82 5.07 19.95 24.24 17.94 11.61 5.51 4.88

LoRA [15] 3.33 42.30 46.24 38.63 12.89 29.87 27.45 29.42 34.28 26.17 15.96 15.25 13.45 32.12 37.00 26.86 14.93 14.94 12.76

Adapter [14] 3.39 40.76 45.05 37.43 13.75 27.13 24.62 29.48 32.83 26.62 14.59 16.05 14.21 29.20 32.31 24.78 14.96 14.51 12.48

VLN-PETL(ours) 2.81 45.96 51.23 42.60 12.86 29.94 27.61 31.81 37.03 27.67 14.47 18.26 15.96 30.83 36.06 26.73 14.00 15.13 13.03

Table 2: Performance of PETL methods on REVERIE. SPL is the main metric for its navigation task, and RGSPL is the main

metric for the object grounding task.

Methods
Updated

Val Seen Val Unseen Test Unseen
Params(%)

Fine-Tuning 100 7.69 5.16 5.05

BitFit [3] 0.46 6.68 3.77 4.03

Prompt Tuning [18] 0.37 4.71 3.26 2.86

LoRA [15] 3.02 6.83 5.16 5.91

Adapter [14] 3.08 5.29 5.30 4.72

VLN-PETL(ours) 2.82 7.76 5.69 6.13

Table 3: Performance on NDH measured by Goal Progress.

guage understanding with much longer instructions. Only

tuning bias terms may have difficulties in handling these

complex VLN tasks. Thus, we believe that Prompt Tuning

and BitFit are not applicable for efficiently tuning large pre-

trained models for challenging VLN tasks. While LoRA

and Adapter not only have comparative amounts of train-

able parameters but also have comparable performances on

all VLN tasks. These two methods further shrink the per-

formance gap with finetuning, which are potential to effec-

tively tune VLN pretrained models.

As for VLN-PETL, though it has fewer parameters than

LoRA and Adapter, VLN-PETL still surpasses LoRA and

Adapter on most evaluation metrics in all four downstream

VLN tasks. Furthermore, only VLN-PETL maintains com-

petitive performances compared to fine-tuning and even

outperforms fine-tuning on several evaluation metrics. As

shown in Table 3, it is worth mentioning that VLN-PETL

outperforms full fine-tuning on all dataset splits in the NDH

task, and achieves the top position on the public leader-

board1. These promising results demonstrate the effective-

ness of our proposed VLN-PETL for efficiently tune large

pre-trained models for VLN tasks.

1https://eval.ai/web/challenges/challenge-page/
463/leaderboard/1292 (01/03/2023)

6.2. Ablation Study

Contribution of VLN-PETL components As shown in

Table 5, to evaluate the contribution of LEA, HIB and CIB,

we choose REVERIE and RxR which are more challenging

VLN tasks to conduct ablation studies. REVERIE not only

measures the agent’s ability in navigation but also in locat-

ing the target object, while RxR has much longer instruc-

tions requiring comprehensive language understanding. We

also report the results of only tuning the prediction head

for comparison. We find that LEA has a competitive per-

formance compared to HIB, and only tuning either LEA or

HIB outperforms the head tuning with a nontrivial margin.

While CIB contributes much more inefficiently tuning the

VLN model, which improves the performance with a larger

margin on both REVERIE and RxR. This result indicates

that language understanding and vision understanding with

history knowledge contribute comparably to the action pre-

diction for VLN agents, while the cross-modal interaction

plays more importantly in this process. By combining all

these three components, the VLN agent achieves a promis-

ing performance and outperforms other PETL methods, es-

pecially on the RGSPL metric, which measures the agent’s

ability to locate the target object.
Superiority of HIB and CIB As shown in Table 6, to

validate the effectiveness of HIB and CIB, we compare the

performance of HIB and CIB with their counterparts of

Adapter, by respectively replacing HIB and CIB by History

Encoder Adapter (HEA) and Cross-modal Encoder Adapter

(CEA) which are similar to Language Encoder Adapter.

Due to the enhancement of historical knowledge learning,

HIB surpasses HEA on seen set by a large margin. On

the unseen set, HIB falls behind HEA with a trivial mar-

gin on the SPL metric while outperforming HEA on the
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Methods
Updated RxR Validation Seen RxR Validation Unseen

Params(%) SRÒ SPL Ò nDTW Ò sDTW Ò SRÒ SPL Ò nDTW Ò sDTWÒ
Fine-Tuning 100 64.93 61.28 69.26 55.92 57.88 54.18 64.52 49.44

BitFit [3] 0.28 35.69 33.58 49.37 29.81 36.63 34.34 50.47 30.49

Prompt Tuning [18] 0.23 27.92 25.98 42.93 22.97 29.95 27.72 44.94 24.67

LoRA [15] 1.86 55.66 52.41 63.20 47.31 54.53 51.14 63.23 46.94

Adapter [14] 1.90 58.52 54.96 65.14 50.23 55.19 51.44 63.56 47.32

VLN-PETL(ours) 1.67 60.48 56.77 65.74 51.67 57.95 54.16 64.94 49.70

Table 4: Performance on RxR using English instructions. nDTW is the main metric for the RxR task.

Components REVERIE Val Unseen RxR Val Unseen
LEA HIB CIB LoRA SPLÒ RGSPLÒ SRÒ SPLÒ

1 ˆ ˆ ˆ ˆ 15.19 4.53 28.66 26.72
2 � ˆ ˆ ˆ 18.21 9.73 43.45 40.68
3 ˆ � ˆ ˆ 18.49 9.32 41.04 38.46
4 ˆ ˆ � ˆ 21.62 12.86 52.01 48.82
5 � � ˆ ˆ 21.86 11.75 45.08 42.11
6 � ˆ � ˆ 25.00 14.34 52.26 49.26
7 ˆ � � ˆ 25.55 14.89 54.26 50.71
8 � � � ˆ 26.51 15.29 56.04 52.79
9 � � � � 27.67 15.96 57.95 54.16

Table 5: Ablation of different components in VLN-PETL

on REVERIE Unseen set and RxR Unseen set.

Methods Validation Seen Validation Unseen
SPLÒ RGSPLÒ SPLÒ RGSPLÒ

HEA 25.74 12.51 18.98 8.39
HIB 28.55 16.95 18.49 9.32

CEA 31.44 17.55 20.77 10.14
CIB 38.99 25.46 21.62 12.86

Table 6: Performance comparison of HIB and CIB with

their counterparts of Adapter on REVERIE val set.

Methods
Validation Seen Validation Unseen

SPLÒ RGSPLÒ SPLÒ RGSPLÒ
VLN-PETL 42.60 27.61 27.67 15.96

w/o LoRA 41.34 27.12 26.51 15.29

Table 7: Ablation of LoRA’s effect on REVERIE val set.

T 0.01 0.1 1 10

SPLÒ 25.60 27.67 27.81 25.00
RGSPLÒ 14.41 15.96 15.36 14.06

α 0.5 learnable

SPLÒ 27.51 27.67
RGSPLÒ 14.50 15.96

Table 8: Ablation of T and α in the gates of HIB and CIB

on REVERIE Val Unseen set.

RGSPL metric with a large margin. This is probably be-

cause the input for history encoding is a panoramic view

image rather than a single-view image of the front view,

where HIB tends to learn more knowledge about the fine-

grained object rather than the trajectory. As for CIB and

CEA, CIB surpasses CEA on all metrics and all sets with a

large margin, which shows the superiority of CIB.

The Effect of LoRA As shown in Table 7, we find that

when removing LoRA, the performance of VLN-PETL has

a slight drop on all main metrics on both REVERIE seen

and unseen splits. Besides, the decrease on RGSPL metric

is less than that on SPL metric, which indicates LoRA’s ef-

fect on the VLN agent’s ability to locate objects is smaller

than that of navigation during efficient tuning.

Hyper-parameters in Gates. As shown in Table 8, we

conduct ablation studies on T and α in the gates of HIB

and CIB. The performances are similarly high when T is

set as 0.1 or 1. We set T as 0.1 due to its higher score on

RGSPL. We also compare the results of fixing α as 0.5 and

using the learnable gate. We can see that the learnable gate

α surpasses the fixed α with a large margin on RGSPL.

7. Limitations and Future work

Though VLN-PETL is proven to be effective on four

mainstream VLN tasks of R2R, REVERIE, NDH, and RxR,

all these tasks focus on the agent’s ability to navigate or

ground target object, which has no interactions with the ob-

served objects. Thus, our future work will pay attention to

applying PETL methods to other VLN tasks that have inter-

actions with the environment, such as object manipulation.

8. Conclusion

In this paper, we present the first study of apply-

ing Parameter-Efficient Transfer Learning (PETL) meth-

ods to VLN tasks and propose a VLN-specific PETL

method named VLN-PETL. Considering the characteristics

of VLN, we specifically design two PETL modules to ef-

ficiently tune the large pre-trained model for VLN down-

stream tasks, namely Historical Interaction Booster (HIB)

and Cross-modal Interaction Booster (CIB). Both HIB and

HIB mainly consist of bottleneck layers and multi-head at-

tention layers, which respectively enhance the vision en-

coder’s learning of history knowledge and the cross-modal

encoder’s interactions between the language and vision fea-

tures during the efficient tuning. In addition, we incorpo-

rate the vanilla adapters to efficiently tune the language en-

coder and the LoRA to further improve the integrated per-

formance. Extensive experiments conducted on four main-

stream VLN tasks of R2R, REVERIE, NDH, and RxR show

the effectiveness of our proposed VLN-PETL. Furthermore,

we conduct ablation studies to evaluate the contribution

of VLN-PETL components and validate the superiority of

our specifically designed HIB and CIB to their counterpart

PETL methods.
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