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Abstract

Bird’s eye view (BEV) representation is a new perception
formulation for autonomous driving, which is based on spa-
tial fusion. Further, temporal fusion is also introduced in
BEV representation and gains great success. In this work,
we propose a new method that unifies both spatial and tem-
poral fusion and merges them into a unified mathematical
formulation. The unified fusion could not only provide a
new perspective on BEV fusion but also brings new capabil-
ities. With the proposed unified spatial-temporal fusion, our
method could support long-range fusion, which is hard to
achieve in conventional BEV methods. Moreover, the BEV
fusion in our work is temporal-adaptive and the weights of
temporal fusion are learnable. In contrast, conventional
methods mainly use fixed and equal weights for temporal
fusion. Besides, the proposed unified fusion could avoid
information lost in conventional BEV fusion methods and
make full use of features. Extensive experiments and abla-
tion studies on the NuScenes dataset show the effectiveness
of the proposed method and our method gains the state-of-
the-art performance in the map and vehicle segmentation
task.

1. Introducion

Recently, bird’s-eye-view (BEV) representation [17, 20,
11] becomes an emerging perception formulation in the au-
tonomous driving field. The main idea of BEV representa-
tion is to map the multi-camera features into the ego BEV
space, i.e., spatial fusion, as shown in Fig. 1. This kind
of spatial fusion composes an integrated BEV space, and
duplicate results from different cameras are uniquely rep-
resented in the BEV space, which greatly reduces the diffi-
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(a) Inputs with surrounding images. (b) Map.

Figure 1: Illustration of the map segmentation task in BEV.

culty in fusing multi-camera features. Moreover, the BEV
spatial fusion naturally shares the same 3D space as other
modalities like LiDAR and radar, making multi-modality
fusion simple.

The integrated BEV representation based on spatial fu-
sion provides the basis of temporal fusion. Temporal fusion
is a cornerstone in BEV representation, which can be used
in many aspects like 1) representing temporarily occluded
objects; 2) accumulating observation in a long-range, which
can be used for generating map; 3) stabilizing the percep-
tion results for standstill vehicles. There have been many
methods [11, 9, 12] showing the importance and effective-
ness of temporal fusion.

Despite the success of current progress, present meth-
ods usually use warp-based temporal fusion, i.e., warping
past BEV features to the current time according to the po-
sitions of BEV spaces at different time steps. Although this
kind of design can well align temporal information, there
are still some open problems. First, the warping is usu-
ally serial; that is to say, it is conducted only between ad-
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Figure 2: Different methods in BEV temporal fusion. From left to right, they are methods with no temporal fusion, warp-
based temporal fusion, and our unified multi-view fusion. For the method with no temporal fusion, the BEV space is only
predicted with surrounding images at the current time step. The warp-based temporal fusion would warp the previous BEV
space to the current space. Each time only one previous step can be fused and the whole process is serial. In this work,
we propose unified multi-view fusion, which directly fuses the surrounding images at all time steps parallelly. In this way,
long-range and dynamic fusion is supported.

jacent time steps. In this way, it is hard to model long-
range temporal fusion. Long-range history information can
only implicitly make an impact and would be forgotten and
dispelled rapidly. Besides, excessive long temporal fusion
would even harm the performance in the warp-based tempo-
ral fusion. Second, warping would cause information loss
during temporal fusion, as shown in Figs. 3b and 3c. Third,
since the warping is serial, the weights for all time steps are
equal, and it is hard to adaptively fuse temporal information.

To solve the above problems, we propose a new perspec-
tive that combines both spatial and temporal fusion into a
unified multi-view fusion, termed UniFusion. Specifically,
spatial fusion is regarded as a multi-view fusion from multi-
camera features. For the temporal fusion, since the temporal
features are from the past and absent in the current time, we
create “virtual views” for the temporal features as if they are
present in the current time. The idea of “virtual views” is to
treat past camera views as the current views and assign them
virtual locations relative to the current BEV space based on
the camera motion. In this way, the whole spatial-temporal
representation in BEV can be simply treated as a unified
multi-view fusion, which contains both current (spatial fu-
sion) and past (temporal fusion) virtual views, as shown in
Fig. 2.

With the proposed unified fusion, both spatial and tem-
poral fusions are conducted in parallel. We can directly
access all useful features through space and time at once,
which enables the long-range fusion. Another benefit is
that we can realize adaptive temporal fusion since we can
directly access all temporal features. Meanwhile, the par-
allel property guarantees that no information is lost during
fusion. Furthermore, the multi-view unified fusion can even
support different sensors, camera rigs, and camera types at
different time steps. This will bridge higher-level and het-

erogeneous fusion like vehicle-side and road-side percep-
tions. For example, we can fuse information from a car’s
camera and a surveillance camera on top of a traffic light,
as long as they overlap in the BEV space.

The contributions of this work are as follows:
• We propose a new parallel multi-view perspective for

BEV representation, which unifies the spatial and tem-
poral fusion. The proposed unified parallel multi-view
fusion can address the problem of long-range fusion
and information loss. And we can realize adaptive
temporal fusion based on the unified fusion. The pro-
posed unified method can also support arbitrary cam-
era rigs and bridge higher-level and heterogeneous fu-
sion.

• We analyze the widely used evaluation settings in the
map segmentation task on NuScenes [4] and propose a
new setting for a more comprehensive comparison in
Sec. 4.1.

• The proposed method achieves the state-of-the-art
BEV map segmentation performance on the challeng-
ing benchmark NuScenes in all settings.

2. Related Work
Spatial fusion in BEV Spatial fusion is the basis of BEV
representation, i.e., how to transform and fuse information
and features from surrounding multi-camera inputs into an
ego BEV space to represent the surrounding 3D world. The
earliest and most straightforward method is the inverse per-
spective mapping (IPM) [16, 2, 1, 7], which assumes the
ground surface is flat and at a fixed height. In this way,
the spatial fusion in BEV can be conducted with a homog-
raphy transformation. Note that IPM is usually utilized in
the image space. However, IPM is hard to cope with the
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Figure 3: Comparison between warp-based and actual fusion range. The fused area is marked in gray. With the warp-based
fusion, the fused area is limited in the intersection between BEV rectangles and many already seen parts are wasted.

non-flat and unknown-height ground surface. Later, View
Parsing Network (VPN) [17] uses a fully connected layer
to transform the image features into the BEV features and
directly supervise the features in the BEV space in an end-
to-end manner. Similarly, BEVSegFormer [19] uses the de-
formable attention [27] mechanism to achieve end-to-end
mapping. These methods avoid the explicit mapping be-
tween image and BEV spaces, but this property also makes
them hard to adopt the geometry prior. Based on VPN,
HDMapNet [11] proposes to only map the image space to
camera-ego BEV space in an end-to-end manner, while the
multi-camera BEV spaces are fused with the camera poses.
In this way, part of the geometry prior, i.e., the camera ex-
trinsic information is utilized. To make full use of geom-
etry prior in the spatial fusion of BEV space, Lift-splat-
shoot [20] proposes a latent estimation network to predict
depth for each pixel in the image space. Then all the pixels
with depth can be directly mapped into the BEV space. An-
other kind of method OFT [21] does not make predictions
of depth. OFT directly copy-and-paste the features in the
image space to all locations that trace along the ray from
the camera in the BEV space. Different from the spatial fu-
sion perspective of geometric mapping, X-Align[3] aligns
the semantics of camera and BEV spaces.

Temporal fusion in BEV With the basis of spatial fu-
sion, temporal fusion could further boost the representa-
tion in BEV space. The mainstream methods of tempo-
ral fusion are the warp-based method [26, 9, 12]. The
main idea of the warp-based method is to warp and align
BEV spaces at different time steps based on the ego mo-
tions of vehicles. The major differences reflect in the way
of using wrapped BEV spaces. BEVFormer [12] uses de-
formable self-attention to fuse wrapped BEV spaces while
BEVDet4D directly concatenates the wrapped BEV spaces.
BEVFusion proposes [14] a unified multi-task and multi-
sensor fusion method that can fuse camera and LIDAR.

3. Method
In this section, we elaborate on the design of our method

from two aspects. First, we show the derivation of the uni-

fied multi-view fusion. Then we demonstrate the network
architecture with unified multi-view fusion.

3.1. Unified Fusion with Virtual Views

As discussed in the introduction, spatial fusion is the
foundation of BEV representation, while temporal fusion
reveals a new direction for better BEV representation.

Conventional BEV temporal fusion is warp-based fu-
sion, as shown in Fig. 3b. The warp-based fusion warps past
BEV features and information based on the ego-motion of
different time steps. Since all features are already organized
in a pre-defined ego BEV space at a certain time step before
warping, this process would lose information.

The actual visible range of a camera is much bigger than
the one of ego BEV space. For example, 100m is a very
humble visible range for typical cameras, while most BEV
ranges are defined as no more than 52m [12, 20]. In this
way, it is possible to obtain better BEV temporal fusion than
simply warping BEV spaces, as shown in Fig. 3c.

To achieve better temporal fusion, we propose a new
concept, i.e., virtual view, as shown in Fig. 3a. Virtual views
are defined as the views of sensors that do not present in the
current time step, and these past views are rotated and trans-
lated according to the ego BEV space as if they are present
in the current time step. Denote Rc ∈ R3×3, tc ∈ R3×1

and Rp ∈ R3×3, tp ∈ R3×1 as the rotations and translations
matrices of current and past ego BEV spaces, respectively.
Suppose Ri ∈ R3×3, ti ∈ R3×1, and Ki ∈ R3×3 are the
rotation, translation and intrinsic matrices of a certain view
Vi. The rotation and translation matrices of virtual views
can be written as:

Rv
i =R−1

i R−1
p Rc

tvi =R−1
i R−1

p tc −R−1
i R−1

p tp −R−1
i ti,

(1)

in which Rv
i ∈ R3×3 and tvi ∈ R3×1 are the unified virtual

rotation and translation matrices for any view Vi. It can
be examined that Eq. (1) also holds for the current views.
In this way, all views can be mapped and utilized in the
same way, no matter they are past or current views. Suppose
Pbev ∈ RN×3 represents the coordinates in the BEV space,
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Figure 4: Network architecture.

Pimg ∈ RN×3 is the homogeneous coordinates in the image
space, and N is the number of coordinates. The mapping
between BEV space and all views can be written as:

Pimg = Ki(R
v
i Pbev + tvi ). (2)

Then we can map the image features to the BEV features F .

3.2. Network Design with Unified Fusion

With the help of the unified multi-view fusion, we show
the network architecture in this part. The network is com-
posed of three parts, which are the backbone network, uni-
fied multi-view fusion Transformer, and segmentation head,
as shown in Fig. 4.

Backbone We use three kinds of widely used backbones
ResNet50 [8], Swin-Tiny [13] and VoVNet [10] to extract
L multi-scale features (L = 4) from multi-camera im-
ages. For the ResNet50 and VoVNet models, only features
from stages 2, 3, and 4 are used. Following Deformable-
DETR [27], an extra 3x3 convolution with a stride of 2 is
used to generate the last feature. The backbone is shared
between all views’ images. It is worth mentioning that the
features of past images can be maintained and reused in a
feature queue without extra computational cost.

Fusion Transformer We use a Transformer [23] encoder
to fusion features from all views. There are four major parts
in the Transformer encoder, which are the BEV queries,
the self-attention module, the cross-attention model, and the
self-regression mechanism.

In order to represent the BEV space, we use X × Y
queries {Qx,y ∈ RC |x ∈ {1, · · · , X}, y ∈ {1, · · · , Y }}
in a 2D grid to represent the whole BEV space, where X
and Y are the spatial sizes of the BEV grid.

The second major part is the self-attention module. It
is used to interact with all BEV queries and exchange in-
formation in the BEV space. Since the time complexity of
the vanilla self-attention interaction is O(X2Y 2), we use
deformable self-attention [27] to reduce the computational
cost.

The most important module of this work is the cross-
attention used for unified multi-view spatial-temporal fu-
sion. With the help of the unified multi-view fusion, all
spatial-temporal features can be mapped to the same ego
BEV space. The goal of the cross-attention module is to
fuse and integrate the mapped spatial-temporal BEV space
features F .

Denote (x̂, ŷ, ẑ) are the real-world coordinates in the 2D
BEV grid (x, y), and ẑ is the real-world height for sam-
pling. Suppose the number of sampling in height in each
BEV grid is Z, then each BEV query Qx,y corresponds
to Z points, and the total coordinates in the BEV space is
Pbev ∈ RXY Z×3. Then we can obtain the mapped BEV
features F according to Eq. (2) with Pbev . Suppose the
number of time steps in temporal fusion is P , then the cross-
attention (CA) module can be written as:

CA(Qx,y, F ) =
∑
p,l,z

eatt
p,l,z
x,y∑

p,l,z e
attp,l,zx,y

F p,l,z
x,y , (3)

where F p,l,z
x,y is the sampled value at the point of (x̂, ŷ, ẑ)

from the BEV features F of l-th multi-scale level and p-th
time step.

∑
p,l,z is the summation over P time steps, L

scales, and Z heights. The attention value of attp,l,zx,y is:

attp,l,zx,y =
Qx,yK

p,l,z
x,y√

C
, (4)

in which C is the dimension of each BEV query, and Kp,l,z
x,y

8693



Table 1: Comparison of different map segmentation settings on NuScenes.

Setting Front/rear range Left/right range BEV grid size Map element type Line width Split

100m × 100m 50m 50m 0.5m × 0.5m Line, polygon 1-pixel Vanilla
60m × 30m 30m 15m 0.15m × 0.15m Line 5-pixel Vanilla

160m × 100m 100m/60m 50m 0.25m × 0.25m Line 3-pixel City-based

is the attention key composed of input F p,l,z
x,y and positional

embedding.
In this way, we can use BEV queries Q to iterate over

features from different places in the BEV space, time steps,
multi-scale levels, and sampling heights. The information
from all over the places and all over the time can be di-
rectly retrieved without any loss in a unified manner.
This kind of design also makes long-range fusion possible
since all features are directly accessed no matter how long
before, which also enables adaptive temporal fusion.

The last major part of our method is the self-regression
mechanism. Inspired by BEVFormer [12], which concate-
nates the warped previous BEV features with the BEV
queries before the self-attention module to realize the tem-
poral fusion, we use a self-regression mechanism that con-
catenates the output of Transformer with the BEV queries
as the new inputs and rerun the Transformer to get the final
features. For the first running of the Transformer, we simply
double and concatenate the BEV queries as the inputs.

In BEVFormer, it is believed that the concatenation of
warped BEV features and BEV queries brings temporal fu-
sion, and it is the root cause of performance gain. In this
work, we propose another explanation for this phenomenon,
that is, the concatenation of BEV features and queries is
to implicitly deepen and double the number of the Trans-
former’s layers. Because the warped BEV features are al-
ready processed by the Transformer at previous time steps,
the concatenation can be viewed as the grafting of two suc-
cessive Transformers. In this way, a simple self-regression
without warping can achieve a similar performance gain as
BEVFormer. The detailed ablation study can be found in
Sec. 4.3.

Segmentation head We use a lightweight, fully convolu-
tional model ERFNet [22] as our segmentation head, which
will upsample the output of the Transformer to the given
BEV space resolution.

4. Experiments
4.1. Dataset and Evaluation Settings

Dataset In this work, we use NuScenes [4] as the eval-
uation dataset for the map and vehicle segmentation task,
which contains 1,000 driving scenes collected in Boston and
Singapore. There are 28,130 and 6,019 keyframes for the

training and validation set. Each keyframe contains six sur-
rounding images.

Evaluation settings There are two widely used settings
for the map segmentation task on NuScenes. The first one
is the 100m × 100m setting [20, 12, 25] with two classes
road and lane. The other one is the 60m × 30m set-
ting [11, 19, 26] with three classes boundary, divider,
and ped crossing. In this work, we also propose a new
160m×100m setting for a more comprehensive evaluation,
as shown in Tab. 1. The key motivations of the new set-
ting are: 1) the evaluation range should be as large as the
visible limit. 2) the evaluation criterion should be discrimi-
native for both bad and good predictions. 3) the evaluation
should avoid overfitting and show the ability of generaliza-
tion1. In the new setting, we also use two difficulty levels
“easy” and “hard”. For the “easy” level, the evaluation is
conducted with the front, rear, left, and right ranges of 50m,
30m, 30m, and 30m, respectively. The “hard” level is on-
ducted with the left areas in the 160m × 100m range. For
all settings, mean intersection-over-union (mIoU) is used as
the evaluation metric.

For the vehicle segmentation task, we follow the setting
in [20, 12], which contains “car” and “vehicles” classes.

4.2. Implementation Details

To evaluate the results of our method, we use
ResNet50 [8], Swin-Tiny [13], and VoVNet [10] as our
backbones. The ResNet50 and Swin backbones are initial-
ized from ImageNet [6] pretraining, and VoVNet backbone
is initialized from DD3D checkpoint [18]. The default num-
ber of layers of the Transformer is set to 12. The input
image resolutions are set to 1600 × 900 for ResNet50 and
Swin. For VoVNet, we use 1408 × 512 image size. We
use AdamW [15] optimizer with a learning rate of 2e-4 and
a weight decay of 1e-4. The learning rate is decreased by
a factor of 10 for the backbone. The batch size is set to 1
per GPU, and models are trained with eight GPUs for 24
epochs. At the 20th epoch, the learning rate is decreased by
a factor of 10. The number of multi-scale features is set to
L = 4, the default number of previous time steps is set to
P = 6, and the number of sampling heights is set to Z = 4.

1The detailed information, motivation, and derivation of the new setting
can be found in the supplementary materials.
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The height range is (−5m, 3m] with a stride of 2m.
For the 100m × 100m setting, we use 50 × 50 BEV

queries to represent the whole BEV space, then the results
are upsampled by a factor of 4 to match the BEV resolution.
For the 60m × 30m setting, we use 100 × 50 BEV queries
with a similar upsampling as the 100m × 100m setting. For
the 160m× 100m setting, we use 80× 50 BEV queries and
then upsample 8x to match the ground truth resolution. We
use cross entropy loss to train on both settings. The loss
weight for the background class is set to 0.4 by default for
the class imbalance problem. Since the road class in the
100m × 100m setting is polygon area without the class im-
balance problem, the loss weight of the road background
class is set to 1.0.

4.3. Ablation Study

Ability of long-range fusion As discussed in the Intro-
duction, the proposed unified multi-view fusion has the abil-
ity of long-range fusion since it can directly access both
spatial and temporal information. In this part, We show the
results of different fusion time steps to examine the ability
of long-range fusion.
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Figure 5: Ability of long-range temporal fusion.

From Fig. 5, we can see that our method could consis-
tently benefit from the long temporal fusion even up to 10
steps. And the fusion duration for the 10 steps is 2 sec-
onds. However, the warp-based BEVFormer’s performance
would drop after 3 fusion steps. This is also in accord
with the results in BEVFormer [12] that the performance

of warp-based temporal fusion would decrease with longer
fusion than 4 contiguous steps. This shows the effectiveness
of the proposed multi-view unified temporal fusion and the
ability of long-range fusion.

Since the performance gradually converges after 6 fusion
steps, we set the number of temporal fusion steps P to 6 in
this work.

Disentangled training and inference fusion Although
the proposed unified fusion has the ability of long-range
fusion, this also brings another problem of computational
complexity, especially during training. Longer fusion steps
demand more memory and computational cost. We find a
phenomenon that can alleviate this problem, i.e., the num-
ber of temporal fusion steps during training does not need
to be the same as the one during inference. And a model
trained with a short-range fusion setting still has the ability
of long-range fusion during inference. We call this phe-
nomenon disentangled training and inference fusion. The
results are shown in Tab. 2.

Table 2: Comparison of different numbers of temporal fu-
sion steps. Note that the number of steps does not include
current step.

#Fusion steps
(training)

#Fusion steps
(inference) Road mIoU Lane mIoU

0 0 79.04 22.64
1 1 79.48 23.03
1 6 81.12 24.24
2 6 80.91 24.99
3 6 81.02 24.48
4 6 81.25 24.75

From Tab. 2, we can see that no matter how many tempo-
ral fusion steps we use during training, the performance is
very close when using 6 inference fusion steps. Moreover,
even if we use only one previous step during training, the
model still gains good performance with 6 temporal steps
during inference. That is to say, the model still has the abil-
ity of long-range fusion when trained with a short-range fu-
sion setting. By default, we use 2 temporal fusion steps
during training.

Effectiveness of self-regression mechanism In Sec. 3.2,
we propose a self-regression mechanism to further boost the
performance. In this part, we examine the effectiveness of
the self-regression mechanism. As shown in Tab. 5, we can
see that the model with self-regression always gains bet-
ter performance. Interestingly, the performance of the 12-
layer non-regression model is close to the one of the 6-layer
self-regression model. This verifies the analysis in Sec. 3.2.
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Table 3: Experiments on NuScenes with the 100m × 100m setting. * means the results are reported from BEVFormer [12].
† indicates that M2BEV uses a different setting, in which the BEV resolution is 2x larger. So the “Lane mIoU” is high.

Method Years Backbone Parameters FPS mIoU (Vanilla / City-based)
Road mIoU Lane mIoU All

LSS [20] ECCV20 EffNetb0 - - 72.9 / - 20.0 / - 46.5 / -
VPN* [17] IROS20 Res101DCN - - 76.9 / - 19.4 / - 48.2 / -
LSS* [20] ECCV20 Res101DCN - - 77.7 / - 20.0 / - 48.9 / -
M2BEV [25] - ResNeXt101 112.5 1.4 77.2 / - 40.5 / -† 58.9 / -†
BEVFormer [12] ECCV22 Res101DCN 68.7 1.7 80.1 / - 25.7 / - 52.9 / -

UniFusion - ResNet50 42.4 2.6 82.0 / 42.6 25.8 / 11.2 53.9 / 26.9
UniFusion VoVNet99 84.0 2.7 85.4 / 47.9 31.0 / 11.6 58.2 / 29.8

Table 4: Experiments on NuScenes with the 60m × 30m setting. * means the results are reported from HDMapNet [11]. **
means the BEVFormer is reimplemented in this work.

Method Years Backbone mIoU (Vanilla / City-based)
Divider Ped Crossing Boundary All

VPN* [17] IROS20 EffNetb0 36.5 / - 15.8 / - 35.6 / - 29.3 / -
LSS* [20] ECCV20 EffNetb0 38.3 / - 14.9 / - 39.3 / - 30.8 / -
HDMapNet [11] ICRA22 EffNetb0 40.6 / - 18.7 / - 39.5 / - 32.9 / -
BEVSegFormer [19] - ResNet101 51.1 / - 32.6 / - 50.0 / - 44.6 / -
BEVerse [26] - Swin-tiny 56.1 / - 44.9 / - 58.7 / - 53.2 / -
BEVFormer** [12] ECCV22 ResNet50 53.0 / 20.4 36.6 / 8.9 54.1 / 24.3 47.9 / 17.9

UniFusion - Swin-tiny 58.6 / 32.4 43.3 / 17.2 59.0 / 29.8 53.6 / 26.5
UniFusion - VoVNet99 60.6 / 32.5 49.0 / 11.5 62.5 / 32.9 57.4 / 25.6

Moreover, we can see that the number of layers is also im-
portant for the final performance.

Table 5: Comparison with different number of Transformer
layers and self-regression.

#Layers Self-Reg Road mIoU Lane mIoU

6 80.42 24.26
6 ✓ 80.91 24.99

12 81.13 25.29
12 ✓ 81.97 25.76

Unified cross attention brings adaptive temporal fusion
In Eq. (3), we show the core design of the unified multi-
view spatial-temporal fusion is the unified cross attention
module based on virtual views. The cross attention module
can iterate over features from different time steps, which
brings another important property, i.e., adaptive temporal
fusion. To verify this, we directly average the P temporal
features before feeding them into the Transformer as the
counterpart for comparison, which can be viewed as a fixed
equal-weighted fusion. The results are shown in Tab. 6.

We can see that our method outperforms the equal-
weighted temporal fusion counterpart in all settings. This
shows that our method could adaptively fuse information
from different time steps.

Table 6: Effectiveness of adaptive temporal fusion with dif-
ferent fusion steps. “Avg.” is the equal-weighted fusion.

Fusion Steps 1 2 3 4 5 6

UniFusion 24.03 25.08 25.46 25.61 25.72 25.76
Avg. 23.26 24.47 24.82 24.95 25.03 25.08

4.4. Results

To validate the performance of our method, we use
VPN [17], Lift-Splat-Shoot [20], M2BEV [25], and BEV-
Former [12] for comparsion in the 100m× 100m setting, as
shown in Tab. 3. The FPS of our method is measured on the
RTX 3090 GPU.

We can see that the proposed method with a ResNet50
backbone even outperforms the BEVFormer model with
a ResNet101DCN [5, 24] backbone. In the road class,
our method outperforms the previous SOTA BEVFormer
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Table 7: Comparison on NuScenes with the 160m × 100m setting. We reimplement other methods with the same setting
for comparison. All results are reported with the format of Vanilla split / City-based split.

Method Years Backbone mIoU (Easy) mIoU (Hard)
Divider Crossing Boundary All Divider Crossing Boundary All

VPN IROS20 ResNet50 25.4 / 8.3 6.7 / 0.5 25.3 / 14.6 19.1 / 7.8 13.4 / 2.9 4.3 / 0.0 13.1 / 6.5 10.3 / 3.1
LSS ECCV20 ResNet50 11.3 / 6.4 0.3 / 0.2 10.8 / 4.4 7.5 / 3.7 6.0 / 1.2 0.4 / 0.2 6.2 / 1.1 4.2 / 0.8
BEVFormer ECCV22 ResNet50 42.2 / 16.1 26.9 / 7.6 42.1 / 18.6 37.1 / 14.1 27.3 / 7.8 17.5 / 2.3 26.3 / 10.0 23.7 / 6.7
UniFusion - ResNet50 46.3 / 18.5 30.5 / 10.5 45.8 / 21.0 40.9 / 16.7 28.1 / 8.8 17.6 / 2.7 26.9 / 10.2 24.2 / 7.2

Surrounding Images Pred GT

Figure 6: Visualization of our method on NuScenes val set under complex road structures with the 60m× 30m setting. From
left to right, there are surrounding images, predictions, and ground truth. The red rectangle represents the ego car.

by 1.9 points with the vanilla split. It is worth mentioning
that BEVFormer uses much more BEV queries than ours
(200 × 200 vs. 50 × 50), which could benefit the segmen-
tation of thin lane lines. But our method still outperforms
BEVFormer in the lane class with a smaller backbone and
fewer BEV queries, which shows the effectiveness of the
proposed UniFusion. Besides, our method also achieves the
fastest speed compared with BEVFormer and M2BEV. Fi-
nally, our method with a larger VoVNet99 backbone outper-
forms BEVFormer by more than 5 points in all classes.

For the 60m × 30m setting, we adopt VPN [17], Lift-

Splat-Shoot [20], HDMapNet [11], BEVSegFormer [19],
and BEVerse [26] for comparsion. The comparison results
are shown in Tab. 4. From Tab. 4, we can see that our
method still obtains the best results in all settings.

In order to better evaluate different models and provide
a scenario that is closer to real-world autonomous driving,
we also introduce a new 160m × 100m setting. We use
VPN [17], LSS [20], BEVFormer [12], and our method with
the same training setting for comparison, as shown in Tab. 7.

From Tab. 7 we can see that visible range is crucial for
the map segmentation task. And the relatively low perfor-
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Table 8: Experiments on dynamic objects. TS means adding
timestamp to the network to indicate the time information.

Method Backbone TS Car Vehicles Road Lane

LSS EffNetb0 - 32.1 32.1 72.9 20.0
LSS Res101DCN - 42.1 41.7 77.7 20.0
VPN Res101DCN - 31.0 31.8 76.9 19.4
BEVFormer Res101DCN - 44.8 44.8 80.1 25.7

UniFusion Res101DCN 42.1 42.4 81.2 25.8
UniFusion Res101DCN ✓ 44.3 44.7 82.2 26.3

UniFusion VoVNet99 44.9 46.4 84.8 29.8
UniFusion VoVNet99 ✓ 47.3 48.3 85.3 30.0

mance suggests that large-range real-world map segmenta-
tion is still an open problem. Finally, we can see our method
still obtains the best performance.

It should be noted that the vanilla NuScenes train/val sets
contain many similar samples, and it is likely to be influ-
enced by overfitting. In this way, we introduce the new
city-based split for NuScenes, the results can be seen in
Tabs. 3, 4 and 7. We can see that with the city-based split,
all methods’ performance drops significantly, and the poor
improvement of VoVNet in Tab. 4 with the city-based split
also indicates the problem of overfitting. This could be an
important direction for future works.

In order to evaluate the method’s performance on dy-
namic objects, we show the vehicle segmentation compar-
ison in Tab. 8. Since dynamic objects can move and the
alignment between temporal features is not as ideal as static
fusion, we add an extra timestamp to help the segmentation.
To import timestamps, we divide 12 ticks per second (same
as the collecting frequency of NuScenes [4]), and use a set
of learnable embeddings to indicate the delta T. The times-
tamp embeddings are then fed into the network as part of
the positional embeddings of features.

from Tab. 8 we can see that our method still gets compa-
rable performance with other methods and is still effective
in dynamic objects. This is because although the features
of moving objects might not be aligned temporally, the pro-
posed deformable self-attention could learn the offsets and
gather the moving features to the current step. With the
added timestamp, the performance of vehicle segmentation
can be further boosted. Since the static elements like road
and lane are already aligned temporally, the performance
gain of adding timestamp is relatively low compared with
dynamic objects.

At last, we show the visualization results of our method,
as shown in Fig. 6. We can see that our method gains good
results under complex road structures. Our method could
even segment the parts that are missing in the ground truth,
as shown in the second row. Moreover, for the irregular road

boundary, our method still gains good results.

5. Conclusion

In this work, we propose a unified spatial-temporal fu-
sion method for BEV representation, termed UniFusion.
Different from previous methods that use warpping, we pro-
pose a new concept, i.e., virtual views that merge both spa-
tial and temporal fusion in a unified formulation. With this
design, we can realize long-range and adaptive temporal fu-
sion with no information loss. The experiments and visual-
izations validate the effectiveness of our method.
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