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Abstract

Bag-based multiple instance learning (MIL) methods
have become the mainstream for Whole Slide Image (WSI)
classification. However, there are still three important is-
sues that have not been fully addressed: (1) positive bags
with a low positive instance ratio are prone to the influence
of a large number of negative instances; (2) the correla-
tion between local and global features of pathology images
has not been fully modeled; and (3) there is a lack of ef-
fective information interaction between different magnifica-
tions. In this paper, we propose MILBooster, a powerful
dual-scale multi-stage MIL framework to address these is-
sues from the perspectives of distribution, correlation, and
magnification. Specifically, to address issue (1), we pro-
pose a plug-and-play bag filter that effectively increases
the positive instance ratio of positive bags. For issue (2),
we propose a novel window-based Transformer architec-
ture called PiceBlock to model the correlation between lo-
cal and global features of pathology images. For issue
(3), we propose a dual-branch architecture to process dif-
ferent magnifications and design an information interac-
tion module called Scale Mixer for efficient information
interaction between them. We conducted extensive exper-
iments on four clinical WSI classification tasks using three
datasets. MILBooster achieved new state-of-the-art per-
formance on all these tasks. Codes will be available at
https://github.com/miccaiif/MILBooster.

1. Introduction
Computer-aided diagnosis based on pathology Whole

Slide Images (WSIs) has important clinical significance, but

using deep-learning techniques in WSI classification faces

great challenges [29, 38, 23, 26, 21]. On one hand, WSIs are

very large, typically being muti-gigapixel images, so they

must be divided into many small patches to be processed by

∗Co-first author. †Co-corresponding author.

Figure 1. Motivation of our proposed bag filter. Left figure: the

positive instance ratio of the middle positive bag is low so its bag

feature is biased towards negative instances and it is mis-classified.

Right figure: after filtering a large number of negative instances

(and possibly some positive instances), the bag feature of the mid-

dle positive bag is rectified, and it is correctly classified.

deep neural networks. On the other hand, although the la-

bel of the whole slide can often be obtained, obtaining fine-

grained annotations for the huge number of small patches

is extremely expensive, which makes supervised learning at

the patch level infeasible. Therefore, WSI classification is

usually formulated as a Multiple Instance Learning (MIL)

problem [34, 9, 6, 22, 24], in which each slide is treated as

a bag and the patches cut from the slide are treated as in-

stances of the bag. In the MIL formulation, all instances in

a negative bag are negative, while at least one instance in

a positive bag is positive. The goal of WSI classification

is to accurately classify each bag, while the label of each

instance is unavailable.

Deep learning-based MIL methods can generally be di-

vided into instance-based methods [3, 10, 30, 15, 41] and

bag-based methods [14, 13, 45, 43, 36, 17, 44, 35, 18, 7,

24, 19]. Instance-based methods typically assign a pseudo-

label to each instance, and then train an instance classifier to

predict the positive score of instances. Finally, bag classifi-

cation is achieved by aggregating the positive scores of all

instances in a bag. Since the true label of each instance is

unknown, the pseudo-labels used in this method often con-

tain a large amount of noise, which limits their performance
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[30, 17, 32, 25, 31]. Bag-based methods first extract fea-

tures for each instance, and then use aggregation functions

to aggregate the instance features to obtain the bag feature,

which is used to train a bag classifier based on the true label

of the bag. By aggregating features at the bag level, bag-

based methods avoid the problem of noisy instance labels,

and can often achieve higher classification performance.

However, there are still three important problems that have

not been fully addressed. (1) The aggregated bag feature
tends to be biased towards the negative side when the posi-
tive instance ratio is low in a positive bag, which increases
the risk of decision error. As shown in Figure 1, intuitively,

when the positive instance ratio in a positive bag is low,

the aggregated bag feature is easily affected by the massive

negative instances, which increases the difficulty of training

the bag classifier and inferencing on test bags. If a large

number of negative instances can be removed from positive

bags, both training and inferencing will become easier. (2)
The correlation between local and global features has not
been fully modeled. As shown in Figure 2 (A), classical

attention-based methods [14, 36] assume that each instance

in a bag is independent, hence lacking correlation modeling

among instances [35]. Recent studies [35, 18, 7] have used

Vision Transformer (ViT) frameworks [11] to model the re-

lationship between instances, but they neglect the modeling

of local context. In pathology images, tumors are often dis-

tributed in a continuous region with an area much larger

than the patch size, so proper modeling of regional context

of patches is essential. (3) There is a lack of effective infor-
mation interaction between different magnification levels.
In clinical practice, pathologists often zoom in and out on

WSIs to make a diagnosis of tumors [1, 12, 39], which indi-

cates the need of examining WSIs at different magnification

levels. However, most existing studies only work on a single

level. As shown in Figure 2 (B), several recent studies have

proposed methods such as feature concatenation [17] and

weighted fusion [13] for combining multi-magnification in-

formation, but they are too simple to effectively fuse infor-

mation of different magnifications.

To tackle the aforementioned problems, we propose

MILBooster, a powerful dual-scale, multi-stage MIL frame-

work that significantly enhances the performance of WSI

classification from three aspects: distribution, correlation,

and magnification. In MILBooster, we propose bag filter to
effectively address problem (1) from the perspective of fea-
ture distribution modeling. Specifically, the bag filter is a

plug-and-play pre-processing module that is applied to both

training and test sets to effectively increase the positive in-

stance ratio in positive bags and eliminate the negative im-

pact of a large number of negative instances on feature ag-

gregation. For problem (2), we propose a window-based
PiceBlock (Part Interact with Entirety Block) to model the
correlation between local and global features in pathol-

ogy images. In PiceBlock, we arrange the features accord-

ing to the position of their corresponding patches and di-

vide the feature map into several windows. We design a

Self-window Transformer Block (SWTB) to model the cor-

relation of instance features within each window, a Self-

Window Merging Block (SWMB) to merge the instance

features within each window into a region feature, and a

Cross-window Transformer Block (CWTB) to model the

correlation between each instance and each region feature.

In this way, PiceBlock achieves efficient modeling of the

correlation between local features and global features. For
problem (3), we propose a dual-scale interaction module
called Scale Mixer to achieve efficient information interac-
tion between different magnifications. For the two scales

(high scale and low scale) being used, the Scale Mixer takes

the feature map of either the high or the low scale as the

main information and partitions the feature map of the other

scale into windows for interaction with the main informa-

tion using SWMB and CWTB. The output feature maps of

SWMB and CWTB are then fused with the main informa-

tion flow for enhancement.

We conducted extensive single-scale and dual-scale ex-

periments on four clinical tasks across three datasets con-

taining different types of cancer. The results showed that

MILBooster can significantly improve the performance of

WSI classification and achieve new SOTA.

2. Related Work
2.1. Instance-based MIL Methods

Instance-based methods typically assign a pseudo-label

to each instance, and then train an instance classifier to pre-

dict a positive score for each instance. Finally, the positive

scores of all instances in a bag are aggregated to predict the

bag label. Early methods [42, 40, 16, 28] directly assign bag

labels to each instance of it as their pseudo instance labels,

and some recent methods select a set of key instances to as-

sign pseudo labels for model training [3, 10, 30]. Since the

true labels of instances are unknown, the pseudo-labels in

these methods typically contain a lot of noise, which limits

the performance of the trained instance classifier.

2.2. Bag-based MIL Methods

Bag-based methods are currently the mainstream for

WSI classification. In these methods, features are first ex-

tracted for each instance, and then an aggregation function

is used to aggregate the features of each instance to ob-

tain the bag feature, which is used to train a bag classifier.

Attention-based aggregation methods [14, 13, 45, 43, 36,

17, 44, 24] have achieved good performance, but they as-

sume that each instance in the bag is independent, which

lacks correlation modeling between instances [35]. Re-

cently, some studies [35, 18, 7] have used ViT-based archi-
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Figure 2. (A) Motivation of our proposed PiceBlock. (B) Motivation of our proposed dual-branch interaction module. (C) Workflow of

our MILBooster (taking two branches of 10× and 20× as an example), which consists of two plug-and-play bag filters and a dual-scale,

multi-stage bag classifier PiceFormer.

tectures [11] to model the relationship between instances,

but they ignore the modeling of local regions and intro-

duce a huge computational cost. In contrast, we propose a

window-based PiceBlock to model the correlation between

local and global features, which greatly reduces the com-

putational cost of information interaction. In Zhang et al.

[44], random splitting of bags is used to construct many

small pseudo-bags to increase the number of bags and sup-

press overfitting. Although random splitting increases the

number of bags, it does not effectively increase the overall

positive ratio. On the contrary, when the overall positive ra-

tio of the dataset is small, the split small bags may also lead

to pseudo-label errors.

2.3. Feature Modeling and Multiscale Processing in
WSI Classification

Due to the large number of patches extracted from

pathology images, many studies [17, 44, 35, 32, 4, 5] have

used pre-trained networks to extract patch features and per-

form subsequent processing based on these features. Fol-

lowing these studies, we also use a self-supervised method

to pre-train an instance feature extractor in this study.

Most current WSI classification methods work on a sin-

gle magnification level, while some studies [13, 17, 27, 33]

have shown that combining features from multiple magni-

fication levels (often two scales) improves the classifica-

tion performance. However, with simple information fusion

strategies such as concatenation [30] and weighted fusion

[13], these methods cannot effectively facilitate information

interaction between features from different magnifications.

3. Method
3.1. Problem Formulation

Given a dataset S = {Sϕ
1 , S

ϕ
2 , . . . , S

ϕ
Nϕ

} of Nϕ WSIs at

a magnification (also called scale) ϕ (ϕ = {5, 10, 20} in

this paper), we cut each WSI Sϕ
i into non-overlapping small

patches {pϕi,j , j = 1, 2, ..., nϕ
i }, where nϕ

i is the number of

patches cut out of Sϕ
i . All patches pϕi,j from Sϕ

i form a bag,

where each patch is an instance of this bag, and the label

of this bag is Y ϕ
i ∈ {0, 1}. In the MIL setting, only the

labels of the bags from the training set are available, while

the labels of the instances are unknown.

Following DSMIL [17], we first utilize the self-

supervised method SimCLR [8] to pre-train a feature ex-

tractor for all patches pϕi,j at each scale, and then use this

feature extractor to map pϕi,j to feature vectors fϕ
i,j . To

avoid losing the spatial information of the original slide, we

re-arrange and edge-pad fϕ
i,j according to their positions in

the spatial dimension, resulting in a new vector matrix Bϕ
i .

The subsequent processing is performed on the basis of Bϕ
i .

Since our method is based on the pre-extracted instance fea-

tures, we will not differentiate between an instance and its

feature hereafter.

3.2. Framework Overview

As shown in Figure 2 (C), MILBooster is a dual-branch

MIL framework, and each branch consists of a bag filter and

a multi-stage Transformer architecture PiceFormer. Each

branch mainly processes WSIs at a certain scale and infor-

mation exchange between different scales happens in Pice-

Former via the Scale Mixer module. In each branch, we first
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feed the pre-extracted features Bϕ
i into the bag filter for pre-

processing to obtain the processed features Fϕ
i . The bag

filter detects and filters out a certain percentage of instances

in Bϕ
i with features close to that of negative instances so

as to increase the positive instance ratio in positive bags

and alleviate the negative impact of a large number of nega-

tive instances in positive bags on feature aggregation. Then

we feed the filtered features Fϕ
i of two scales together into

PiceFormer. Overall, PiceFormer is a dual-branch bag clas-

sifier, consisting of multiple sequentially connected feature

extracting modules called PiceBlock in each branch and a

dual-branch interaction module called Scale Mixer. Finally,

we add the output features of the two branches and input the

results to the MLP Head to complete the classification.

Detailed description of Bag Filter is in Section 3.3. The

architecture of PiceFormer and its key components are in-

troduced in detail in Section 3.4. For simplification, we

will omit the superscript ϕ when separately describing each

branch.

3.3. Bag Filter

The bag filter is implemented on the base of distribu-

tion modeling of true negative instances in negative bags.

Specifically, we first extract the features of all true negative

instances from negative bags in the training set as the true

negative feature bank. Then, we use the K-means algorithm

to cluster the feature bank into γ clusters, with each cluster

denoted as Cγ . On the base of these clusters, we define a

positive score ti,j for each instance fi,j as follows,

ti,j = min
γ

D (fi,j , Cγ) = min
γ

(fi,j − μγ)
T
Σ−1

γ (fi,j − μγ) ,

(1)

where D(·) denotes the Mahalanobis distance metric, and

μγ and Σγ are the mean and covariance of cluster Cγ . A low

positive score indicates that the instance is close to a cluster

in the negative feature bank and it has a low probability of

being positive, and vice versa.

The positive score defined in formula 1 is used to filter

instances in both training and testing bags. For positive bags

in the training set, we filter out εp% instances with the low-

est positive scores, in order to increase the positive instance

ratio. For negative bags in the training set, we filter out εn%

instances with the highest positive scores to make the deci-

sion boundary clearer. As for the testing sets, the true labels

of the bags are unknown, so we filter out εt% instances with

small positive scores for all bags so as to increase the posi-

tive instance ratio in positive bags.

To facilitate subsequent window partitioning operations,

after the bag filtering, we re-arrange and edge-pad the fea-

ture maps based on their relative spatial positions, making

them into a regular matrix of size H × W × C. In addi-

tion, the number of instances in high-scale bags is generally

greater than that in low-scale bags. In order to effectively

Figure 3. Workflow of PiceBlock, where MHSA represents the

Multi-Head Self-Attention mechanism.

balance the number of instances in different scales and fa-

cilitate dual-scale information interaction, we perform se-

quential repeating and edge padding to the low-scale bags

and make the filtered bag tensors of different scales have the

same shape.

3.4. PiceFormer

As shown in Figure 2 (C), PiceFormer is a dual-branch

bag classifier, in which we use multiple sequentially con-

nected PiceBlocks as multiple Stages for better feature ex-

traction. After each Stage, we use a Focal Merging Block

(FMB) to downsample the feature maps to gradually in-

crease the receptive field of PiceFormer. Finally, we add

the features from the two branches and input them into an

MLP Head for classification. The following sections will

describe each module in detail.

3.4.1 PiceBlock

We propose a window-based PiceBlock to model the cor-

relation between local and global features in pathology im-
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ages. The structure of the PiceBlock is shown in Figure

3. For the input feature map F , we first partition it into a

set of windows {Wk, k = 1, 2, ...,K} of size PH × PW ,

and Wk ∈ R
PH×PW×Cw , where Cw represents the fea-

ture dimension. Then, we input the partitioned feature maps

into a Self-Window Transformer Block (SWTB) and a Self-

Window Merging Block (SWMB), respectively.

Since instances within a local region of a pathology im-

age often exhibit similar features, these common features

can enhance each other. Therefore, we propose to use

SWTB to model the correlation among instances within a

window. SWTB employs a multi-head attention mechanism

to enable full interaction among instances within each win-

dow. Taking the instances f
(τ,k)
t within window Wk as an

example, where t = 1, 2, ..., Tk is the number of instances

within Wk, τ represents the number of times the instance

has passed through the Cross-window Transformer Block.

The process of inputting f
(τ,k)
t into SWTB and outputting

f
(τ,k)′
t is represented by Equation 2.

f
(τ,k)

′

t =

Tk∑
r=1

exp
(
Qr

t (K
r
t )

�
)

√
Cw

∑Tk

r=1 exp
(
Qr

t (K
r
t )

�
)V r

t , (2)

where Qt, Kt, and Vt are the Query, Key, and Value ob-

tained by linearly mapping f
(τ,k)
t , respectively.

SWMB uses average pooling to aggregate the features

within each window to obtain the fused feature of the win-

dow. SWMB takes all instances within each window Wk

as input and outputs their averaged pooled feature fk
w ∈

R
1×1×Cw as the window feature.

We propose the Cross-window Transformer Block

(CWTB) to model the correlation between the instances

within a window and all windows, thus achieving efficient

information interaction and correlation modeling between

local and global features. CWTB takes as input the instance

features outputted by SWTB and the window feature out-

putted by SWMB, and uses multi-head attention mechanism

to enhance these two types of information. In CWTB, we

construct a new feature set Ft = [f
(τ,k)′
t , f1

w, f
2
w, ...f

K
w ] by

combining the instance feature f
(τ,k)′
t in window Wk with

the window feature fk
w of each window. Then, we establish

a cross-attention mechanism on this feature set, allowing

each instance within a window to fully interact with each

window feature, and obtain the corresponding output fea-

ture f
(τ+1,k)
t .

f
(τ+1,k)
t =

K+1∑
r=1

exp
(
QFt

(
Kr

Ft

)�)

√
Cw

∑K+1
l=1 exp

(
QFt

(
Kr

Ft

)�)V r
Ft′ ,

(3)

where QFt is the Query linearly mapped from instance

f
(τ,k)′
t , Kr

Ft
is the Key linearly mapped from the feature set
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Figure 4. (A) Workflow of the Focal Merging Block. (B) Workflow

of the Scale Mixer.

Ft, and V r
Ft

is the Value linearly mapped from the feature

set Ft.

In a PiceBlock, we repeatedly use the combinations of

SWTB, SWMB, and CWTB to enhance information inter-

action.

3.4.2 Focal Merging Block

Between each PiceBlock Stage, we use a Focal Merging

Block (FMB) to downsample the feature map and form a

pyramid structure to further increase the receptive field of

PiceFormer, as shown in Figure 4 (A). The input of the

FMB is the feature map Z output by the previous Pice-

Block, and it is partitioned into windows of size ξh × ξw,

denoted as {Gl, l = 1, 2, ..., L}, where each window Gl ∈
R

ξh×ξw×CG . Considering the local similarity of pathology

image features, we flatten each spatial scale window Gl

with size ξh × ξw and stack them along the channel dimen-

sion to obtain {Gl, l = 1, 2, ..., L} → {gl, l = 1, 2, ..., L},

where gl ∈ R
1×1×(ξh×ξw×CG). Then, we apply a linear

mapping matrix to gl along the channel direction to map it

to Gl, where Gl ∈ R
1×1× 1

2 (ξh×ξw×CG). Finally, we rear-

range Gl back to its original window position, completing

one Focal Merging operation. After one FMB with a win-

dow size of 2 × 2, the spatial scale of the feature map is

halved and the channel dimension is doubled, which greatly

enhance the receptive field and feature extraction ability of

PiceFormer while reducing computational costs.

3.4.3 Scale Mixer

As shown in Figure 4 (B), the Scale Mixer takes the feature

map of either the high or the low scale as the main infor-

mation, and then uses the feature map of the other scale

as supplementary information. The supplementary feature

map is partitioned into windows and interacts with the main

information using the Self-Window Merging Block and the

Cross-Window Transformer Block to obtain processed fea-

ture maps, which are then fused into the main information

flow. Specifically, Scale Mixer takes the feature maps out-

put by the PiceBlock as input for both branches, and alter-

nately takes one branch’s feature map Fm ∈ R
ηh×ηw×Cη
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as the main information and the other Fs ∈ R
ηh×ηw×Cη

as supplementary information. The supplementary feature

maps Fs are first partitioned into windows and processed

by SWMB to obtain the window features, which are then

inputted into CWTB together with main information fea-

ture map Fm for information interaction between branches.

Finally, the output feature of CWTB is added to the main

information feature Fm. We use the Scale Mixer after the

PiceBlock in each stage, so that the multi-magnification fea-

ture information can fully interact with each other as the

network deepens. The Scale Mixer can also be extended to

more than two scales.

4. Experiments
4.1. Datasets

We comprehensively evaluated the performance of our

MILBooster on three datasets with different tumor types

from different centers. The three datasets are Camelyon16

public dataset [2] (breast cancer), TCGA 1public dataset

(lung cancer) and an in-house Cervical Cancer dataset. We

experimented on four different WSI classification tasks, in-

cluding tumor diagnosis, tumor subtyping, prediction of

lymph node metastasis from primary lesion WSIs, and pa-

tient prognosis prediction. The first two tasks can be di-

rectly accomplished by doctors in clinical practice and they

are relatively easy. In comparison, the latter two tasks are

more difficult and even doctors cannot make the prediction

from the given WSI images, where the ground-truth labels

for the third task are obtained by directly examining lymph

node WSIs after surgery and the ground-truth labels for

the fourth task are obtained from long-term follow-up. To

demonstrate the powerful performance of our MILBooster

at different scales, for each dataset, we provided at least

two single-scale evaluation results and one double-scale re-

sult. Following DSMIL [17], we cropped each WSI into

non-overlapping patches of 224×224 to form a bag. Back-

ground blocks with an entropy value of less than 5 were

discarded. Detailed descriptions are as follows.

4.1.1 Camelyon16 Public Dataset

The Camelyon16 dataset is a public WSI dataset for detect-

ing breast cancer metastases in lymph nodes. The dataset

contains 399 H&E-stained lymph node WSIs (270 for train-

ing, and 129 for testing). WSIs with metastases are labeled

as positive, while the rest are negative. In addition to pro-

viding labels for whether a WSI is positive or negative, the

dataset also provides pixel-level labels for positive regions.

We only use WSI-level labels for model training and eval-

uation, while pixel-level labels are not used. We conducted

experiments at three magnifications: 20×, 10×, and 5×.

1http://www.cancer.gov/tcga

4.1.2 TCGA Lung Cancer Dataset

The TCGA Lung Cancer Dataset includes 1054 H&E-

stained WSIs from the Cancer Genome Atlas (TCGA) Data

Portal, with the main objective of accurately classifying two

subtypes of lung cancer included in the dataset, namely

Lung Adenocarcinoma and Lung Squamous Cell Carci-

noma. Only the WSI labels are available for this dataset.

Following DSMIL [17], we labeled WSIs of Lung Adeno-

carcinoma as negative and WSIs of Lung Squamous Cell

Carcinoma as positive, and conducted experiments at two

magnifications, 20× and 5×. We randomly split the WSIs

into 840 training slides and 210 testing slides (with 4 low-

quality slides discarded).

4.1.3 Cervical Cancer Dataset

The Cervical Cancer Dataset is an in-house clinical dataset,

which includes a total of 374 H&E-stained WSIs of pri-

mary cervical cancer lesions from different patients after

slide selection. All patients underwent abdominal hysterec-

tomy with pelvic lymph node dissection para-aortic lymph

node dissection. The lymph node status of all patients was

confirmed by professional gynecologic pathologists after

surgery. All patients have strict follow-up records of more

than five years. We used this dataset to complete two clin-

ical tasks that cannot be directly judged by doctors from

H&E slides, namely lymph node tumor metastasis predic-

tion and patient survival prognosis prediction.

Prediction of lymph node metastasis of primary le-
sion. We labeled the corresponding slides of patients with

pelvic lymph node metastasis as positive (209 cases) and the

corresponding slides of patients without pelvic lymph node

metastasis as negative (165 cases). We conducted experi-

ments at 10× and 5× magnifications. We randomly divided

the WSIs into a training set (300 cases) and a test set (74

cases), with an approximate ratio of 4:1.

Prediction of patient survival prognosis. Following

Skrede et al. [37], we grouped all patients based on de-

tailed follow-up records according to the median, where

those who did not experience cancer-related death within

three years were labeled as negative (favorable prognosis),

and those who did were labeled as positive (poor progno-

sis). Then, we randomly divided WSIs into the training set

(294 cases) and the test set (80 cases) based on the labels.

We conducted experiments at 10× and 5× magnifications.

4.2. Evaluation Metrics, Competitors and Imple-
mentation Details

We used the Area Under Curve (AUC) and Accuracy as

evaluation metrics. We comprehensively compared MIL-

Booster to six SOTA methods in the field of WSI classifi-

cation, including ABMIL [14], MILRNN [3], Loss-ABMIL

[36], DSMIL [17], TransMIL [35], and DTFD-MIL [44].
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Following DSMIL [17], we performed pre-processing to

WSI datasets including patch cropping and background re-

moval and we adopted SimCLR [8] as the self-supervised

method to pre-extract patch features. The best filter ratios

of bag filters vary for each dataset, and we adopted a grid

search on the validation set to determine the optimal val-

ues. For PiceFormer, the default number of total blocks

and stages is set to 12 and 3, respectively. In each stage,

SWTB and CWTB are placed alternately and the default

hyper-parameter of it is [3, 7, 2]. The window size is set

to 6×6 for the window pooling operation in CWTB. The

number of heads of MHSA of SWTB and CWTB in stages

1-3 is set as [4, 8, 16], respectively. SGD optimizer with an

initial learning rate of 0.002 is used and a linear scheduler is

adopted with a 2e-5 minimum learning rate. The warm-up

learning rate is set to 2e-4. The total training epoch is 300.

For all comparison methods, we reproduced these methods

based on the published codes and performed a grid search

on the key hyperparameters in our settings.

4.3. Main Results

Tables 1-4 present the experimental results of all meth-

ods on the Camelyon16 dataset, the TCGA dataset, and

the two different tasks on the Cervical Cancer dataset. For

the single-scale experiments, it is evident that MILBooster

achieves the best performance in all datasets, scales, and

metrics, demonstrating its powerful ability for WSI classi-

fication. In the cancer detection task of the Camelyon16

dataset, MILBooster’s Accuracy and AUC are 1.2% and

1.8% higher than the second-best method in average across

three different scales. In the cancer subtyping task on the

TCGA dataset, MILBooster’s Accuracy and AUC are 1.5%
and 0.6% higher than the second-best method in average

across two different scales.

MILBooster shows greater superority in the more diffi-

cult tasks on the Cervical Cancer dataset. In the lymph node

metastasis task, MILBooster’s Accuracy and AUC are 1.8%
and 2.2% higher than the second-best method in average

across two scales. In the prognosis prediction task, MIL-

Booster’s Accuracy and AUC are 1.2% and 0.8% higher

than the second-best method in average across two scales.

For the double-scale experiments, first we can see that

the double-scale performance of MILBooster is higher than

any single-scale performance, which indicates that combin-

ing dual-scale information can indeed enhance WSI clas-

sification performance. All comparing methods adopted

the dual-scale combination approach in DSMIL [17], and

MILBooster’s Accuracy and AUC are 1.3% and 1.4%
higher than the second-best method in average across all

four tasks, which demonstrates the effectiveness of MIL-

Booster’s dual-scale fusion strategy.

Table 1. The results of Camelyon 16 dataset under single scale and

dual-scale (20× and 5×) scenarios.
20× Classification 10× Classification 5× Classification MS Classification

Model
Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

ABMIL (18’ICML) 0.8450 0.8653 0.8140 0.8379 0.7519 0.7684 0.8760 0.8872

MILRNN (19’Nat. Med) 0.8062 0.8064 0.8140 0.8262 0.7519 0.7603 0.8450 0.8571

Loss-ABMIL (20’AAAI) 0.8605 0.8768 0.8062 0.8299 0.7519 0.7650 0.8837 0.9025

DSMIL(21’CVPR) 0.8682 0.8944 0.8140 0.8401 0.7597 0.7745 0.8992 0.9165

TransMIL(21’NeurIPS) 0.8760 0.8987 0.8295 0.8566 0.7674 0.7824 0.8915 0.9127

DTFD-MIL(22’CVPR) 0.8837 0.9008 0.8372 0.8638 0.7907 0.8022 0.8915 0.9237

ours 0.8915 0.9187 0.8527 0.8915 0.7984 0.8112 0.9069 0.9427

Table 2. The results of TCGA-Lung-Cancer dataset under single

scale and dual-scale (20× and 5×) scenarios.
20× Classification 5× Classification MS Classification

Model
Accuracy AUC Accuracy AUC Accuracy AUC

ABMIL (18’ICML) 0.9000 0.9488 0.8619 0.9269 0.9000 0.9551

MILRNN (19’Nat. Med) 0.8619 0.9107 0.8571 0.9155 0.8905 0.9213

Loss-ABMIL (20’AAAI) 0.9143 0.9517 0.8619 0.9212 0.9286 0.9574

DSMIL(21’CVPR) 0.9190 0.9633 0.8619 0.9373 0.9286 0.9583

TransMIL(21’NeurIPS) 0.9381 0.9830 0.8667 0.9465 0.9333 0.9599

DTFD-MIL(22’CVPR) 0.9381 0.9808 0.8762 0.9483 0.9381 0.9795

ours 0.9476 0.9851 0.8952 0.9600 0.9571 0.9863

Table 3. Results on the lymph node metastasis task for the Cervical

Cancer dataset under single scale and dual-scale (10× and 5×)

scenarios.
10× Classification 5× Classification MS Classification

Model
Accuracy AUC Accuracy AUC Accuracy AUC

ABMIL (18’ICML) 0.7973 0.8319 0.7297 0.7716 0.7973 0.8413

MILRNN (19’Nat. Med) 0.7838 0.8111 0.7162 0.7563 0.7973 0.8202

Loss-ABMIL (20’AAAI) 0.7973 0.8324 0.7568 0.7835 0.8108 0.8418

DSMIL(21’CVPR) 0.8243 0.8483 0.7702 0.8022 0.8243 0.8522

TransMIL(21’NeurIPS) 0.8243 0.8501 0.7838 0.8126 0.8378 0.8634

DTFD-MIL(22’CVPR) 0.8378 0.8533 0.7703 0.8108 0.8513 0.8678

ours 0.8513 0.8790 0.7973 0.8380 0.8649 0.8820

Table 4. Results on the prognosis task for the Cervical Cancer

dataset under single scale and dual-scale (10× and 5×) scenar-

ios.
10× Classification 5× Classification MS Classification

Model
Accuracy AUC Accuracy AUC Accuracy AUC

ABMIL (18’ICML) 0.7000 0.7518 0.6875 0.7439 0.7375 0.7698

MILRNN (19’Nat. Med) 0.7125 0.7333 0.7000 0.7212 0.7125 0.7445

Loss-ABMIL (20’AAAI) 0.7250 0.7617 0.7125 0.7505 0.7375 0.7723

DSMIL(21’CVPR) 0.7375 0.7783 0.7250 0.7622 0.7500 0.7871

TransMIL(21’NeurIPS) 0.7500 0.7835 0.7375 0.7716 0.7750 0.7914
DTFD-MIL(22’CVPR) 0.7375 0.7818 0.7250 0.7650 0.7625 0.7895

ours 0.7625 0.7900 0.7500 0.7781 0.7875 0.8036

5. Ablation Study
MILBooster consists of three main components: bag fil-

ter, PiceBlock, and Scale Mixer. The effectiveness of Scale

Mixer has already been demonstrated in the results in Ta-

bles 1-4. For the other two components, we conducted de-

tailed ablation experiments on the Camelyon16 dataset at

10× magnification. The experiments on bag filter are de-

scribed in Section 5.1, and those on PiceBlock are described

in Section 5.2.

5.1. Bag Filter

Increase of positive ratio after bag filter. Table 5

shows the change of average positive instance ratio of pos-

itive bags in the training and testing sets before and after

using the bag filter. The original positive instance ratios in
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Table 5. Positive instance ratios in the training and testing sets

before and after using the bag filter. ”w/ bf” represents the use of

the bag filter, ”Filter Ratio” represents the proportion of instances

filtered by the bag filter in each bag relative to the total number of

instances, and ”w/o bf” represents the original positive ratio of the

dataset. Δ represents the increase in positive instance ratio.

Pos-ratio of training dataset Pos-ratio of test dataset
Filter Ratio w/bf Δ w/bf Δ

90% 0.2802 +16.59% 0.3801 +19.45%
80% 0.2367 +12.24% 0.3555 +16.99%
70% 0.2115 +9.72% 0.3153 +12.97%
60% 0.1905 +7.62% 0.2912 +10.56%
50% 0.1741 +5.98% 0.2667 +8.11%
40% 0.1597 +4.54% 0.2476 +6.20%
30% 0.1455 +3.12% 0.2314 +4.58%
20% 0.1351 +2.08% 0.2127 +2.71%
10% 0.1242 +0.99% 0.2018 +1.62%

w/o bf 0.1143 - 0.1856 -

Table 6. Plug-and-play experiment of bag filter.

Method bag filter AUC Δ

� 0.8379
ABMIL

� 0.8490
+1.11%

� 0.8299
Loss-ABMIL

� 0.8464
+1.65%

� 0.8401
DSMIL

� 0.8506
+1.05%

� 0.8566
TransMIL

� 0.8687
+1.21%

� 0.8638
DTFD-MIL

� 0.8733
+0.95%

� 0.8764
ours

� 0.8915 +1.51%

the training and testing sets of this dataset were only 11.4%
and 18.6%, respectively. This indicates that there are a large

number of negative instances in positive bags during train-

ing and testing, which could have a potential negative im-

pact on the aggregation of positive bag features. After using

the bag filter, there was a significant increase in the positive

instance ratios in both the training and the testing sets. This

indicates that the bag filter can indeed significantly increase

the proportion of positive instances in the bags.

Plug-and-play capability of bag filter. We conducted a

plug-and-play experiment of the proposed bag filter in com-

paring methods with a filter ratio of 0.6, and the results are

shown in Table 6. It can be seen that after using the bag

filter, the performance of all methods has been significantly

improved, with an average increase of 1.2% the AUC met-

ric, which demonstrates the high efficiency and plug-and-

play ability of the bag filter.

Sensitivity to the filter ratio. We conducted a sensitiv-

ity test on the filter ratio, and the results are shown in Table

7. It can be seen that on this dataset, the best performance

Table 7. Sensitivity test on the filter ratio of the bag filter.
Filter Ratio 90% 80% 70% 60% 50% 40% 30% 20% 10% w/o bf

AUC 0.8608 0.8712 0.8839 0.8915 0.8901 0.8868 0.8847 0.8823 0.8815 0.8764

was achieved by filtering out 60% of instances. Though,

in Table 5, the higher proportion of instances are filtered,

the higher the positive instance ratio will be, the model’s

performance does not always increase as the positive ratio

increases according to Table 7. This is due to the destruc-

tion of feature distribution caused by removing too many

instances. To further demonstrate this phenomenon, we se-

lected several typical positive and negative bags and visu-

alized their feature distributions before and after bag filter

using the t-SNE method in Figure 5.

In the first row of Figure 5, the original positive bag

has a positive instance ratio of only 6.4%. After filtering

with 90% and 60% filter ratio, the positive instance ratio in-

creases to 42.6% and 14.9%, respectively, while the overall

distribution of the original positive and negative instances is

well maintained. However, in the second row, although the

positive instance ratio of this positive bag is significantly in-

creased from 14.0% to 64.4% after filtering with 90% filter

ratio, it loses all positive instances in the lower right corner

and a large number of negative instances, which destruct

the original feature distribution and harm the performance.

In contrast, the 60% filter ratio not only improves the posi-

tive ratio but also maintains the main distribution of positive

and negative instances fairly well, thus achieving better per-

formance. The situation is the same for negative bags. As

shown in the third row, we use 90% and 60% filter ratios

to filter negative bags separately. It can be seen that the

90% filter ratio filters out too many instances, causing the

negative bags to lose their overall feature distribution. The

60% filter ratio maintains the original feature distribution

well. This also explains why the 60% filter ratio achieved

the best performance in our ablation experiments.

Effects on the training and testing sets. In another ex-

periment on the 10× Camelyon16 dataset, the AUC was

0.8764 without using the bag filter for both the training and

testing sets. When the bag filter was applied to the training

set, the AUC improved to 0.8868. The best performance,

with an AUC of 0.8915, was achieved when both the train-

ing and testing sets utilized the bag filter. Incorporating the

bag filter in both sets resulted in the highest performance.

5.2. PiceBlock

To demonstrate the effectiveness of the proposed Pice-

Block, we conducted experiments on a variant of the pro-

posed method without using Scale Mixer between the two

branches and compared it with current state-of-the-art meth-

ods. Experiments are conducted under two settings, with

and without using the bag filter, and the results are shown
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Original bags Bag filter ratio: 90% Bag filter ratio: 60%

Pos ratio: 6.4% Pos ratio: 42.6% Pos ratio: 14.9%

Pos ratio: 14.0% Pos ratio: 64.4% Pos ratio: 29.1%

Figure 5. Visualization of typical t-SNE features before and after

filtering, where the first two rows are two typical positive bags and

their processing results; the third row is a typical negative bag and

its processing results. In the t-SNE visualization, red represents

positive instances and blue represents negative instances.

in Table 8. We can see that: (1) Without using the bag fil-

ter, the performance of the variant is better than all compar-

ing methods. (2) With all methods using the bag filter, the

performance of the variant is still better than all comparing

methods and the margin is enlarged. In particular, we notice

that Swin-Transformer[20] uses a sliding window approach

to enhance local and global feature aggregation. Although

there is currently no research on using Swin-Transformer

in WSI classification, we design a baseline model based on

Swin-Transformer as a competitor and denote it as Swin-

baseline. It can be seen that the variant without Scale Mixer

significantly outperforms the Swin-baseline.

We compared the computational efficiency of the Pice-

Block and ViT-B/16 [10] under the same input and network

depth. Specifically, we set the input as a matrix F ∈ R
N×C

with the size of 576×768, where N = 576 is the number

of feature vectors and C = 768 is the dimension of fea-

tures. The parameter setting of our PiceFormer is as fol-

lows: the total number of blocks and stages is set to 12 and

3, respectively. In each stage, SWTB and CWTB are placed

alternately. The window size is set to 6×6 for the window

pooling operation in CWTB. For the competitor ViT-B/16

[10], the parameter of the architecture is set as follows: the

total number of layers is set to 12, the hidden size is 768,

the MLP dimension is set to 3072 and the number of heads

in each MHSA is 12. In order to keep the input the same as

Table 8. AUC results of the ablation experiment of PiceBlock. The

filter ratio used for the bag filter was 0.6.

Model w/o bf w/ bf

ABMIL 0.8379 0.8490

Loss-ABMIL 0.8299 0.8464

DSMIL 0.8401 0.8506

TransMIL 0.8566 0.8687

DTFD-MIL 0.8638 0.8733
Swin-baseline 0.8612 0.8716

ours 0.8764 0.8915

that of our PiceFormer for fairness, we transform the input

image with size R
3×384×384 to R

576×768. Given the same

inputs, our PiceBlock (48.7G FLOPs, 31.8 seconds) can

achieve better results with fewer FLOPs and shorter time

compared to ViT-B/16 (55.4G FLOPs, 33.2 seconds).

5.3. Focal Merging Block

The Focal Merging Block (FMB) aims to reduce compu-

tational costs and increase the receptive field. We also con-

ducted an ablation study on the 20× Camelyon 16 dataset.

The AUC with the FMB module (0.9187) outperformed the

AUC without it (0.9035), highlighting the positive impact

of incorporating the FMB module.

6. Conclusion

Our paper introduces MILBooster, a robust dual-scale

and multi-stage MIL framework that significantly enhances

WSI classification performance across three critical dimen-

sions: distribution, correlation, and magnification. Firstly,

we introduce a plug-and-play bag filter which effectively

elevates the positive instance ratio within positive bags by

focusing on feature distribution modeling. Secondly, we

present a pioneering Transformer architecture, named Pice-

Block, which leverages window-based techniques to metic-

ulously capture the interplay between local and global fea-

tures within pathology images. Additionally, we put forth

the Scale Mixer, a dual-branch information interaction mod-

ule, which enhances overall interaction among diverse mag-

nification levels. Empirical validation on three datasets en-

compassing four clinical tasks underscores the superiority

of MILBooster in both single-scale and dual-scale classifi-

cation scenarios. Our innovative PiceBlock carries the po-

tential for broader applicability in domains spanning nat-

ural image and medical image processing. Moreover, our

method offers substantial clinical benefits. In tasks like

lymph node metastasis prediction and prognosis estimation,

we achieve a notable 1.8% and 1.2% accuracy gain over the

second-ranked option. This means around 18 to 12 more ac-

curate identifications within every 1000-patient group, en-

abling more precise and impactful treatment approaches.
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