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Figure 1: DreamBooth3D is a personalized text-to-3D generative model that creates plausible 3D assets of a specific subject

from just 3-6 images. Top: 3D output and geometry estimated for an owl object. Bottom: our approach can generate

variations of the 3D subject in different contexts (sleeping) or with different accessories (hat or tie) based on a text prompt.

Abstract

We present DreamBooth3D, an approach to personal-
ize text-to-3D generative models from as few as 3-6 ca-
sually captured images of a subject. Our approach com-
bines recent advances in personalizing text-to-image mod-
els (DreamBooth) with text-to-3D generation (DreamFu-
sion). We find that naı̈vely combining these methods fails
to yield satisfactory subject-specific 3D assets due to per-
sonalized text-to-image models overfitting to the input view-
points of the subject. We overcome this through a 3-stage
optimization strategy where we jointly leverage the 3D con-
sistency of neural radiance fields together with the person-
alization capability of text-to-image models. Our method

can produce high-quality, subject-specific 3D assets with
text-driven modifications such as novel poses, colors and
attributes that are not seen in any of the input images of
the subject. More results are available at our project page:
https://dreambooth3d.github.io

1. Introduction
Text-to-Image (T2I) generative models [6, 36, 37, 39]

have greatly expanded the ways we can create and edit vi-

sual content. Recent works [23, 27, 33, 43] have demon-

strated high-quality Text-to-3D generation by optimizing

neural radiance fields (NeRFs) [28] using the T2I diffusion

models. Such automatic 3D asset creation with input text
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prompts alone has applications in a wide range of areas,

such as graphics, VR, movies, and gaming.

Although text prompts allow for some degree of control

over the generated 3D asset, it is often difficult to precisely

control its identity, geometry, and appearance solely with

text. In particular, these methods lack the ability to generate

3D assets of a specific subject (e.g., a specific dog instead of

a generic dog). Enabling the generation of subject-specific

3D assets would significantly ease the workflow for artists

and 3D acquisition. There has been remarkable success [13,

21, 38] in personalizing T2I models for subject-specific 2D

image generation. These techniques allow the generation

of specific subject images in varying contexts, but they do

not generate 3D assets or afford any 3D control, such as

viewpoint changes.

In this work, we propose ‘DreamBooth3D’, a method for

subject-driven Text-to-3D generation. Given a few (3-6) ca-

sual image captures of a subject (without any additional

information such as camera pose), we generate subject-

specific 3D assets that also adhere to the contextualization

provided in the input text prompts. That is, we can generate

3D assets with geometric and appearance identity of a given

subject while also respecting the variations (e.g. sleeping or

jumping dog) provided by the input text prompt.

For DreamBooth3D, we draw inspiration from the re-

cent works [33] which propose optimizing a NeRF model

using a loss derived from T2I diffusion models. We observe

that simply personalizing a T2I model for a given subject

and then using that model to optimize a NeRF is prone to

several failure modes. A key issue is that the personalized

T2I models tend to overfit to the camera viewpoints that are

only present in the sparse subject images. As a result, the

resulting loss from such personalized T2I models is not suf-

ficient to optimize a coherent 3D NeRF asset from arbitrary

continuous viewpoints.

With DreamBooth3D, we propose an effective optimiza-

tion scheme where we optimize both a NeRF asset and T2I

model in conjunction with each other to jointly make them

subject-specific. We leverage DreamFusion [33] for NeRF

optimization and use DreamBooth [38] for T2I model fine-

tuning. Specifically, we propose a 3-stage optimization

framework where in the first stage, we partially finetune

a DreamBooth model and then use DreamFusion to opti-

mize a NeRF asset. The partially finetuned DreamBooth

model does not overfit to the given subject views, but also

do not capture all the subject-specific details. So the result-

ing NeRF asset is 3D coherent, but is not subject-specific.

In the second stage, we fully finetune a DreamBooth model

to capture fine subject details and use that model to cre-

ate multiview pseudo-subject images. That is, we translate

multiview renderings from the trained NeRF into subject

images using the fully-trained DreamBooth model. In the

final stage, we further optimize the DreamBooth model us-

ing both the given subject images along with the pseudo

multi-view images; which is then used to optimize our final

NeRF 3D volume. In addition, we also use a weak recon-

struction loss over the pseudo multi-view dataset to further

regularize the final NeRF optimization. The synergistic op-

timization of the NeRF and T2I models prevents degenerate

solutions and avoids overfitting of the DreamBooth model

to specific views of the subject, while ensuring that the re-

sulting NeRF model is faithful to the subject’s identity.

For experimental analysis, we use the dataset of 30 sub-

jects proposed in DreamBooth [38] which uses the same

input setting of sparse casual subject captures. Results indi-

cate our approach can generate realistic 3D assets with high

likeness to a given subject while also respecting the con-

texts present in the input text prompts. Fig. 1 shows sample

results of DreamBooth3D on different subjects and con-

textualizations. When compared to several baselines, both

quantitative and qualitative results demonstrate that Dream-

Booth3D generations are more 3D coherent and better cap-

ture subject details.

2. Related Works

Text-to-Image Generation. Earlier works on generative

models are dominated by Generative Adversarial Networks

(GANs) which train a generator to synthesis images that are

indistinguishable from real images [15, 40]. Other genera-

tive approaches include autoregressive models that generate

images pixel by pixel or patch by patch [12,46] and masked

image models that iteratively predict the marginal distribu-

tion of masked patches in the image [6, 7]. Recently, de-

noising diffusion models [17] have been proposed for im-

age synthesis, which can generate high-quality images by

iteratively denoising a noise image toward a clean image

[10, 36, 37, 39]. Diffusion models can also be conditioned

on various inputs such as depth-map [47], sketch [42], se-

mantic segmentation [1, 37], text [30, 36, 37, 39] and others

[18,22,47]. For text conditioning, these models take advan-

tage of pre-trained large language models (LLMs) [34, 35]

in order to generate images that are aligned with a natural

language text prompt given by the user. Motivated by the

success of T2I diffusion models, many works utilize pre-

trained T2I models for various tasks such as text-based im-

age manipulation [3, 20, 29].

3D Generation. First works on learning-based 3D content

generation performed 3D reconstruction from one or multi-

ple images [8, 11, 14, 26, 44]. While leading to good recon-

struction results, they require large-scale datasets of accu-

rate 3D data for training which limits their use in real-world

scenarios. Another line of work [4, 5, 16, 31, 41] circum-

vents the need for accurate 3D data by training 3D-aware

generative models from image collections. While achiev-

ing impressive results, these methods are sensitive to the
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assumed pose distribution and restricted to single object

classes. Very recently, text-to-3D methods [19, 23, 27, 33]

have been proposed that can generate 3D assets from text

prompts by utilizing large pretrained T2I diffusion models.

In many applications, however, the conditioning are rather

input images optionally with text instead of pure text. As a

result, multiple works investigate how input images can be

incorporated into the optimization pipeline, e.g. by apply-

ing a reconstruction loss on the input image and predicted

monocular depth [9, 45] or a predicted object mask [24].

This, however, limits their use as it does not exploit the full

strength of diffusion models, e.g., the object cannot be re-

contextualized with additional text input. Instead, we pro-

pose to not directly reconstruct the input image, but rather

the concept of the provided object. This allows not only for

reconstruction, but also for recontextualization and more,

and the input images do not need to be taken with the same

background, lighting, camera etc.

Subject-driven Generation. Recent advances in subject-

driven image generation [13,21,38] enable users to person-

alize their image generation for specific subjects and con-

cepts. This has provided T2I models with the ability to

capture the visual essence of specific subjects and synthe-

size novel renditions of them in different contexts. Dream-

Booth [38] accomplishes this by expanding the language-

vision dictionary of the model using rare tokens, model

finetuning, and a prior preservation loss for regularization.

Textual Inversion [13] accomplishes this by optimizing for

a new ”word” in the embedding space of a pre-trained text-

to-image model that represents the input concept. It’s worth

noting that these methods do not generate 3D assets or 3D

coherent images. There have also been developments in

guiding image generation with grounding inputs [22], edit-

ing instructions [3], and task-specific conditions such as

edges, depth, and surface normals [47]. However, these

techniques do not provide personalization to specific sub-

jects, and do not generate 3D assets.

3. Approach
Problem setup. The input to our approach forms a set of

k casual subject captures, each with n pixels, {Ii ∈ R
n×3}

(i ∈ {1, ..., k}) and a text prompt T for the contextualiza-

tion or semantic variation (e.g., sleeping vs. standing dog).

Our aim is to generate a 3D asset that captures the identity

(geometry and appearance) of the given subject while also

being faithful to the text prompt. We optimize 3D assets

in the form of Neural Radiance Fields (NeRF) [28], which

consists of an MLP network M that encodes radiance fields

in a 3D volume. Note that this problem is considerably

more under-constrained and challenging compared to a typ-

ical 3D reconstruction setting that requires multi-view im-

age captures. We build our technique on recent advances in

T2I personalization and Text-to-3D optimization. Specif-

ically, we use DreamFusion [33] text-to-3D optimization

and DreamBooth [38] personalization in our framework,

which we briefly review next.

3.1. Preliminaries

DreamBooth T2I Personalization. T2I diffusion models

such as Imagen [39], StableDiffusion [37] and DALL-E

2 [36] generate images from any given text prompt. In par-

ticular, a T2I diffusion model Dθ(ε, c) takes as input an ini-

tial noise ε ∼ N (0, 1) and a text embedding c = Θ(T ) for a

given prompt T with a text encoder Θ and generates an im-

age that follows the description of the prompt. The images

generated from these T2I models are usually consistent with

the prompt, however, it is difficult to exert fine-grained con-

trol in the generated images. To that end, DreamBooth [38]

proposes a simple yet effective approach to personalize a

T2I diffusion model by finetuning the network on a small

set of casual captures {Ii}.

Briefly, DreamBooth uses the following diffusion loss

function to finetune the T2I model:

Ld = Eε,t

[
wt ‖Dθ(αtIi + σtε, c)− Ii‖2

]
, (1)

where t ∼ U [0, 1] denotes the time-step in the diffusion

process and wt, αt and σt are the corresponding scheduling

parameters. Optionally, DreamBooth uses the class prior-

preserving loss for improved diversity and to avoid lan-

guage drift. Refer to [38] for additional details.

DreamFusion optimizes a volume represented as a NeRF

Mφ with parameters φ so that random views of the vol-

ume match a text prompt T using a T2I diffusion model.

The learned implicit network Mφ maps from a 3D loca-

tion to an albedo and density. The normals computed from

the gradient of the density are used to randomly relight the

model to improve geometric realism with Lambertian shad-

ing. Given a random view v, and random lighting direction,

we perform volume rendering to output a shaded image Îv .

To optimize the parameters of the NeRF φ so that these im-

ages look like a text prompt T , DreamFusion introduced

score distillation sampling (SDS) that pushes noisy versions

of the rendered images to lower energy states of the T2I dif-

fusion model:

∇φLSDS = Eε,t

[
wt

(
Dθ(αtÎv + σtε, c)− Îv

) ∂Îv
∂φ

]
.

(2)

By randomizing over views and backpropagating through

the NeRF, it encourages the renderings to look like an im-

age produced by T2I model Dθ for a given text prompt.

DreamFusion proposes to use coarse view-based prompt-

ing to optimize NeRF along multiple views. We follow the

exact settings used in [33] for all experiments.
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Figure 2: DreamBooth3D Overview. In the stage-1 (left), we first partially train a DreamBooth and use the resulting model

to optimize the initial NeRF. In stage-2 (middle), we render multi-view images along random viewpoints from the initial

NeRF and then translate them into pseudo multi-view subject images using a fully-trained DreamBooth model. In the final

stage-3 (right), we further fine-tune the partial DreamBooth using multi-view images and then use the resulting multi-view

DreamBooth to optimize the final NeRF 3D asset using the SDS loss along with the multi-view reconstruction loss.

3.2. Failure of Naive Dreambooth+Fusion

A straight-forward approach for subject-driven text-

to-3D generation is first personalizing a T2I model and

then use the resulting model for Text-to-3D optimization.

For instance, doing DreamBooth optimization followed by

DreamFusion. which we refer to as DreamBooth+Fusion.

Similar baselines are also explored with preliminary exper-

iments in some very recent works such as [23, 27]. How-

ever, we find that naive DreamBooth+Fusion technique re-

sults in unsatisfactory results as shown in Fig. 3. A key

issue we find is that DreamBooth tends to overfit to the sub-

ject views that are present in the training views, leading to

reduced viewpoint diversity in the image generations. Sub-

ject likeness increases with more DreamBooth finetuning

steps, while the generated viewpoints get close to that of

input exemplar views. As a result, the SDS loss on such

a DreamBooth model is not sufficient to obtain a coherent

3D NeRF asset. In general, we observe that the Dream-

Booth+Fusion NeRF models have same subject views (e.g.,

face of a dog) imprinted across different viewpoints, a fail-

ure mode denoted the “Janus problem” [33].

3.3. Dreambooth3D Optimization

To mitigate the aforementioned issues, we propose an

effective multi-stage optimization scheme called Dream-

Booth3D for subject-driven text-to-3D generation. Fig. 2

illustrates the 3 stages in our approach, which we describe

in detail next.

Stage-1: 3D with Partial DreamBooth. We first train

a personalized DreamBooth model D̂θ on the input sub-

ject images such as those shown in Fig. 2 (left). Our

key observation is that the initial checkpoints of Dream-

Booth (partially finetuned) T2I models do not overfit to the

given subject views. DreamFusion on such partially fine-

tuned DreamBooth models can produce a more coherent 3D

NeRF. Specifically, we refer to the partially trained Dream-

Booth model as D̂partial
θ and use the SDS loss (Eq. 2) to

optimize an initial NeRF asset for a given text prompt as il-

lustrated in Fig. 2 (left). However, the partial DreamBooth

model as well as the NeRF asset lack complete likeness to

the input subject. We can see this initial NeRF output in

stage-1 to be a 3D model of the subject class that has partial

likeness to the given subject while also being faithful to the

given text prompt.

Stage-2: Multi-view Data Generation. This stage forms

an important part of our approach, where we make use of

3D consistent initial NeRF together with the fully-trained

DreamBooth to generate pseudo multi-view subject images.

Specifically, we first render multiple images {Îv ∈ R
n×3}

along random viewpoints {v} from the initial NeRF asset

resulting in the multi-view renders as shown in Fig. 2 (mid-

dle). We then add a fixed amount of noise by running the

forward diffusion process from each render to tpseudo , and

then run the reverse diffusion process to generate samples

using the fully-trained DreamBooth model D̂θ as in [25].

This sampling process is run independently for each view,

and results in images that represent the subject well, and

cover a wide range of views due to the conditioning on the

noisy render of our initial NeRF asset. However, these im-

ages are not multi-view consistent as the reverse diffusion

process can add different details to different views, so we

call this collection of images pseudo multi-view images.

Fig. 2 (middle) and Fig. 5 shows sample resulting im-

ages from this image to image (Img2Img) translation. Some

prior works such as [25] use such Img2Img translations

for image editing applications. In contrast, we use the

Img2Img translation in combination with DreamBooth and
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NeRF 3D asset to generate pseudo multi-view subject im-

ages. A key insight in this stage is that DreamBooth can

effectively generate unseen views of the subject given that

initial images are close to those unseen views. In addition,

DreamBooth can effectively generate output images with

more likeness to the given subject compared to input noisy

images. Fig. 5 shows sample outputs of Img2Img transla-

tion with the DreamBooth demonstrating more likeness to

the subject images while also preserving the viewpoints of

the input NeRF renders.

Stage-3: Final NeRF with Multi-view DreamBooth. The

previous stage provides pseudo multi-view subject images

{Ipseudov } with near-accurate camera viewpoints {v}. Both

the viewpoints as well as the subject-likeness are only ap-

proximately accurate due to the stochastic nature of Dream-

Booth and Img2Img translation. We combine the gen-

erated multi-view images {Ipseudov } along with the input

subject images {Ii} to create a combined data Iaug =
{Ipseudov }∪{Ii}. We then use this data to optimize our final

DreamBooth model followed by a final NeRF 3D asset.

More concretely, we further finetune the partially trained

DreamBooth D̂∗
θ from stage-1 using this augmented data re-

sulting in a DreamBooth we refer to as Multi-view Dream-

Booth D̂multi
θ . We then use this D̂multi

θ model to optimize

NeRF 3D asset using the DreamFusion SDS loss (Eq.2).

This results in a NeRF model with considerably better

subject-identity as the multi-view DreamBooth has better

view generalization and subject preservation compared to

the partial DreamBooth from stage-1.

In practice, we observe that the resulting NeRF asset,

optimized only using SDS loss, usually has good geometry-

likeness to the given subject but has some color saturation

artifacts. To account for the color shift we introduce a novel

weak reconstruction loss using our psuedo multi-view im-

ages {Ipseudov }. In particular, since we know the camera

parameters {Pv} from which these images were generated,

we additionally regularize the training of the second NeRF

MLP Fγ , with γ parameters with the reconstruction loss:

Lrecon =
∥∥Γ(Fγ , Pv)− Ipseudov

∥∥
p
, (3)

Where Γ(Fγ , Pv) is the rendering function that renders an

image from the NeRF Fγ along the camera viewpoint Pv .

This loss serves the dual purpose of pulling the color distri-

bution of the generated volume closer to those of the image

exemplars and to improve subject likeness in unseen views.

Fig. 2 (right) illustrate the optimization of final NeRF with

SDS and multi-view reconstruction losses. The final NeRF

optimization objective is given as:

L = λreconLrecon + λSDSLSDS + λnerfLnerf , (4)

where Lnerf denotes the additional NeRF regularizations

used in Mip-NeRF360 [2]. See the supplementary material

for additional details of the DreamBooth3D optimization.

4. Experiments

Implementation Details. We use the Imagen [39] T2I

model in our experiments. The Imagen model uses the T5-

XXL [35] language model for text encoding. On the NeRF

side, we use DreamFusion [33]. Our model takes around 3

hours per prompt to complete all the 3 stages of the opti-

mization on a 4 core TPUv4. We use a fixed 150 iterations

to train the partial DreamBooth model D̂partial
θ . For the full

DreamBooth D̂θ training, we use 800 iterations, which we

find to be optimal across different subjects. We render 20

images uniformly sampled at a fixed radius from the ori-

gin for pseudo multi-view data generation. We finetune the

partially trained D̂∗
θ for additional 150 iterations in Stage 3.

Refer to the supplementary material for more hyperparam-

eter details.

Datasets. We train our personalized text to 3D models on

the image collections released by the authors of [38]. This

dataset consists of 30 different image collections with 4-6

casual captures of a wide variety of subjects (dogs, toys,

backpack, sunglasses, cartoon etc.). We additionally cap-

ture few images of some rare objects (like “owl showpiece”

in Fig. 4) to analyze performance on rare objects. Further,

we optimize each 3D model on 3–6 prompts to demonstrate

3D contextualizations.

Baselines. We consider two main baselines for compar-

isons. Latent-NeRF [27] which learns a 3D NeRF model

on a latent feature space instead of in RGB pixel space, us-

ing an SDS loss in the latent space of Stable Diffusion [37].

As a baseline, we run Latent-NeRF using the fully dream-

boothed T2I model and refer to it as “Latent-NeRF” or “L-

NeRF” in our experiments. We further compare against

a single stage DreamFusion+DreamBooth approach where

we first train a DreamBooth diffusion model followed by

3D NeRF optimization using DreamFusion. We refer to our

results as “DreamBooth3D” or “DB3D” in the experiments.

Evaluation Metrics. We evaluate our approach with the

CLIP R-Precision metric, which measures how accurately

we can retrieve a text prompt from an image [32]. Similar

to [33], we compute the average CLIP R-Precision over 160

evenly spaces azimuth renders at a fixed elevation of 40 de-

grees. The CLIP models used for evaluation are the CLIP

ViT-B/16, ViT-B/32, and ViT-L-14 models. Since these

CLIP metrics can only approximately capture the quality

and subject-fidelity of the generated 3D assets, we addition-

ally perform user studies comparing different results.

4.1. Results
Visual Results. Fig. 1 shows sample visual results of our

approach along with different semantic variations and con-

textualizations. Results demonstrate high-quality geome-

try estimation with DreamBooth3D for even our uncom-

mon owl object. Contexualization examples demonstrate
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Figure 3: Visual Results on 5 different subjects with two baseline techniques of Latent-NeRF and DreamBooth+Fusion

along with those of our technique (DreamBooth3D). Results clearly indicate better 3D consistent results with our approach

compared to either of the baseline techniques. See the supplement for additional visualizations and videos.

Figure 4: Initial vs. Final NeRF Estimates. Sample multi-view results show that the initial NeRF obtained after stage-1 has

only a partial likeness to the given subject whereas the final NeRF from stage-3 of our pipeline has better subject-identity.

that DreamBooth3D faithfully respects the context present

in the input text prompt. Fig. 3 shows sample results of

our approach in comparison to those of Latent-NeRF and

DreamBooth+Fusion baselines. Even though Latent-NeRF

works reasonably well in some cases (such as rubber duck

in Fig. 3), more often it fails to converge to a coherent 3D

model with reasonable shapes. In several cases, Dream-

Booth+Fusion usually produces the 3D assets with Janus

problem (same appearance and geometry imprinted across

different view angles). DreamBooth3D, on other hand, con-

sistently produces 360◦ consistent 3D assets while captur-

ing both the geometric and appearance details of the given

subject.

Quantitative Comparisons. Table. 1 shows CLIP R-
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Figure 5: Pseudo multi-view training images. Stage 2

generates images from multiple views using the Stage 1

NeRF renderings. The pseudo multi-view renderings have

a high degree of identity preservation but lack multi-view

consistency.

precision metrics for naive DreamBooth+Fusion (as base-

line) and our DreamBooth3D generations. Results clearly

demonstrate significantly higher scores for the Dream-

Booth3D results indicating better 3D consistency and text-

prompt alignment of our results.

Initial vs. Final NeRF. Fig. 4 shows sample initial and final

NeRF results generated after stages 1 and 3 of our pipeline.

As the visual results illustrate, initial-NeRFs only have par-

tial likeness to the given subject, but are consistent in 3D.

The final NeRFs from the stage-3 has better likeness to the

given subject while retaining the consistent 3D structure.

These examples demonstrate the need for the 3-stage op-

timization in DreamBooth3D. Quantitatively, we find that

Stage 3 outputs are closer to the ground truth images as

well given by mean CLIP similarity on 100 images of dif-

ferent objects rendered under multiple viewpoints. We use

the CLIP image encoder to obtain the image embeddings of

Figure 6: Robustness to hyper-parameters. The geom-

etry generated by DB3D varies smoothly with number of

training steps and choice of noise parameter allowing us to

freely select the optimal operating point.

the rendered images and the reference images, and calculate

the cosine distance between them. Stage 1 has an average

cosine similarity of 0.65 which improves to 0.75 in Stage 3.

Robustness to hyper-parameters Our three stage ap-

proach is motivated by the observation that identity preser-

vation and viewpoint generalization lies on a spectrum. Our

aim is to find the most reasonable operating point on this

spectrum. We see in Fig 6 that results of our approach vary

smoothly with changes in number of finetuning steps for

stage 1 or changes in the noise parameters for stage2, allow-

ing us to select the optimal point between identity preserva-

tion and 3D consistency. We use the same hyperparameters

for all the reported results for fairness and reproducibility

User Study. We conduct pairwise user studies comparing

DreamBooth3D to baselines in order to evaluate our method

under three axes: (1) Subject fidelity, where users are asked

to answer the question “Which 3D item looks more like

the original subject?”; (2) 3D consistency and plausibility

where users answer “Which 3D item has a more plausible

and consistent geometry?” and (3) Prompt fidelity to the

input prompts where users answer “Which video best re-

spects the provided prompt?”. Users can choose either our

method or the baseline, or a third option “Cannot determine

/ both equally”. For the first two user studies on 3D con-

sistency and subject fidelity we compare rotating video re-

sults, one for each of the 30 subjects in the dataset and ask

11 users to vote for each pair. For the prompt fidelity study,

we generate videos for 54 unique prompt and subject pairs

and ask 21 users to respond. We compute final results us-

ing majority voting and present them in Figure 7. We find

that DreamBooth3D is significantly preferred over the base-
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lines in terms of 3D consistency, subject fidelity as well as

prompt fidelity.

D
re
a
m
B
o
o
th
3
D

(O
u
rs
)

Left preferred Tied Right preferred

3D Consistency

DB+DF77 % 20 %

L-NeRF84 % 13 %

Subject Fidelity

DB+DF64 % 33 %

L-NeRF77 % 23 %

Prompt Fidelity

DB+DF87 % 13 %

Figure 7: User Study. Users show a significant preference

for our DreamBooth3D over DB+DF and L-NeRF for 3D

consistency, subject fidelity and prompt fidelity.

Figure 8: 3D Recontextualizations with DreamBooth3D.

With simple edits in the text prompt, we can generate non-

rigid 3D articulations and deformations that correspond to

the semantics of the input text. Visuals show consistent con-

texualization of different dogs in different contexts of sit-

ting, sleeping and jumping. See the supplement for videos.

ViT-B/16↑ ViT-B/32↑ ViT-L-14↑
DreamBooth+Fusion 0.509 0.490 0.506

DreamBooth3D (Ours) 0.783 0.710 0.797

Table 1: Quantitative comparisons using CLIP R-

precision on DreamBooth+Fusion (baseline) and Dream-

Booth3D generations indicate that renderings from our 3D

model outputs more accurately resemble the text prompts.

4.2. Sample Applications
DreamBooth3D can faithfully represent the context

present in the text prompts while also preserving the subject

identity. With simple changes in the text-prompt, Dream-

Booth3D enables many interesting 3D applications, several

of which would otherwise require tedious manual effort to

tackle using traditional 3D modeling techniques. The gen-

erated assets can also be used for 3D printing. (Fig. 10)

Recontextualization. Fig. 8 shows sample results on dif-

ferent dog subjects, where we recontextualize the 3D dog

models with simple prompts of sitting, sleeping and jump-

ing. As the visuals demonstrate, the corresponding 3D mod-

els consistently respect the given context in the text prompt

across all the subjects. In addition, the 3D articulations and

local deformations in the output 3D models are highly re-

alistic even though several of these poses are unseen in the

input subject images.

Color/Material Editing. Fig. 9 shows sample color editing

results, where a pink backpack can be converted into a blue

or green backpack with simple text prompts like ‘a [v] blue

backpack’. Similarly, one could also easily edit the material

appearance of the 3D asset (for e.g., metal can to wodden

can). Refer to the supplementary material for more color

and material editing results.

Accessorization. Fig. 9 shows sample accessorization re-

sults on a cat subject, where we put on a tie or a suit into

the 3D cat model output. Likewise, one can think of other

accessorizations like putting on a hat or sunglasses etc.

Stylization. Fig. 9 also shows sample stylization results,

where a cream colored shoe is stylized based on color and

the addition of frills.

Cartoon-to-3D. A rather striking result we find during our

experiments is that DreamBooth3D can even convert non-

photorealistic subject images such as 2D flat cartoon im-

ages into plausible 3D shapes. Fig. 9 shows a sample result

where the resulting 3D model for the red cartoon character

is plausible, even though all the images show the cartoon

only from the front. Refer to the supplementary material

for more qualitative results on different applications.

4.3. Limitations

While our method allows for high-quality 3D asset cre-

ation of a given subject and improves over prior work, we
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Figure 9: Sample Applications. DreamBooth3D’s sub-

ject preservation and faithfulness to the text prompt enables

several applications such as color/material editing, acces-

sorization, stylization, etc. DreamBooth3D can even pro-

duce plausible 3D models from unrealistic cartoon images.

See the supplemental material for videos.

observe several limitations. First, the optimized 3D repre-

sentations are sometimes oversaturated and oversmoothed,

which is partially caused by SDS-based optimization with

high guidance weighting [33]. This is also a result of being

restricted to a relatively low image resolution of 64 × 64
pixels. As with other NeRF applications, personalized 3D

asset generation requires an iterative optimization process

to update the parameters of the 3D model. Improvements

in the efficiency of both diffusion models and neural ren-

dering will potentially allow for scaling to higher resolu-

tions. Furthermore, the optimized 3D representations can

sometimes suffer from the Janus problem of appearing to be

front-facing from multiple inconsistent viewpoints if the in-

put images do not contain any viewpoint variations. Finally,

Figure 10: 3D printed assets. The geometry gener-

ated from DreamBooth3D can be used to extract a water

tight mesh which can support applications like 3D print-

ing. Here, we show actual 3D prints of assets generated by

Dreambooth3D

Figure 11: Sample Failure Cases. We observe Dream-

Booth3D often fails to reconstruct thin object structures like

sunglasses, and sometimes fails to reconstruct objects with

not enough view variation in the input images.

our model sometimes struggles to reconstruct thin object

structures like sunglasses. Fig. 11 shows a couple of failure

results.

5. Conclusion
In this paper, we have proposed DreamBooth3D , a

method for subject-driven text-to-3D generation. Given a

few (3-6) casual image captures of a subject (without any

additional information such as camera pose), we generate

subject-specific 3D assets that also adhere to the contex-

tualization provided in the input text prompts (e.g. sleep-

ing, jumping, red, etc.). Our extensive experiments on the

DreamBooth dataset [38] have shown that our method can

generate realistic 3D assets with high likeness to a given

subject while also respecting the contexts present in the in-

put text prompts. Our method outperforms several baselines

in both quantitative and qualitative evaluations. In the fu-

ture, we plan to continue to improve the photorealism and

controllability of subject-driven 3D generation.
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