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Abstract

We tackle the challenging task of unsupervised object lo-
calization in this work. Recently, transformers trained with
self-supervised learning have been shown to exhibit object
localization properties without being trained for this task.
In this work, we present Multiple Object localization with
Self-supervised Transformers (MOST) that uses features of
transformers trained using self-supervised learning to lo-
calize multiple objects in real world images. MOST ana-
lyzes the similarity maps of the features using box counting;
a fractal analysis tool to identify tokens lying on foreground
patches. The identified tokens are then clustered together,
and tokens of each cluster are used to generate bounding
boxes on foreground regions. Unlike recent state-of-the-
art object localization methods, MOST can localize mul-
tiple objects per image and outperforms SOTA algorithms
on several object localization and discovery benchmarks on
PASCAL-VOC 07, 12 and COCO20k datasets. Additionally,
we show that MOST can be used for self-supervised pre-
training of object detectors, and yields consistent improve-
ments on fully, semi-supervised object detection and unsu-
pervised region proposal generation.Our project is publicly
available at rssaketh.github.io/most.

1. Introduction

Object detectors are important components of several
computer vision systems such as visual relationship detec-
tion [21, 29], human-object interaction detection [1, 13,
45, 52], scene graph generation [57] and object track-
ing [54, 56] etc. Performance of object detectors is heavily
reliant on the availability of training data. However, an-
notating large object detection datasets can be expensive
and time consuming [14, 27]. Additionally, the vocabu-
lary of object detectors is limited by the training datasets
and such detectors often fail to generalize to new cate-

Work done while at UMD.

Figure 1: Top: Methods like LOST [41] (shown in figure),
TokenCut [53] identify and localize the most salient fore-
ground object and hence can detect only one object per im-
age. Bottom: MOST is a simple, yet effective method that
localizes multiple objects per image without training.

gories [7]. This strategy is not scalable and a more effec-
tive approach is warranted. Object discovery is one such
task that has the potential to address these concerns. Ob-
ject discovery is the problem of identifying and grouping
objects/parts in a large collection of images without human
intervention [23, 24, 36, 43]. The first step in object discov-
ery is to obtain region proposals and subsequently group
them semantically. Previous works on discovery used Se-
lective Search [46], randomized Prim’s [30] or a region pro-
posal network (RPN) [35] to get object proposals. [48–50]
used inter-image similarity to construct a graph and per-
formed optimization or ranking, to localize objects without
any supervision. Such methods are computationally expen-
sive and often fail to scale to datasets larger than 20000 im-
ages. [34] used region proposals from an RPN and proposed
a never ending learning approach and is the first method
shown to scale to ∼100000 images. However, these region
proposal methods are often of low quality, and therefore
reduce the performance of discovery systems. Recently,
LOST [41] and TokenCut [53] leveraged the object seg-
mentation properties of transformers [47] trained using self-
supervised learning (DINO [3]) to obtain high quality object
proposals. They demonstrate significant improvements over
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state-of-the-art on object discovery, salient object detection
and weakly supervised object localization benchmarks.

However, both LOST [41] and TokenCut [53] assume
the presence of a single salient object per image and hence,
can localize only one object as shown in Fig 1 (top). This
assumption may hold for object centric datasets like Im-
ageNet [37] but is not true for scene-centric real world
datasets like PASCAL-VOC [12] and COCO [27]. In this
work, we address the problem of localizing multiple ob-
jects per image and demonstrate the effectiveness of our ap-
proach for the task of unsupervised object localization and
discovery on several standard benchmarks.

We propose a new object localization method called
“Multiple Object localization with Self-supervised Trans-
formers” (MOST) which is capable of localizing multiple
objects per image without using any labels. We use the
features extracted from a transformer [47] network trained
with DINO [3]. Our method is based on two empirical
observations; 1) Patches within foreground objects have
higher correlation with each other than the ones on the back-
ground [41] and 2) The similarity map computed using the
features of a foreground object with all the features in the
image is usually more localized and less noisier than the one
computed using the feature of a background. Our algorithm
analyzes the similarities between patches exhaustively us-
ing a fractal analysis tool called box counting [28]. This
analysis picks a set of patches that most likely lie on fore-
ground objects. Next, we perform clustering on the patch
locations to group patches belonging to a foreground object
together. Each of these clusters is called pools. A binary
mask is then computed for each pool and a bounding box
is extracted. This capability enables the algorithm to ex-
tract multiple bounding boxes per image as shown in Fig.1
(bottom). We demonstrate that without any training, our
method can outperform state-of-the-art object localization
methods that train class agnostic detectors to detect multiple
objects. To prove the effectiveness of MOST, we demon-
strate results on several object localization and discovery
benchmarks. On self-supervised pre-training for object de-
tectors, using MOST yields consistent improvement across
multiple downstream tasks using 6× fewer boxes. When
compared against other self-supervised transformer-based
localization methods, MOST achieves higher recall with
and without additional training. We summarize the contri-
butions of our work below.

• We propose MOST, an effective method to localize and
discover multiple objects per image without supervi-
sion using transformers trained with DINO.

• We perform exhaustive experiments to assess the per-
formance of MOST on several localization and discov-
ery benchmarks and show significant improvements
over the baselines.

The paper is organized as follows. In Section 2 we discuss
related works on object localization and discovery. We de-
scribe our approach in detail in Section 3. We describe our
experimental setup and present results in Section 4 and con-
clude in Section 5.

2. Related Works
Unsupervised Object Localization and Discovery: Ob-
ject category discovery can be broadly segregated into
image-based [15, 16, 18–20, 42] and region-based meth-
ods [4, 8, 22–24, 34, 41, 48–50, 53]. Region-based methods
start by generating object proposals and later group them
into coherent semantic groups. Image-based approaches on
the other hand, assume the localization task to be solved and
focus solely on the semantic grouping. Our current method
is closer to the former. Vo et al., [48–50] localize regions in
images by constructing an inter-image similarity graph be-
tween regions and partitioning it using optimization or rank-
ing. Due to the quadratic nature of the graph, these methods
cannot scale to large datasets beyond tens of thousands of
images. Our current work does not compute inter-image
similarity between regions and scales linearly with number
of images. Lee et al., [24] propose object graphs that in-
corporates knowledge about a few known categories to fa-
cilitate the discovery of novel categories. MOST doesn’t
assume any prior knowledge and has the ability to discover
objects from scratch. Lee et al., [23] extend object graphs
to a curriculum based discovery pipeline, that learns to dis-
cover easy objects first and progressively proceeds to dis-
cover the harder ones. Along similar lines, Rambhatla et
al., [34] propose a large scale discovery pipeline, similar
to [24] that leverages prior knowledge about a few cate-
gories. Authors of [34] use an RPN [35] trained on known
categories as the localization method. In contrast to that,
MOST localizes objects in images using features of a trans-
former [47] trained with DINO [3].
Object localization using self-supervised networks: Re-
cently, CNNs [17] and Transformers [47] trained in a self-
supervised fashion, have been shown to exhibit object local-
ization/segmentation properties [3, 10]. This property is of
particular interest as it has the potential to facilitate research
on unsupervised localization, detection and segmentation.
[41] is a simple method, based on the observation that the
key features of the last self attention layer of a transformer,
trained using DINO, has certain affinity. They construct
a map of inverse degree to extract bounding boxes on ob-
jects in an unsupervised fashion. This method is shown to
outperform recent state-of-the-art methods by a significant
margin. [53] propose an alternate method for localizing ob-
jects using self-supervised transformers, based on normal-
ized cut [39]. TokenCut [53] construct an undirected graph
based on token feature similarities and use normalized cut to
cluster foreground and background patches. Spectral clus-
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Figure 2: Motivation for MOST: Example showing sim-
ilarity maps of tokens within background and foreground
for an image from the COCO dataset. Similarity maps of
tokens within foreground patches are less random spatially.

tering is used to solve the graph-cut and they show that the
eigen vector corresponding to the second smallest eigen-
value provides a good cutting solution. TokenCut outper-
forms LOST on unsupervised object discovery. In addi-
tion to discovery, [53] also demonstrate impressive results
on unsupervised saliency detection and weakly supervised
object localization. Kyriazi et al., [31] propose deep spec-
tral methods, that performs normalized cut [39] but using an
affinity matrix computed using semantic and color features.
Since this method is very similar to TokenCut and achieves
lower performance, we only compare with the latter in this
work.

However, one limitation of LOST and TokenCut is that
they can localize only one object per image. Our proposed
method, MOST can automatically localize multiple objects
per image and outperforms LOST and TokenCut on stan-
dard discovery benchmarks.

3. Approach: MOST
MOST can be used to localize multiple objects in an im-

age. Our approach, illustrated in Fig. 3, first identifies a
set of tokens that is computed from patches on foreground
objects. These tokens are then clustered and each cluster,
named pool, is used to obtain a bounding box. Next, we
discuss a few preliminaries in Section 3.1 followed by the
motivation and proposed solution in Section 3.2.

3.1. Preliminaries

Box Counting: Box counting is a method of analyzing a
pattern by breaking and analyzing it at smaller scales. This
is done by performing a raster scan of the pattern at differ-
ent scales and computing appropriate metrics to assess its
fractal nature. In this work, we use a sliding window scan.
Vision Transformers: ViTs [9] operate on learned embed-
dings, called tokens, generated from non-overlapping im-
age patches of resolution P×P (typically P=8/16) that form
a sequence. To be precise, an image I of shape H ×W × 3
is first divided into non-overlapping patches of resolution
P ×P×3, generating a total of N = HW/P 2 patches. Next,
each patch is embedded via a trainable linear layer to gen-
erate a token of dimension d to form a sequence of patches.
An extra [CLS] token [6] is added to this sequence, whose

purpose is to aggregate the information from the tokens of
the sequence. Typically, a projection head is attached to the
[CLS] to train the network for classification.
DINO: DINO [3] combines self-training and knowledge
distillation without labels for self supervised learning.
DINO constructs two global views and several local views
of lower resolution, from an image. DINO consists of a
teacher and a student network. The student processes all
the crops while the teacher is operated only on the global
crops. The teacher network then distills its dark knowledge
to the student. This encourages the student network to learn
local to global correspondences. In contrast to other knowl-
edge distillation methods, DINO’s teacher network is up-
dated dynamically during training using exponential mov-
ing average. DINO was shown to perform on par or better
than several baselines on several tasks of image retrieval,
copy detection, instance segmentation etc. The property of
importance to the current work, is the ability of DINO to
localize foreground regions of semantic entities in an im-
age. [41, 53] leverage this property to localize the salient
object in an image by using the key features from the last
self-attention layer. Similar to [41, 53], we concatenate the
key features of all the heads in the last self-attention layer
to obtain the input to MOST.

3.2. Multiple object localization

Motivation: Consider the example shown in Fig. 2. We
show three examples of the similarity maps of a token
(shown in red) picked on the background (column 2) and
foreground (columns 3, 4). Tokens within foreground
patches have higher correlation than the ones on back-
ground [41]. This results in the similarity maps of fore-
ground patches being less “spatially” random than the ones
on the background. The task then becomes to analyze the
similarity maps and identify the ones with less spatial ran-
domness. Box counting [25, 33] is a popular technique
in fractal analysis that analyzes spatial patterns at different
scales to extract desired properties. Hence, we adopt box
counting for our case and since, we are interested in ran-
domness, we adopt entropy as the metric.
Preprocessing: The input to our method is a d-dimensional
feature F ∈ RN×d, extracted from an image using a neural
network. Here, N denotes the number of spatial locations
in the feature map, in case of a CNN, or number of tokens,
in case of a transformer network. The aim is to identify
subsets of tokens, which we call pools, that can be used to
localize all the objects in an image. We do not make any
assumption on the number of objects present in the image.
Given the feature F , we compute an outer product matrix
A = FFT ∈ RN×N . Row i of matrix A, i.e., A[i, :] en-
codes a similarity map of a token at location i with all the
other tokens in F . Next, each row of A is processed by the
Entropy-based Box Analysis (EBA) module.
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Figure 3: Overview of MOST: MOST operates on features extracted from transformers trained using DINO. The features
are used to compute the outer product A. Each row of A is analyzed by the entropy-based box analysis (EBA) module that
identifies tokens extracted from foreground patches. These patches are clustered using spatial locations as features to form
pools. Each pool is then post-processed to generate a bounding box.

Entropy-based Box Analysis (EBA): The proposed en-
tropy based box analysis module performs a fractal analysis
method, called box counting to segregate similarity maps
of tokens on foreground patches from those of background.
As shown in Fig. 3, we perform a raster scan with increas-
ing box (used interchangeably with kernel in this work)
sizes on each map. Traditionally, measures like lacunar-
ity [44] are computed within each box to analyze the pat-
tern. In this work, we average the elements within each
box. This can be implemented efficiently using pooling op-
erations. The resulting downsampled map is flattened and
the entropy is computed using the pmf computed as follows:
p(x = xi) = Σh.w

i=1
1(fi==xi)

h.w , where fi is the ith index in
the feature map. A downsampled map belongs to a token on
a foreground patch if its entropy is less than a threshold τ .
Using K boxes in the EBA module results in K entropy val-
ues ek(k ∈ {1, 2, · · · ,K}). Finally, we perform a majority
voting among the entropies of all the downsampled maps,
i.e., ΣK

i=1
1(ei≤τ)

K > 0.5, to decide if the original similar-
ity map belongs to a token on a foreground patch. A map
of dimension n × n has a maximum entropy of log(n2).
We use a threshold of the form τ = a + blog(n2) (we use
a = 1, b = 0.5 in this work). We do not consider τ as a hy-
perparameter and we pick a value that is mid-way between
the minimum and maximum permissible value (b=0.5). To
prevent a threshold of 0 for n = 1, we add a constant (a=1).

Clustering: The EBA module, identifies a set S = {p|p ∈

{1, 2, · · · , N}}, that contains the spatial locations of tokens
computed from foreground patches. Often, highly redun-
dant neighboring tokens are identified. We group neighbor-
ing tokens with the help of a clustering step to obtain pools.
We convert the linear index p of the tokens to cartesian co-
ordinates (x, y), and use that as the feature for clustering.
Manhattan distance is used as the dissimilarity metric with
a threshold ϵ (ϵ = 2 i.e. Moore neighborhood). Since, the
number of pools is not known a-priori, we use a density-
based clustering method, DBSCAN [11] which automati-
cally identifies the number of clusters from the data. Pools
identified by the clustering step are then post-processed to
obtain bounding boxes on foreground objects.
Post-processing: The clusters, called pools, obtained from
the clustering step are then post-processed to obtain one box
per pool. Consider M pools identified by the clustering
step, i.e. Ci, where i ∈ {1, 2, · · ·M}. Each pool Ci is a
set of token locations Ci = {pi|pi ∈ {1, 2, · · · , N}}. We
leverage the first observation mentioned above to obtain a
bounding box from the pool as follows. First, we build a
binary similarity matrix Â = A > 0. Next, within the to-
kens in the pool, we identify the one with lowest degree in
Â, called the core token, c∗.

c∗ = argmin
c∈Ci

dc where dc =

N∑
j=1

Â[c, j]

Authors of LOST [41] report that tokens with low degrees
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Table 1: Results on unsupervised pre-training of object detectors. We train object detectors in a self-supervised fashion
on the COCO dataset using different localization methods and compare their performance on the downstream tasks of semi
and fully supervised object detection. COCO train set is used for fine-tuning and k% refers to the number of labeled samples
used for training. Results are reported using AP[0.50:0.95] (denoted as AP), AP0.50, and AP0.75 on COCO validation set.

Method
Boxes

per
image

VOC 07+12 COCO

k = 10% fully supervised k = 1% k = 2% k = 5% fully supervised

AP AP50 AP75 AP AP50 AP75 AP AP AP50 AP75

LOST [41] 1 40.88 60.31 44.36 63.58 83.27 70.48 12.83 ± 0.32 17.23 ± 0.30 23.43 ± 0.38 44.30 62.80 48.40
TCut [53] 1 41.14 60.59 44.35 63.79 83.56 70.70 13.13 ± 0.38 17.27 ±0.21 23.27 ± 0.23 43.80 62.30 47.50

SS [46]
5 39.12 57.51 42.29 63.44 83.14 70.35 13.57 ± 0.38 17.87 ± 0.32 23.17 ± 0.40 44.30 62.80 48.10

10 40.76 60.00 44.46 64.23 83.44 71.55 13.73 ± 0.29 18.00 ± 0.26 22.83 ± 0.25 43.90 62.60 47.60
15 42.14 61.41 45.86 64.24 83.74 71.41 13.87 ± 0.29 18.23 ± 0.40 23.13 ± 0.11 44.30 62.60 48.30

MOST 4.65 43.03 63.29 46.61 64.34 84.12 71.77 13.93 ± 0.38 18.13 ± 0.25 22.63 ± 0.11 44.80 63.50 49.00
SS 30 42.12 61.20 45.71 64.84 83.98 71.76 14.47 ± 0.35 18.23 ± 0.42 23.57 ± 0.21 44.00 62.30 47.80
MOST 13.09 44.40 63.83 48.28 65.24 84.24 72.37 14.83 ± 0.21 18.30 ± 0.17 23.43 ± 0.45 45.20 64.00 49.00

most likely fall within an object. Next, we remove the to-
kens from the pool that do not correlate positively with c∗

to form a reduced pool C∗
i . This ensures that all the tokens

in the current pool lie on the same foreground object. Next,
a binary mask is constructed by computing the sum of sim-
ilarities of token features in C∗

i with the features of all the
tokens, i.e. mi

k = 1(
∑

c∈C∗
i
fT
k fc ≥ 0). Finally, connected

component analysis is performed on the binary mask and
the bounding box of the island that contains c∗ is selected
as the region containing the object. We repeat this process
for all the M pools to generate M bounding boxes per im-
age. Note that, M is not assumed to be known a-priori and
is decided automatically by our method. Additionally, we
remove trivial boxes i.e., boxes which have area less than
than a threshold (256) or cover the whole image.
Implementation Details: For all our experiments, we use
the ViT-S/16 and ViT-B/8 [9] models trained with DINO [3]
to extract the features. We concatenate the key features of
all the heads from the last self-attention layer to use as the
input to our method.

4. Experiments
In this section we describe, in detail, the experimen-

tal setup used for evaluation. We evaluate our method on
two setups, namely the localization setup, and the discov-
ery setup. We begin by describing the datasets and metrics
in Sec. 4.1. We describe the evaluation setups in Sec. 4.2.
Sec. 4.3 compares our method against contemporary work.
We then describe ablation experiments in Sec. 4.4 and show
qualitative results in Sec. 4.6.

4.1. Datasets and Metrics

We use the PASCAL-VOC [12] (2007, 2012 splits) and
the COCO [27] (COCO20k [49] and COCO splits) datasets
in our experiments. The PASCAL VOC [12] 2007 and 2012

trainval sets consists of 5011, 11540 images respectively,
spanning twenty objects. The PASCAL VOC [12] test set
consists of 4952 images. The COCO [27] 2014 train set
consists of ∼110k images containing over eighty objects
and the COCO minival set consists of 5000 images. We
do not use any class or bounding box annotations for our
method except for evaluation.

For the localization setup, we use the average precision
at different thresholds ([0.5:0.95], 0.5 and 0.75), average
recall (AR1, AR10 and AR100) and Correct Localization
(CorLoc) metrics for evaluation. CorLoc is defined as the
fraction of the images in which atleast one object is local-
ized with an IoU greater than a threshold (0.5 in this work).
AP, AR are defined in the usual way. For the object dis-
covery setup, we report both the PASCAL VOC style AP50

and COCO style AP[50:95] metrics along with area under the
purity-coverage plots [8, 34]. We refer the interested read-
ers to [34] for definitions of purity and coverage.

4.2. Setups

Localization setup: This setup evaluates the localization
performance of methods. We evaluate models on a) unsu-
pervised pre-training, b) Multiple Object Localization, and
c) single object localization. For unsupervised pre-training,
localization methods are used to train object detectors in an
unsupervised fashion and their performance is evaluated on
the downstream task of object detection. In this work, we
use the recently proposed DETReg [2] as the pre-training
strategy which uses a Deformable DeTR [58] architecture.
DETReg uses an object localization method and pre-trains
an object detector in an unsupervised fashion. We evalu-
ate the pre-trained model on the downstream tasks of semi-
supervised, fully-supervised and class-agnostic object pro-
posal generation. In the semi-supervised setting, models
are trained on the PASCAL-VOC(07+12) and COCO train
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Table 2: Unsupervised class agnos-
tic region proposal evaluation on
COCO validation set: We compare
the performance of region proposals
for training DETReg. Rk is Recall@k

Method
Boxes per

image AP AP50 AP75 R1 R10 R100

LOST [41] 1 0.1 0.5 0 0.4 1.4 3.9
TCut [53] 1 0.3 1 0.1 0.6 1.9 4.6

SS [46]
5 0.1 0.4 0 0.1 1 4.2

10 0.1 0.3 0 0.1 1.1 4.4
15 0.1 0.3 0 0.1 1 4.1
30 0.1 0.3 0 0.1 1 4

MOST 4.65 0.8 1.4 1 0.6 1.9 4.4

Table 3: Results on object discovery: Com-
parison of MOST with recent works on unsu-
pervised object discovery. We experiment with
three cluster numbers, i.e., 20, 30, 40, on VOC
2007, 2007+12 and 80, 90, 100 on COCO20k.

Metric Train → VOC 2007 VOC 07+12 COCO20k

Clusters → 20 30 40 20 30 40 80 90 100

AP
LOST [41] 9.15 9.64 10.11 10.95 12.14 12.97 2.66 2.91 2.86

MOST 9.20 10.07 11.09 10.12 12.89 13.30 3.13 3.18 3.32

AP50
LOST [41] 26.32 27.78 29.46 29.35 33.27 34.80 7.17 7.72 7.87

MOST 25.35 28.19 31.31 27.04 34.40 34.54 8.13 8.14 8.76

Table 4: Results on single-
object localization: Comparison
of MOST with recent object dis-
covery methods on VOC 07, 12
and COCO20k using CorLoc.

Method VOC 07 VOC 12 COCO20k

rOSD [49] 54.5 55.3 48.5
LOD [50] 53.6 55.1 48.5
DINO-seg† [3] 45.8 46.2 42.1
LOST [41] 61.9 64.0 50.7
TokenCut [53] 68.8 72.1 58.8

LOST [41] + CAD 65.7 70.4 57.5
TCut [53]+CAD 71.4 75.3 62.6

MOST 74.8 77.4 67.1

sets without labels and are fine-tuned on k% of labeled data
similar to [2]. In the fully supervised setting, pre-trained
models are fine-tuned on the full PASCAL-VOC and COCO
dataset using all the labels. For the class-agnostic ob-
ject proposal generation, models are pre-trained on COCO
dataset without labels and the generated object proposals
are evaluated on the COCO validation set similar to [2].

We follow the settings used in [50] for multiple-object
localization and evaluate on PASCAL-VOC 2007 and
COCO20k. For single-object localization, we follow the
settings in [41, 53] and evaluate on PASCAL-VOC 2007,
PASCAL-VOC 2012 and COCO20k.
Discovery setup: This setup evaluates the object discovery
performance. Similar to [41] we use the regions obtained
by our localization method, to perform K-means clustering
and use the resulting cluster labels to train Faster-RCNN
object detectors on PASCAL-VOC 2007, 2012 trainval and
COCO20k train sets. We report results of these experiments
on the PASCAL-VOC 2007 test and COCO minival sets re-
spectively. In addition to this, we report the performance
of our discovery method on COCO train set, similar to the
large scale discovery in [34].

4.3. Comparison with contemporary methods

In this section we compare our method against contem-
porary works the localization and discovery setups.

4.3.1 Localization setup

Unsupervised Pre-training: Table 1 compares the results
of all the localization methods on unsupervised pre-training
of object detectors. We use average precision at different
IoU thresholds ([0.50:0.95]: AP, 0.5: AP0.50, 0.75: AP0.75)
for evaluation. On the semi-supervised setting, on VOC
07+12 (k = 10%), the self-supervised transformer based
methods (LOST, TokenCut and MOST) outperform SS [46]
with fewer boxes per image. In particular, TokenCut (de-
noted as TCut in Table 1) which outputs only one box per
image, outperforms SS, using ten boxes per image, by ∼0.4

points on mAP. MOST which outputs an average of 4.65
boxes per image outperforms TokenCut (the best perform-
ing self-supervised transformer based method) by 1.89, 2.7
and 2.26 percentage points on AP, AP50, and AP75 respec-
tively. This can be attributed to the ability of MOST to out-
put multiple foreground regions resulting in more samples
for pre-training which is not possible in the case of Token-
Cut. MOST outperforms SS, that outputs 30 boxes per im-
age, by 0.91, 2.09 and 0.9 points on AP, AP50, and AP75

respectively using almost 6× fewer boxes per image and
this can be attributed to the ability of MOST to generate
high quality proposals. On COCO, MOST outperforms To-
kenCut by 0.8 and 0.86 on the 1% and 2% setting of semi-
supervised learning. MOST with a ViT-B/8 backbone, that
outputs 13.09 boxes on average per image, outperforms SS
(with 30 boxes per image) by 0.36, 0.07 points on k=1%
and k=2% few shot splits of COCO respectively.

On the fully supervised setting, MOST outperforms
LOST and TokenCut by 0.76 and 0.55 (AP) percentage
points respectively on VOC 07+12. On COCO, MOST out-
performs them by 0.50 and 1 points respectively. On VOC
07+12, MOST using ViT-B/8 (13.09 boxes per image) out-
performs SS (with 30 boxes per image) by 0.40. On the
much harder COCO dataset, MOST outperforms SS 1.20
(AP) percentage points using 2× fewer boxes per image.

In Table 2 we report the class agnostic object proposal
evaluation of DETReg trained using different localization
methods. We report average precision at different IoU
thresholds (AP, AP50, AP75) and recall @ 1, 10 and 100 pro-
posals per image (denoted as R1, R10, and R100) to evalu-
ate the quality of region proposals. Note that the numbers
in the table are low because of the unsupervised nature of
training. All the self-supervised transformer-based methods
achieve performance better than SS with far fewer boxes.
In recall, TokenCut and MOST perform on par with each
other and outperform rest of the methods with significant
improvements. MOST achieves the highest performance on
average precision among all the methods. It can achieve
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Figure 4: Effect of kernel size: Different kernel sizes can
identify different tokens as belonging to the foreground. Mul-
tiple kernels help eliminate noisy predictions (first triplet) and
missed predictions (second triplet).

Figure 5: Figure demonstrating the effect of clustering in
MOST: Each image consists of a bounding box generated from
a pool. We observe that each pool focuses on different fore-
ground instance.

higher precision and recall because of its ability to out-
put multiple high quality regions per image. While LOST
and TokenCut output high quality boxes, they cannot output
more than one box per image. SS on the other hand, outputs
multiple boxes but with poor quality.
Multiple Object Localization: We compare with LOD,
the state-of-the-art method on the multi-object localization
benchmark proposed by LOST using the code released by
authors. On VOC2007, we attain an odAP[0.5:0.95] of 6.43
compared to 5.35 attained by LOD, an improvement of 1.09
percentage points. On the COCO20k dataset, we attain a
performance of 1.70 (compared to 1.53 achieved by LOD)
on the harder odAP[0.50:0.95] metric. Note, we do not
compare with rOSD [49] as LOD [50] outperforms it.
Single Object Localization: Table 4 compares the results
of our method on single object localization with recent
methods on PASCAL VOC 2007, 2012 and COCO20k re-
spectively. We use the CorLoc metric to evaluate methods.
Note that MOST is a multiple object localization method
and this setup evaluates the ability of methods to output
a single region. Since MOST outputs multiple boxes, we
use the heuristic, average best overlap (for evaluating ob-
ject proposals in [46]), to select one region per image. The
numbers reported for MOST in this table are the “best” case
scenario. We outperform LOST by 12.9, 13.4 and 16.4
percentage points on VOC 2007, 2012 and COCO20k re-
spectively. We outperform TokenCut [53] by 6, 5.3 and
8.3 percentage points on the three datasets respectively. To
obtain multiple regions per image, authors of LOST train
a foreground object detector using the regions obtained
by their method as supervision, called LOST+CAD [41].
This method can output multiple boxes per image and from
Table 4, even without any training, our method outper-
forms LOST+CAD and TokenCut+CAD by 9.1, 7, 9.6 and
3.4, 2.1, 4.5 percentage points on VOC 2007, 2012 and
COCO20k respectively.

Figure 6: Figure demonstrating the effect of clustering in
MOST. Eliminating the clustering results in noisier outputs.

Discovery Setup: This setup evaluates the true object dis-
covery performance as the localized boxes are used to dis-
cover semantic groups. Following LOST [41], we first clus-
ter the features of the localized objects using K-means clus-
tering. For VOC 2007 and 2007+2012 trainval splits, we
use 20, 30 and 40 clusters. We use 80, 90 and 100 clusters
for COCO20k train split. We report the results of exper-
iments on VOC 2007, 07+12 trainval sets on VOC 2007
test set. For experiments on COCO20k, we report results
on the COCO validation set. Results are tabulated in Ta-
ble 3. MOST outperforms LOST in most settings with the
margin of improvement higher for more number of clusters
and more cluttered datasets like COCO. For more details on
clustering and training refer to supplementary.

Finally, we evaluate the performance of MOST on large-
scale object discovery setup introduced in [34]. For this
setup, we use the area under the purity coverage plot as the
metric. [34] automatically identifies the number of clusters
and obtains an AuC@0.5 of 3.6% on the COCO 2014 train
set. We extract the DINO [CLS] token features of regions
obtained from MOST for K-Means clustering. To avoid
specifying the number of clusters manually, we employ the
“kneedle” method [38] to get the optimal number of clus-
ters (more details in supplementary). Next, we randomly
sample 10000 features from the whole dataset and cluster
them using K-means with the optimal number of clusters.
This subsampling avoids loading all the features into mem-
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Figure 7: Recall analysis: Comparison of recall values of
MOST, MOST+CAD with LOST and LOST+CAD. LOST
generates one bounding box per image. MOST+CAD,
MOST have higher recall and cover more ground-truth ob-
jects for a fixed set of boxes.

ory. MOST + optimal K-means achieves an AuC@0.5 of
8.74% on COCO 2014 train set. We use the cluster labels to
train an object detector on the COCO train set and achieve
an AP/AP50 of 3.9/9.5% compared to 5.2% AP50 obtained
by [34] on COCO validation set. For more experiments on
unsupervised saliency detection and weakly supervised lo-
calization, refer to the supplementary.

4.4. Ablation Experiments

Effect of kernel size: The EBA module performs box anal-
ysis in a sliding window fashion using boxes (or kernels)
of different sizes. We implement this efficiently using a
pooling operation. We visualize the effect of the size of
pooling kernels on the final output in Fig. 4. We observe
that the majority voting performed in EBA, helps in remov-
ing noisy predictions in the first triplet, where a box iden-
tified by kernel of size 1 is eliminated by majority voting
of kernels with larger receptive field. In the second triplet
in Fig. 4, an object which was missed by the lower order
kernels (k=[1,4]), can be picked up with a higher order ker-
nel (k=5). For all our experiments, we use kernels of sizes
upto 5 (i.e. k=[1,5]). For quantitative results on the effect
of kernel sizes, refer to the supplementary.
Effect of clustering: MOST performs clustering with the
token locations as features to obtain pools. Each pool con-
tains tokens belonging to a foreground object. We show the
effect of clustering qualitatively in Fig. 5. We observe that
each pool focuses on one foreground object and illustrate
the bounding boxes extracted from each pool.

Each pool contains tokens belonging to a foreground ob-
ject. We show the effect of forming pools qualitatively in
Fig. 6. The first image in each pair shows the output of
MOST without clustering to form pools and the second im-
age shows the output with the formation. We observe that,
without clustering, each token can generate a bounding box
resulting in noisier outputs.
Recall of boxes: To analyze the object localization perfor-

Table 5: Effect of backbone on single-object localization

Backbone VOC 2007 VOC 2012 COCO20k

ViT-S/8 84.25 86.00 80.50
ViT-S/16 74.80 77.40 68.60
ViT-B/8 85.40 87.00 81.73
ViT-B/16 72.72 76.28 67.20

mance of MOST, we compare its recall with LOST and To-
kenCut on VOC 07, 12 and COCO20k datasets in Fig. 7.
The x-axis represents the maximum number of boxes al-
lowed per image and the y axis plots the recall. LOST
and TokenCut generate only one box per image and hence
have fixed recall in all the plots. MOST can generate
more boxes and hence have higher recall than LOST and
TokenCut. [41] trains a class agnostic detector (CAD)
to output multiple boxes per image using the output of
LOST as supervision. Without a single step of training,
MOST performs competitively against LOST+CAD on all
the datasets. With a class agnostic detector, MOST+CAD
outperforms LOST, TokenCut and their CAD counterparts
comfortably on all the datasets. On COCO20k, a much
harder dataset, MOST+CAD outperforms all the methods
with a significant margin demonstrating its superior local-
ization abilities.
Effect of EBA: We study the effect of EBA on single-object
localization. The task of the EBA module is to identify to-
kens on foreground instances from similarity maps. We re-
place the EBA module with the strategy used by LOST [41],
effectively giving LOST the ability to localize multiple ob-
jects. We use top-100 patches and this system achieves
a CorLoc of 63.66 (compared to 74.84 of MOST). The
EBA module can automatically pick the right tokens, un-
like LOST to localize multiple objects. This experiment
demonstrates the benefit of the proposed EBA module.
Timing analysis: MOST can localize multiple objects per
image and does so by analyzing the similarity maps of all
the tokens which is computationally more expensive. To
understand this requirement, we perform a timing analy-
sis. On average, LOST takes 0.008s per image while MOST
takes 0.3s. MOST obtains a recall of 0.19, 0.21, and 0.08 on
VOC07, VOC12, and COCO20k respectively (compared to
0.13, 0.15, and 0.03 of LOST). This translates to localizing
an additional 750, 2400, and 7200 instances than LOST on
VOC07, VOC12, and COCO20k respectively. We believe
the additional time taken by MOST is justified by the im-
provement in recall performance which is essential for an
object localization method.
Effect of backbone: We study the effect of backbone on
MOST in Table 5. We observe that backbones with a
smaller patch size can localize more objects, especially
smaller ones (refer to supplementary for qualitative results)

15830



(a) VOC 07+12 (b) COCO

Figure 8: Qualitative results of MOST on VOC 07, 12 and COCO: MOST can localize multiple objects in cluttered scenes
without training. Localization ability of MOST is not limited by the biases of annotators and can localize rocks, mountains,
branches, water bodies, etc.

Table 6: Results on unsupervised saliency detection: We
compare MOST to state-of-the-art unsupervised saliency
detections methods. Top results are in bold and second best
is highlighted in blue. Ability to detect multiple objects in
images is a good tradeoff for a slight drop in performance
on saliency detection

Method ECSSD DUTS DUT-OMRON

max Fβ IoU Acc (%) max Fβ IoU Acc (%) max Fβ IoU Acc (%)

DeepUSPS[32] 58.4 44.0 79.5 42.5 30.5 77.3 41.4 30.5 77.9

BigBiGAN [51] 78.2 67.2 89.9 60.8 49.8 87.8 54.9 45.3 85.6

E-BigBiGAN [51] 79.7 68.4 90.6 62.4 51.1 88.2 56.3 46.4 86.0

LOST [41] 75.7 62.5 88.0 61.8 52.0 87.1 47.4 40.2 79.6

TCut [53] 80.3 71.2 91.8 67.2 57.6 90.3 60.0 53.3 88.0

MOST 79.1 63.1 89.0 66.6 53.8 89.7 57.0 47.5 87.0

resulting in a higher CorLoc. This comes at a cost of pro-
ducing noisier outputs. We refer interested readers to the
supplementary for more analysis and qualitative results on
the effect of backbones and patch sizes.

4.5. Additional Experiments

Unsupervised Saliency Detection: MOST can easily be
extended to unsupervised saliency detection. We experi-
ment with ECSSD [40], DUTS [26] and DUT-OMRON [5]
datasets and use the metrics used by [41, 53] for evaluation.
All these datasets require methods to segment the salient
object in an image. Hence, naively using MOST doesn’t
perform well. To extend MOST for saliency detection, we
select the largest pool and use the similarity map computed
using its tokens as the saliency map. In Table 6, we com-
pare MOST with TokenCut and LOST on the three datasets.
MOST outperforms LOST comfortably on all the metrics,
datasets and fares competitively against TokenCut. We be-
lieve that the ability to detect multiple objects in images is
a good tradeoff for a slight drop in performance on saliency
detection. We refer interested readers to the supplementary
for qualitative results on saliency detection.

Weakly supervised localization: We evaluate MOST on
weakly supervised object localization on CUB-200 [55] and
Imagenet [37] datasets respectively, and achieve a CorLoc
of 92.42 (vs. 91.8 of TokenCut) on CUB-200 and a CorLoc
of 71.4 (vs. 65.4 of TokenCut).

4.6. Qualitative Results:

We illustrate qualitative results of MOST on VOC2007,
2012 and COCO datasets in Fig. 8. Fig. 8a shows re-
sults on VOC 2007 and 2012 and Fig. 8b shows results
on COCO dataset. MOST is capable of localizing fairly
complex scenes in all the three datasets. We observe that,
such unsupervised localization methods are not limited by
the categories annotated by humans but can localize regions
of “stuff” like sign boards (third image in the first row of
Fig. 8a right), rocks (last image of last row in Fig. 8b), and
water bodies (first image in second row of Fig. 8b).

5. Conclusion
We present MOST, an effective method for localizing

multiple objects in complex images without a single an-
notation. MOST leverages object segmentation properties
of transformers trained using DINO [3]. We show that the
ability of MOST to localize multiple objects in an image is
very effective on several object localization and discovery
benchmarks. In particular, MOST outperforms recent state-
of-the-art methods that train a class agnostic detector, on the
task of single object localization, without any training. Fur-
ther, we show that MOST achieves higher recall and cov-
ers more ground truth objects for a fixed set of boxes than
LOST [41], a contemporary work on object localization. Fi-
nally, we extend MOST to the task of unsupervised saliency
detection and report competitive results with recent works.
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