
DynaMITe: Dynamic Query Bootstrapping for Multi-object Interactive
Segmentation Transformer

Amit Kumar Rana∗ Sabarinath Mahadevan∗ Alexander Hermans
Bastian Leibe

RWTH Aachen University, Germany
firstname.lastname@rwth-aachen.de

https://vision.rwth-aachen.de/dynamite

Abstract

Most state-of-the-art instance segmentation methods rely
on large amounts of pixel-precise ground-truth annotations
for training, which are expensive to create. Interactive seg-
mentation networks help generate such annotations based
on an image and the corresponding user interactions such
as clicks. Existing methods for this task can only process
a single instance at a time and each user interaction re-
quires a full forward pass through the entire deep network.
We introduce a more efficient approach, called DynaMITe,
in which we represent user interactions as spatio-temporal
queries to a Transformer decoder with a potential to seg-
ment multiple object instances in a single iteration. Our
architecture also alleviates any need to re-compute image
features during refinement, and requires fewer interactions
for segmenting multiple instances in a single image when
compared to other methods. DynaMITe achieves state-of-
the-art results on multiple existing interactive segmentation
benchmarks, and also on the new multi-instance benchmark
that we propose in this paper.

1. Introduction
Interactive segmentation algorithms enable a user to an-

notate the objects of interest within a given image with
the help of user interactions such as scribbles and clicks.
Such algorithms have several advantages compared to fully-
automatic segmentation methods, since they enable a user
to select and iteratively refine the objects of interest. Ex-
isting interactive segmentation methods [8, 28, 30, 39, 40]
formulate this task as a binary instance segmentation prob-
lem, where the single object of interest can be segmented
and corrected using user clicks.

Most of these approaches use deep neural networks to
generate the image features that are conditioned on the user
clicks and previous predictions, and they require the image

*Equal contribution.

level features to be re-computed for every user interaction.
While such a design has been proven to be effective, the
runtime for processing each interaction is proportional to
the size of the feature extractor used, since a forward pass
through the network is needed per interaction [8,28,30,39,
40]. Hence, these methods often have to limit their network
sizes in order to achieve a good runtime performance and
are thus not scalable in this respect.

In addition, the design decision to model interactive seg-
mentation as a binary segmentation problem forces existing
methods to approach multi-instance segmentation tasks as
a sequence of single-instance problems, operating on sep-
arate (sometimes cropped and rescaled [8]) image regions.
Consequently, such methods need additional clicks if there
are multiple similar foreground instances in an image, since
each of those instances has to be processed separately with
a disjoint set of user interactions, specifying the foreground
and background. This is inefficient, since it is often the case
that one object instance has to be considered as background
for a different nearby instance, such that a refinement with
a negative click becomes necessary for the current object of
focus.

In this work, we improve on both of the above issues
by proposing a Dynamic Multi-object Interactive segmen-
tation Transformer (DynaMITe), a novel multi-instance ap-
proach for interactive segmentation that only requires a sin-
gle forward pass through the feature extractor and that pro-
cesses all relevant objects together, while learning a com-
mon background representation. Our approach is based on
a novel Transformer-based iterative refinement architecture
which determines instance level descriptors directly from
the spatio-temporal click sequence. DynaMITe dynami-
cally generates queries to the Transformer that are con-
ditioned on the backbone features at the click locations.
These queries are updated during the refinement process
whenever the network receives a new click, prompting the
Transformer to output a new multi-instance segmentation.
Thus, DynaMITe removes the need to re-compute image-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1043

False Positive Area Corrective Click Additional Click Final Segmentation

Click-based Refinement Process

Figure 1: DynaMITe processes multiple instances at once and models the background jointly. In this example, the false
positive region on the camel in the second image is corrected automatically when the user chooses to segment it as foreground.
DynaMITe is also able to correctly segment tiny structures, such as the camel’s leash in the final segmentation mask.

level features for each user interaction, while making more
effective use of user clicks by handling multiple object in-
stances together.

The attention-based formulation of learning object repre-
sentations from user interactions allows multiple objects to
interact with each other and with the common background
representations, thus enabling the network to estimate a bet-
ter context from the input image. Fig. 1 shows a typical ex-
ample, highlighting DynaMITe’s capability to segment all
the relevant objects in the input image using few clicks. An
advantage of such a network formulation can be directly
seen in the third refinement iteration, where a positive click
on the unsegmented camel instance automatically removes
the false positive region that was spilled over after segment-
ing a different camel instance nearby in the previous itera-
tion. Existing approaches that perform sequential single-
instance segmentation would have to first add a negative
click to remove the false positive as part of the individual
object refinement in the third iteration, thereby requiring
additional annotation effort.

In order to enable quantitative evaluation, we also pro-
pose a novel multi-instance interactive segmentation task
(MIST) and a corresponding evaluation strategy. Compared
to single-instance segmentation, MIST has the added com-
plexity of requiring decisions which object to click on next,
which is significantly harder than just deciding where to
click next in a given single-instance error region. In particu-
lar, different users may apply different next-object selection
strategies, and it is important that an interactive segmen-
tation method is robust to this and always performs well.
Hence, we propose to evaluate against a set of several dif-
ferent (but still basic) click sampling heuristics that are in-
tended to span the expected variability of user types.

In summary, we propose DynaMITe, a novel
Transformer-based interactive segmentation method
which uses a query bootstrapping mechanism to learn
object representations from image-level features that are
conditioned on the user interactions. We also model the
iterative refinement process as temporal update steps for
the queries to our Transformer module, which removes
the need to re-compute image-level features. We evalu-

ate DynaMITe on the standard interactive segmentation
benchmarks and show that it performs competitively in
the single-instance setting, while outperforming existing
state-of-the-art methods on multi-instance tasks.

2. Related Work

Instance Segmentation. Methods that perform instance
segmentation automatically generate masks for every object
in the input image. Mask R-CNN [19] is one of the most in-
fluential instance segmentation networks, which first gener-
ates object proposals and then segments these proposals us-
ing a mask head. Several other methods use a single-stage
approach, either by grouping the pixels [11, 23, 32–34],
or by employing dynamic networks [41] on top of fully
convolutional object detectors [42]. After the success of
Vision Transformers (ViT) [13] for image-level classifica-
tion tasks, recent methods leverage Transformer-based ar-
chitectures for performing instance segmentation. Mask-
Former [10] adds a mask classification head to DETR [5]
and models instance segmentation as a per-pixel classifica-
tion task. Mask2Former [9] further extends MaskFormer by
using a masked-attention Transformer decoder. Unlike in-
teractive segmentation methods, instance segmentation net-
works rely on segmenting a fixed set of classes and cannot
incorporate user inputs for refinement.

Interactive Segmentation. Earlier methods [4,37,46] that
perform interactive segmentation used graph-based optimi-
sation techniques to translate user inputs to per-pixel seg-
mentation masks. With the advent of deep learning, recent
methods [6,8,24–26,28,30,39,45] have been able to reduce
the number of user interactions required for generating ob-
ject masks. Most of these methods [8, 30, 40] use positive
and negative clicks to iteratively segment a foreground ob-
ject by concatenating the input image with the click maps,
along with the previous mask predictions, and then sending
this combined representation through a deep network. This
enables the network to learn the underlying representation
of objects based on the input clicks. iADAPT [24] extends
ITIS [30] by considering user corrections as training exam-
ples during the testing phase, and updating the network pa-

1044

Initial user clicks

Backbone Feature
Decoder

Multi-Scale
Features F

Feature
Fusion

Fused
Features

Click
Feature

Sampling

ct+1

ct

c2
c1

Learnd BG
Queries

×Le

M
as

ke
d

C
ro

ss
-A

tt.

Se
lf

-A
tte

nt
io

n

FF
N

Encoder

×Ld

C
ro

ss
A

tte
nt

io
n

FF
N

Decoder

Mt

Refinement User Click

Iterative Refinement Loop (τ times)

Mt+1

Executed once per image

Figure 2: DynaMITe consists of a backbone, a feature decoder, and an interactive Transformer. Point features at click
locations at time t are translated into queries which, along with the multi-scale features, are processed by a Transformer
encoder-decoder structure to generate a set of output masksMt for all the relevant objects. Based onMt, the user provides
a new input click which is in turn used by the interactive Transformer to generate a new set of updated masksMt+1. This
process is then iterated τ times until the masks are fully refined.

rameters based on them, thereby aligning the training and
testing domains. BRS [22] is another interactive segmenta-
tion method that proposes an online update scheme for the
network during testing, by constraining user click locations
to have the corresponding click label. RITM [40] improves
the iterative training procedure introduced in [30], and sub-
sequently demonstrates better performance. The recent Fo-
calClick [8] approach builds upon the RITM [40] pipeline,
and uses a focus crop that is obtained based on user cor-
rections during the refinement process. FocalClick achieves
the state-of-the-art results on multiple instance segmenta-
tion datasets. Unlike DynaMITe, all of these methods are
designed to work with single instances, and also need a
complete forward pass for each refinement iteration.

Conceptually similar to our approach is that of Agusts-
son et al. [1], who focus on full image segmentation. This is
also a form of interactive multi-instance segmentation; how-
ever, every pixel in the image has to be assigned to a seg-
ment. Their method is based on a two-stage Mask-RCNN,
where the user specifies the object proposals with clicks on
extreme object points, followed by scribbles for mask cor-
rections. Our method is more general, allowing the user to
click on any object pixel and only requiring a minimum of
one instead of four clicks per object.

3. Method

In a typical interactive segmentation process, the model
first receives an input image along with the associated fore-
ground (positive) clicks representing the objects that the
user intends to segment. Based on this set of inputs, an in-
teractive segmentation model predicts an initial set of seg-
mentation masks corresponding to the clicks. These ini-

tial predictions are presented to the user so that they can
provide a corrective click (which can be positive or nega-
tive) that is used to refine the previous network predictions.
This process is repeated until the user receives a set of non-
overlapping segmentation masks of satisfactory quality.

Current state-of-the-art interactive segmentation mod-
els [8, 24, 30, 39, 40] perform this task sequentially, as their
networks can handle only one foreground object at a time.
These methods mostly use click maps, which are updated
every time a user provides a new click and are then used
to obtain a localized feature map from the feature extrac-
tor. DynaMITe, on the other hand, can process multiple
objects at once, and translates clicks to spatio-temporal
data that is processed by an interactive transformer. This
makes our model more efficient for mainly three reasons:
(i) DynaMITe just needs a single forward pass through the
feature extractor to segment all the relevant foreground in-
stances; (ii) the background is modeled jointly, and hence it
reduces redundancy in negative clicks; and (iii) by annotat-
ing multiple objects jointly, these do not need to be repeat-
edly modeled as background for other foreground objects.

3.1. Network Architecture

Following the state-of-the-art Transformer-based seg-
mentation methods [2, 9, 10, 47], we use three basic com-
ponents in our architecture: (i) a backbone network, (ii) a
feature decoder, and (iii) a Transformer structure that pro-
cesses the multi-scale image features from the feature de-
coder (Fig. 2). Additionally, we also include a feature fu-
sion module that fuses the multi-scale features to generate
a fused feature map at the largest scale. Our main contribu-
tion lies in the Transformer structure, which learns localized
object descriptors directly from the user interactions with-

1045

out the need to pass them through the entire feature extrac-
tor. This results in an interactive segmentation network that
is not only efficient in processing the user interactions, but
also more practical since it can process multiple object in-
stances at once. Since DynaMITe can encode relationships
between multiple objects in a given scene, it is naturally ca-
pable of segmenting multiple instances at once, which is a
paradigm shift for interactive segmentation networks.

Fig. 2 shows the overall architecture of our network. It
takes as input an RGB image I ∈ RH×W×3, and the cor-
responding set of user interactions St = {c1, c2, ..., ct} at
timestep t ∈ {1, . . . , T }, where |T | is the maximum num-
ber of refinement iterations for I. Following the classic for-
mulation of interactive segmentation that is used by existing
works, we model the user interactions as positive and neg-
ative clicks, where positive clicks are placed on the fore-
ground objects and the negative clicks on the background.
Hence St = {St+,St−}, where St+ = {P t

1 , P
t
2 , ..., P

t
n} de-

note the positive clicks, and St− = {bt1, bt2, ..., btm} denote
the set of negative clicks at time t. Here, P t

i ∈ St
+ is a set of

positive clicks that belong to object oi ∈ O. For existing in-
teractive segmentation methods, |O| is always 1 since they
can process only one object at a time, which need not neces-
sarily be the case for DynaMITe as it is capable of handling
multiple objects concurrently. All P t

i ∈ S+, as well as S−
are initialised as empty sets, and then updated when the user
inputs a new click. The backbone processes I and extracts
low-level features, which are then up-sampled by the fea-
ture decoder to produce feature maps F = {f32, f16, f8} at
multiple scales. These feature maps, along with the asso-
ciated user interactions, up to time t, are then processed by
the interactive Transformer.

3.2. Interactive Transformer

The goal of our interactive Transformer is to generate
segmentation masks Mt = {M t

1,M
t
2, ...,M

t
n} for all the

relevant foreground objects at a given refinement timestep
t, given the inputsF and the corresponding clicks St. These
masks should be disjoint, i.e. M t

i ∩M t
j = ∅ for all i ̸= j.

Dynamic Query Bootstrapping. The queries used by the
Transformer are dynamically generated using the input fea-
tures F and the user clicks St. To do this, we first sample
the point features at every spatial location represented by
each user click in St from all the feature scales inF . Hence,
if Qt denotes the set of queries at time t, then qj ∈ Qt for
click cj in St is generated as:

qj =
1

|F|
∑
f∈F

fcj . (1)

During the refinement process, the network receives a
new interaction ct+1 at the time step t + 1 , which is used
to obtain an updated set of user clicks St+1. To do this, if

ct+1 is a positive click then it is added to the correspond-
ing object specific click set Pj to obtain a new set of fore-
ground clicks St+1

+ , else it is added to S− to obtain St+1
− .

St+1 is then used to obtain the updated queries Qt+1, us-
ing the same process as explained above. These queries are
thus dynamically updated throughout the iterative process
without the need to recompute F , and the entire interactive
segmentation process can work with multiple instances at
once.

In addition to the dynamic queries, we include a set of
K = 9 learnable queries for modeling the background with-
out the use of any user guidance. These static background
queries learn generic background representations and they
reduce the background interactions that a user will have to
perform. We also add a 3D positional encoding to qj where
the first two dimensions represent the spatial location of the
corresponding click in the image features and the third di-
mension represents the refinement timestep t.

Instance Encoder. The DynaMITe instance encoder takes
as input the queries Qt and the multi-scale feature maps
F . The encoder follows the structure of the masked atten-
tion Transformer decoder presented in [9] and leverages its
capability of processing multi-scale features, which is im-
portant for dense pixel prediction tasks. Its main purpose is
to enhance the initial click-based queries, such that they be-
come more discriminative. We use Le = 9 layers, which
are grouped into 3 blocks, each of which processes suc-
cessive feature scales from F . Every Transformer layer in
the encoder consists of a masked attention module, a self-
attention module and a feedforward network. Hence, our
encoder block performs the following operations:

Ql ←− MaskedCrossAttn(Ql, F,Ml−1) +Ql−1, (2)
Ql ←− SelfAttn(Ql) +Ql, (3)
Ql ←− FFN(Ql) +Ql. (4)

Here, Ql represents the queries at lth layer; Ml−1 is the
attention mask produced from the binarized mask predic-
tions from (l − 1)

th layer; SelfAttn is the multi-head self-
attention module introduced in [43]; and FFN denotes a
feedforward network. MaskedCrossAttn is a variant of
cross-attention, where the attention operation is restricted
to the foreground region represented by each query in the
previous layer. Hence, each masked attention module per-
forms the following operation:

Ql = softmax(Ml−1 +QlKl)Vl +Ql−1, (5)

where Kl and Vl are the keys and values derived from F at
the corresponding feature scale.

Decoder. While the goal of the encoder is to update the in-
stance specific queries Q, the decoder updates the fused fea-
tures FM. The fused features are obtained from the feature

1046

fusion module, which takes the multi-scale decoder features
F as input and generates a fused feature map at the largest
scale of F . The feature fusion module consists of a convo-
lutional layer, followed by an up-sampling layer with skip
connections to upsample low resolution features from F ,
which are then concatenated to generate FM.

The decoder processes FM using a set of Ld = 5 Trans-
former layers. Each Transformer layer in our decoder con-
sists of a cross-attention layer, followed by a feedforward
network. Hence, each of the DynaMITe decoder layers per-
forms the following operations:

FM
l = softmax(FM

l KT)V T + FM
l−1, (6)

FM
l = FFN(FM

l) + FM
l . (7)

Here K and V are again keys and values; however, they
are obtained from the instance encoder’s output Qout and
not from FM. To get the final output masks, we take a dot
product of the updated mask features FM

out with the click
specific queries Qout , as done in [9], and obtain a set of
output mask probabilities. Since we have more than one
query representing both the objects and the background, we
use the per-pixel max operation over the corresponding set
of queries to obtain instance specific masks for all the ob-
jects and the background. In the end, the discretized output
masks are obtained by taking an argmax per pixel across
the different instance predictions.

4. Multi-instance Interactive Segmentation
Existing interactive segmentation approaches address

multi-instance segmentation as a sequence of single-
instance tasks. I.e., they pick one instance at a time, and
then refine it either until the mask has a satisfactory quality,
or until they have exhausted a specific click budget τ for that
object. If there are multiple foreground objects in a single
image, these methods generate overlapping object masks
which have to be merged as an additional post-processing
step in order to obtain the final masks. Also, since these
objects are processed individually with disjoint click sets,
some clicks can be redundant at an image-level. Hence, in
this work we propose a novel multi-instance interactive seg-
mentation task (MIST), where the goal of a user is to jointly
annotate multiple object instances in the same input image.

Given an input image and a common set of user clicks,
the MIST expects a corresponding method to generate non-
overlapping instance masks for all relevant foreground ob-
jects. A major difference in this setting is that the back-
ground, and the corresponding negative clicks, are now
common for all object instances. The MIST is a more chal-
lenging problem compared to the classical single-instance
setting, since every refinement step can now lead to a pos-
itive click on any of the relevant objects or to a negative
(background) click. Thus, extending an existing single-

instance interactive segmentation method to the MIST is not
trivial.

Automatic Evaluation. It is also important to note that
the user click patterns for the MIST may differ consider-
ably between users. As a result, simulating the MIST for
automatic evaluation is a challenge of its own. In contrast
to single-instance interactive segmentation benchmarks that
have converged onto a deterministic next-click simulation
strategy [8,24,30,39,40], the refinement focus in the MIST
may jump from one object to another in an arbitrary se-
quence, unless users are instructed to process the objects
in an image according to a specific order. Since it is hard
to predict what next-object/next-click selection strategies
users will end up using in an actual interactive segmenta-
tion application, and since that choice will in turn depend
on their impression of which strategies work best with the
given segmentation method, it is not practical to assume a
single, deterministic next-click simulation strategy. Instead,
we postulate that a method that performs the MIST should
ideally be robust against varying click patterns and next-
object selection strategies. Hence, we propose a multi-fold
evaluation based on three different next-object simulation
patterns during refinement.

All of these click simulation strategies start by adding
a single positive click to each of the foreground objects in
that image to get an initial prediction. Based on this ini-
tial prediction, we choose an object oi according to one of
the following strategies: (i) best: choose the object that has
the best IoU, compared to the ground truth mask; (ii) worst:
choose the object that has the worst IoU; and (iii) random:
choose a random object. In each of these strategies, only
the objects that have not yet achieved the required segmen-
tation quality will be sampled. Next, we place a simulated
click ct on the largest error region of oi. ct can now be (i) a
positive click on oi; (ii) a negative click on the background;
or (iii) a positive click on another oj . This process is re-
peated either until all the relevant objects are segmented, or
until the image-level click budget τ is fully spent. We want
to emphasize that we make no claim that those strategies
(best, worst, random) are close to optimal (in fact, we dis-
cuss several more effective strategies in the supplementary
material). Instead, we intend for them to span the variabil-
ity of possible next-object selection strategies to ensure that
evaluated approaches generalize well to different users.

Evaluation Metric. The standard metric used by existing
interactive segmentation benchmarks [18, 31, 35, 38] is the
average number of clicks per object (NoC). Since the MIST
is quite different from annotating instances individually, the
NoC metric for interactive segmentation per object would
not serve as a good evaluation metric. Hence, we propose a
new evaluation metric called Normalized Clicks per Image
(NCI) for the multi-instance interactive segmentation task.

1047

NCI is an adaptation of NoC, where the number of clicks
is now computed per image, instead of per-object, and is
then normalized by the number of foreground objects in the
image. For NCI, we cap the number of clicks for an image
based on the number of foreground objects. If an image has
|O| foreground objects, then the total click budget for that
image would be τ ∗ |O|. Unlike the NoC metric, this cap is
at an image level, and all of these clicks can be spent on a
subset of objects if the corresponding algorithm so desires.
Similar to the single-instance case, all objects that cannot be
segmented to the desired quality level using this budget are
marked as failure cases (counted as NFO), and the number
of clicks for that image is set to the image-level click bud-
get. In addition, we also mark an image as a failed image
(counted as NFI) if there is at least one object within that
image that could not be segmented.

5. Experiments

Datasets and Metrics. We evaluate DynaMITe on an
extensive range of datasets across two task settings. For
the well established single-instance setting, we mainly use
small-scale datasets such as GrabCut [38], Berkeley [31],
COCO MVal, and DAVIS [35]. GrabCut and Berkeley are
very small datasets with 50 and 96 images, respectively,
mostly containing a single foreground object. COCO MVal
is a subset of COCO [27] with a total of 800 images, and
contains 10 objects from each object category. DAVIS [35]
is a video object segmentation dataset, which consists of 50
short videos for training and 20 for validation. Each video
frame consists of a single salient foreground region, where
object instances that belong together share a common mask.
For evaluation, we use the subset of 345 randomly sampled
images [22] to be consistent with the existing interactive
segmentation methods. Additionally, we also evaluate this
task on SBD [18], which is an extension of the PASCAL
VOC [14] dataset with 10582 images containing 24125 ob-
ject instances, with 6671 instances for validation. Although
SBD contains multiple instances per image, it is adapted to
the single-instance task setting by considering every image-
instance pair as a separate data sample.

For evaluating the MIST, we use the large-scale in-
stance segmentation dataset COCO [27] in conjunction with
DAVIS17 [36], and SBD [18]. COCO is an image dataset
with annotations for multiple image level tasks with 5k im-
ages for validation. DAVIS17 is an extension of the single-
instance DAVIS [35] dataset, which contains 30 validation
videos with multiple segmented objects per-frame. In addi-
tion, we also use the annotations from LVIS [16] for train-
ing DynaMITe, where LVIS consists of a subset of COCO
images with additional high-quality segmentation masks.

Implementation Details. For most experiments, we use
a Swin Transformer [21] as backbone, with a multi-scale

deformable-attention Transformer [47] on top to extract
multi-scale features at 1/8, 1/16 and 1/32 scales. The en-
coder for our interactive Transformer follows the structure
of the Transformer decoder in [9]. Specifically, there are
3 Transformer blocks in the encoder, each with 3 layers to
process the feature maps at subsequent scales. For the in-
teractive Transformer decoder, we use 5 layers of the cross-
attention blocks as defined in Sec. 3.2.

The backbone is initialized with ImageNet [12] pre-
trained weights, while the feature decoder and the Trans-
former weights are initialized randomly. The entire network
is trained end-to-end on the combined COCO+LVIS [40]
dataset with an input resolution of 1024 × 1024 px for 50
epochs, and a batch size of 32 on 16 Nvidia A100 GPUs.
We follow the iterative training strategy used in [40]: we
run a maximum of 3 iterative refinement steps to generate
corrective clicks, based on the network output, for each ob-
ject in an image during training.

5.1. Comparison with the State-of-the-art

Single Instance Setting. Although our model is designed
to perform multi-instance interactive segmentation, we also
apply it to the standard single-instance benchmark without
any adaptations or re-training. In Tab 1 we compare our
results against previous methods, which are grouped based
on the underlying network architecture and the used train-
ing data. For this setting, we follow the same evaluation
setting and the click sampling strategy adopted in previous
works [8, 30, 39, 40] and also set the click budget τ to 20.

Early deep learning models [3, 24, 30] used larger back-
bones such as DeepLabV3+ [7], and were trained with
small-scale image datasets such as PascalVOC [14], while
state-of-the-art interactive segmentation models mostly use
HRNet [44]. To be consistent with these methods, we re-
port the results for DynaMITe using different commonly
used backbone networks. Methods with comparable archi-
tectures are grouped together, and the corresponding best
results within each group are marked in red. Although
none of the DynaMITe models were specifically trained to
perform single-instance interactive segmentation, it outper-
forms comparable state-of-the-art networks for a majority
of the datasets. Since vision transformers have recently
emerged as a competitive alternative to CNNs, we addition-
ally report DynaMITe results with a Swin transformer [29].

Multi-instance Interactive Segmentation (MIST). For
this experiment, we follow the MIST evaluation strategy de-
scribed in Sec. 4 and use the proposed metrics (NCI, NFO,
and NFI). In addition, we also report the average image-
level IoU achieved after segmenting all the objects in an
image. We use the validation sets of COCO [27], SBD [18],
and DAVIS17 [36] to evaluate our models and set τ = 10.

As a baseline, we adapt FocalClick [8] to the MIST set-
ting. FocalClick is designed to work with a single object

1048

GrabCut [38] Berkeley [31] SBD [18] COCO MVal DAVIS [35]

Method Backbone Train Data @85 ↓ @90 ↓ @85 ↓ @90 ↓ @85 ↓ @90 ↓ @85 ↓ @90 ↓ @85 ↓ @90 ↓
iFCN w/ GraphCut - PASCAL VOC - 6.04 - 8.65 - - - - - -
ITIS [30] DeepLabV3+ SBD - 5.6 - - - - - - - -
VOS-Wild [3] ResNet-101 - - 3.8 - - - - - - - -
iADAPT [24] DeepLabV3+ SBD - 3.07 - 4.94 - - - - - -

EdgeFlow [17] hrnet18 COCO+LVIS 1.60 1.72 - 2.40 - - - - 4.54 5.77
RITM [40] hrnet32 COCO+LVIS 1.46 1.56 - 2.10 3.59 5.71 - - 4.11 5.34
FocalClick [8] hrnet32 COCO+LVIS 1.64 1.80 - 2.36 4.24 6.51 - - 4.01 5.39
f-BRS [39] hrnet32 COCO+LVIS 1.54 1.69 1.64 2.44 4.37 7.26 2.35 3.44 5.17 6.50
PseudoClick [28] hrnet32 COCO+LVIS - 1.50 - 2.08 - 5.54 - - 3.79 5.11
DynaMITe hrnet32 COCO+LVIS 1.62 1.68 1.46 2.04 3.83 6.35 2.35 3.14 3.83 5.2

FocalClick [8]∗ Resnet-50 COCO+LVIS 2.02 2.24 2.43 3.78 5.10 7.70 3.21 4.42 5.34 7.72.
DynaMITe Resnet-50 COCO+LVIS 1.68 1.82 1.47 2.19 3.93 6.56 2.36 3.20 4.10 5.45

FocalClick [8] Segformer-B0 COCO+LVIS 1.40 1.66 1.59 2.27 4.56 6.86 2.65 3.59 4.04 5.49.
DynaMITe Segformer-B0 COCO+LVIS 1.58 1.68 1.61 2.06 3.89 6.48 2.47 3.28 3.85 5.08

DynaMITe Swin-T COCO+LVIS 1.64 1.78 1.39 1.96 3.75 6.32 2.24 3.14 3.87 5.23
DynaMITe Swin-L COCO+LVIS 1.62 1.72 1.39 1.90 3.32 5.64 2.19 2.88 3.80 5.09

FocalClick [8] Segformer-B3 COCO+LVIS 1.44 1.50 1.55 1.92 3.53 5.59 2.32 3.12 3.61 4.90
saic-is [15] Segformer-B4 COCO+LVIS 1.52 1.60 1.40 1.60 3.44 5.63 - - 3.68 5.06

Table 1: NoC results on single-instance segmentation datasets grouped by the used backbone. Top results within a group are
indicated in red and the overall top results in bold. Within groups we obtain state-of-the-art or competetive results.

COCO SBD DAVIS17

Method Backbone NCI ↓ NFO ↓ NFI ↓ IoU ↑ NCI ↓ NFO ↓ NFI ↓ IoU ↑ NCI ↓ NFO ↓ NFI ↓ IoU ↑
FocalClick [8] Segf-B0(best) 7.31 19422 3004 73.7 4.26 1115 599 87.3 4.6 802 562 84.6
FocalClick [8] Segf-B0(random) 7.96 29240 3463 59.3 4.81 2408 838 83.4 5.20 1278 685 82.4
FocalClick [8] Segf-B0(worst) 8.03 31234 3505 60.7 4.91 2723 885 84.8 5.33 1433 689 81.6

DynaMITe Segf-B0 (best) 6.13 15219 2485 81.3 2.83 655 342 90.2 3.29 546 364 87.5
DynaMITe Segf-B0 (random) 6.04 12986 2431 84.9 2.76 528 313 90.6 3.27 549 356 87.9
DynaMITe Segf-B0 (worst) 6.02 19758 2414 83.0 2.75 841 315 90.3 3.25 707 354 87.1

DynaMITe Swin-T(best) 6.07 14853 2460 81.8 2.75 624 327 90.3 3.20 501 348 87.7
DynaMITe Swin-T(random) 6.00 12710 2401 85.1 2.69 510 303 90.7 3.16 514 338 88.0
DynaMITe Swin-T(worst) 5.94 19309 2369 83.4 2.68 798 300 90.5 3.16 704 341 87.1

Table 2: Results on the MIST using an IoU threshold of 85%. NCI: normalised clicks per image, NFO: number of failed
objects, NFI: number of failed images. All reported models are trained on COCO+LVIS.

instance at a time, and processes objects sequentially to gen-
erate overlapping binary masks for each instance in an im-
age. Hence, it cannot be directly used for automatic evalu-
ation on the MIST, since the MIST click sampling strategy
requires multi-instance segmentation masks to choose the
object to refine in each iteration, and the MIST expects a
non-overlapping instance map as final output. We fix these
issues by adapting the evaluation pipeline of FocalClick to:
(i) process all relevant objects sequentially using an initial
click to obtain the initial predictions for all objects in an im-
age; (ii) store both the intermediate IoUs and predictions at
each refinement step, which are then used to choose the next
object to refine and the corresponding simulated next click;
and (iii) fuse the final predictions by performing an argmax
operation on the set of final predicted probabilities. We also
tried to fuse the predictions at each intermediate refinement

step but found it to perform worse.
Tab. 2 shows the results of evaluating both FocalClick

and DynaMITe on the MIST using the three object sam-
pling strategies (best, worst, and random) explained in
Sec. 4. DynaMITe outperforms FocalClick on all metrics
and across all three datasets by a large margin. Addi-
tionally, the variance in performance across different sam-
pling strategies is much smaller for DynaMITe, demonstrat-
ing that it is more robust to variable user click patterns.
DynaMITe also generates segmentation masks of higher
quality, as shown by the IoU values reported in Tab. 2.

5.2. Ablations

Tab. 3 reports the results of different ablations to analyze
the impact of our network design choices (first group), and
the positional encodings (second group) for DynaMITe. For

1049

NCI↓ NFO ↓ NFI↓
DynaMITe (Swin-T) 2.72 557 329
- static background queries 2.79 639 354
- Transformer decoder 2.90 657 384

- temporal positional encoding 2.94 682 402
- spatial positional encoding 2.90 671 395
- spatio-temporal positional encoding 2.86 608 376

Table 3: Ablation on the network design choices, always
relative to the top line. All runs are repeated 3 times with
random sampling and evaluated on SBD. All metrics use an
IoU threshold of 85%.

(a) Examples done after a single click per object.

(b) Examples requiring refinement clicks.

Figure 3: Qualitative examples showing the annotation pro-
cess with DynaMITe for high-quality masks obtained with
a single click per object and for cases that require additional
refinements. Clicks are represented with colored dots.

all of our ablation experiments, we use a Swin-T [20] back-
bone with batch size 128, and evaluate it on the SBD [18]
dataset for the MIST. Ablations on additional datasets are
available in the supplementary.

Transformer Decoder. We ablate the effect of adding a
Transformer decoder to the interactive transformer module.
The decoder updates the fused image feature map at the
highest resolution based on the instance queries. Discarding
the Transformer decoder increases DynaMITe’s NCI from
2.72 to 2.90. It also adds an additional 100 failed objects,
increasing the NFO from 557 to 657.

Static Background Queries. As mentioned in Sec. 3, we
use a common set of 9 learnable queries that model the

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 >10
0

50

100

150

Image area covered by object [%]

#O
bj

ec
ts

Segmented objects
Failed objects

Figure 4: Failure cases analyzed by object size on the SBD
dataset. The rightmost bin is truncated and contains 2582
segmented objects.

background in an image. These queries learn generic back-
ground representations and help in reducing the number of
background clicks required for performing interactive seg-
mentation. As seen in Tab 3, adding the static background
queries reduces the NCI from 2.79 to 2.72 and also the NFO
from 639 to 557.

Positional Encoding: As clicks are interpreted as spatio-
temporal data, we add a 3D positional encoding to the query
features Q and ablate its effect on the network performance
on the MIST in the second section of Tab. 3. Removing the
spatial and temporal positional encoding worsens the net-
work performance by 0.18 and 0.22 NCI respectively. Not
having any temporal encoding performs the worst with 2.94
NCI as compared to 2.72 for the full network. Temporal po-
sitional encodings seem to have a more significant impact
compared to the spatial counterpart. This can be partly at-
tributed to the fact that refinement clicks are often spatially
close to each other, and hence the spatial positions alone do
not provide good separation.

5.3. Qualitative Results

Fig. 3 shows several qualitative results produced by
DynaMITe. The first row shows examples where a single
click per object suffices to create well-defined segmenta-
tions for all objects. The second and third row show ex-
amples where some refinement clicks are needed to arrive
at the final masks. While manually annotating images, one
can notice that DynaMITe mostly works with few clicks to
create sharp masks and potential mistakes are often fixed
with very few refinement clicks. Notice for example the
single refinement click on one of the zebra’s occluded legs
in Fig. 3(b) correctly fixed both legs.

5.4. Limitations

Fig. 4 shows how the failure cases are distributed as
a function of the relative area of an image they cover.
It can clearly be seen that the remaining failure cases of
DynaMITe mostly occur on objects covering a small image

1050

area. One reason for this is that the highest resolution fea-
tures map is downsampled by a factor of 4, making it harder
to obtain very sharp masks. Coarser object boundaries have
a larger impact on the IoU for smaller objects. Here, state-
of-the-art single-instance segmentation approaches have the
clear advantage that they process a zoomed-in crop around
the object [8, 39] and even additionally run a per-object
mask refinement. Such a high-resolution refinement step
is orthogonal to our approach and could potentially be inte-
grated into our pipeline, which we leave as future work.

6. Conclusion

We have introduced DynaMITe, a novel Transformer-
based interactive segmentation architecture that is capable
of performing multi-instance segmentation, and a subse-
quent evaluation strategy. DynaMITe dynamically gener-
ates instance queries based on the user clicks, and uses
them within a Transformer architecture to generate and re-
fine the corresponding instance segmentation masks. Un-
like existing works, DynaMITe can process user clicks for
multiple instances at once without the need to re-compute
image-level features. Our method achieves state-of-the-art
results on multiple single-instance datasets and outperforms
the FocalClick baseline on our novel MIST.

Acknowledgements. This project was funded, in parts,
by ERC Consolidator Grant DeeVise (ERC-2017-COG-
773161) and BMBF project NeuroSys-D (03ZU1106DA).
Several experiments were performed using computing re-
sources granted by RWTH Aachen University under project
rwth1239, and by the Gauss Centre for Supercomputing e.V.
through the John von Neumann Institute for Computing on
the GCS Supercomputer JUWELS at Jülich Supercomput-
ing Centre. We would like to thank Ali Athar, and Idil Esen
Zulfikar for helpful discussions.

References
[1] Eirikur Agustsson, Jasper RR Uijlings, and Vittorio Ferrari.

Interactive Full Image Segmentation by Considering All Re-
gions Jointly. In CVPR, 2019.

[2] Ali Athar, Jonathon Luiten, Alexander Hermans, Deva Ra-
manan, and Bastian Leibe. HODOR: High-level Object De-
scriptors for Object Re-segmentation in Video Learned from
Static Images. In CVPR, 2022.

[3] Arnaud Benard and Michael Gygli. Interactive video
object segmentation in the wild. In arXiv preprint
arXiv:1801.00269, 2017.

[4] Yuri Boykov and Marie-pierre Jolly. Interactive graph cuts
for optimal boundary & region segmentation of objects in
n-d images. In ICCV, 2001.

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV, 2020.

[6] Lluis Castrejon, Kaustav Kundu, Raquel Urtasun, and Sanja
Fidler. Annotating object instances with a polygon-rnn. In
CVPR, 2017.

[7] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
ECCV, 2018.

[8] Xi Chen, Zhiyan Zhao, Yilei Zhang, Manni Duan, Donglian
Qi, and Hengshuang Zhao. Focalclick: Towards practical
interactive image segmentation. In CVPR, 2022.

[9] Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask
transformer for universal image segmentation. In CVPR,
2022.

[10] Bowen Cheng, Alexander G. Schwing, and Alexander Kir-
illov. Per-pixel classification is not all you need for semantic
segmentation. In NeurIPS, 2021.

[11] Bert De Brabandere, Davy Neven, and Luc Van Gool. Se-
mantic instance segmentation for autonomous driving. In
CVPR Workshops, 2017.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009.

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021.

[14] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.
Williams, J. Winn, and A. Zisserman. The pascal visual ob-
ject classes challenge: A retrospective. In IJCV, 2015.

[15] Boris Faizov, Vlad Shakhuro, and Anton Konushin. Interac-
tive image segmentation with transformers. In ICIP, 2022.

[16] Agrim Gupta, Piotr Dollar, and Ross Girshick. LVIS: A
dataset for large vocabulary instance segmentation. In CVPR,
2019.

[17] Yuying Hao, Yi Liu, Zewu Wu, Lin Han, Yizhou Chen,
Guowei Chen, Lutao Chu, Shiyu Tang, Zhiliang Yu, Zeyu
Chen, et al. Edgeflow: Achieving practical interactive seg-
mentation with edge-guided flow. ICCVW, 2021.

[18] Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev,
Subhransu Maji, and Jitendra Malik. Semantic contours from
inverse detectors. In ICCV, 2011.

[19] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-
CNN. In ICCV, 2017.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

[21] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local
relation networks for image recognition. In ICCV, 2019.

[22] Won-Dong Jang and Chang-Su Kim. Interactive image
segmentation via backpropagating refinement scheme. In
CVPR, 2019.

[23] Shu Kong and Charless C Fowlkes. Recurrent pixel embed-
ding for instance grouping. In CVPR, 2018.

1051

[24] Theodora Kontogianni, Michael Gygli, Jasper Uijlings, and
Vittorio Ferrari. Continuous adaptation for interactive object
segmentation by learning from corrections. In ECCV, 2020.

[25] JunHao Liew, Yunchao Wei, Wei Xiong, Sim-Heng Ong, and
Jiashi Feng. Regional interactive image segmentation net-
works. In ICCV, 2017.

[26] Di Lin, Jifeng Dai, Jiaya Jia, Kaiming He, and Jian Sun.
Scribblesup: Scribble-supervised convolutional networks for
semantic segmentation. In CVPR, 2016.

[27] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft coco: Common objects in
context. In ECCV, 2014.

[28] Qin Liu, Meng Zheng, Benjamin Planche, Srikrishna
Karanam, Terrence Chen, Marc Niethammer, and Ziyan Wu.
Pseudoclick: Interactive image segmentation with click imi-
tation. In ECCV, 2022.

[29] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021.

[30] Sabarinath Mahadevan, Paul Voigtlaender, and Bastian
Leibe. Iteratively trained interactive segmentation. In British
Machine Vision Conference (BMVC), 2018.

[31] Kevin McGuinness and Noel E O’connor. A comparative
evaluation of interactive segmentation algorithms. Pattern
Recognition, 2010.

[32] Davy Neven, Bert De Brabandere, Marc Proesmans, and
Luc Van Gool. Instance segmentation by jointly optimiz-
ing spatial embeddings and clustering bandwidth. In CVPR,
2019.

[33] Alejandro Newell, Zhiao Huang, and Jia Deng. Associa-
tive embedding: End-to-end learning for joint detection and
grouping. In NeurIPS, 2017.

[34] D. Novotny, S. Albanie, D. Larlus, and A. Vedaldi. Semi-
convolutional operators for instance segmentation. In ECCV,
2018.

[35] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams,
Luc Van Gool, Markus Gross, and Alexander Sorkine-
Hornung. A benchmark dataset and evaluation methodology
for video object segmentation. In CVPR, 2016.

[36] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
beláez, Alexander Sorkine-Hornung, and Luc Van Gool. The
2017 davis challenge on video object segmentation. arXiv,
2017.

[37] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.
” grabcut” interactive foreground extraction using iterated
graph cuts. TOG, 2004.

[38] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.
”grabcut”: Interactive foreground extraction using iterated
graph cuts. In SIGGRAPH, 2004.

[39] Konstantin Sofiiuk, Ilia Petrov, Olga Barinova, and Anton
Konushin. f-brs: Rethinking backpropagating refinement for
interactive segmentation. In CVPR, 2020.

[40] Konstantin Sofiiuk, Ilia Petrov, and Anton Konushin. Re-
viving iterative training with mask guidance for interactive
segmentation. arXiv preprint arXiv:2102.06583, 2021.

[41] Zhi Tian, Chunhua Shen, and Hao Chen. Conditional convo-
lutions for instance segmentation. In ECCV, 2020.

[42] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS:
Fully convolutional one-stage object detection. In Proc. Int.
Conf. Computer Vision (ICCV), 2019.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, NIPS’17,
2017.

[44] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, Wenyu Liu, and Bin Xiao. Deep
high-resolution representation learning for visual recogni-
tion. IEEE TPAMI, 2019.

[45] Ning Xu, Brian Price, Scott Cohen, Jimei Yang, and
Thomas S Huang. Deep interactive object selection. In
CVPR, 2016.

[46] Hongkai Yu, Youjie Zhou, Hui Qian, Min Xian, Yuewei
Lin, Dazhou Guo, Kang Zheng, Kareem Abdelfatah, and
Song Wang. Loosecut: Interactive image segmentation with
loosely bounded boxes. In ICIP, 2017.

[47] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transformers
for end-to-end object detection. ICLR, 2020.

1052

