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Abstract
Recent advances in zero-shot image recognition suggest

that vision-language models learn generic visual representa-

tions with a high degree of semantic information that may

be arbitrarily probed with natural language phrases. Under-

standing an image, however, is not just about understanding

what content resides within an image, but importantly, where

that content resides. In this work we examine how well vision-

language models are able to understand where objects reside

within an image and group together visually related parts

of the imagery. We demonstrate how contemporary vision

and language representation learning models based on con-

trastive losses and large web-based data capture limited

object localization information. We propose a minimal set of

modifications that results in models that uniquely learn both

semantic and spatial information. We measure this perfor-

mance in terms of zero-shot image recognition, unsupervised

bottom-up and top-down semantic segmentations, as well

as robustness analyses. We find that the resulting model

achieves state-of-the-art results in terms of unsupervised

segmentation, and demonstrate that the learned representa-

tions are uniquely robust to spurious correlations in datasets

designed to probe the causal behavior of vision models.

1. Introduction
Learning a representation for visual imagery requires

resolving not only what resides within an image, but also
where that information resides [72]. In many applications,
knowledge of where information resides is sometimes more
important than a precise description of the content [33, 98].
Hence, our ability to learn more generic and robust visual
representations requires learning the geometry of visual se-
mantics, and how visual information may be grounded by
specific regions of the visual field.

While recent vision-language models trained under weak
supervision demonstrate a remarkable ability to learn generic
and transferable visual representations [50, 85, 117, 24], they
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Figure 1: Semantic localization in contrastive VLMs. We mea-
sure the ability of vision-language models to predict a label at each
spatial position in a zero shot manner based on the similarity of
location tokens to the corresponding language tokens on selected
examples. CLIP / ALIGN [50, 85] have minimal understanding
of the spatial location of individual objects (row 4). Our proposed
CLIPpy (row 3) predicts the label at locations that correspond
closely to human annotation for semantic segmentation (row 2).
All predictions were performed with no access to any segmentation
data during training or inference. More visualizations in App. B.

showcase a profound inability to associate visual content
with individual objects (Fig. 1, bottom row). In other words,
models trained on large weakly-supervised data have a lim-
ited ability to group together visually related content [36].
Because the representations have a poor understanding of
where an object resides, they easily conflate background
with foreground content. Hence, the learned representations
are unable to learn the spatial layout of a scene [97, 101],
and are susceptible to learning spurious correlations between
a semantic label and extraneous content [91, 65].

Recent work [113, 114] attempts to bridge this gap
through grouping mechanisms under the same weakly su-
pervised training paradigm, but focus more on foreground
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objects (neglecting background classes). Another direction is
task specific unsupervised fine-tuning [126, 26] which loses
the generic and transferable nature of these representations.

In this work, we explore vision-language models that
learn from similar weakly labeled data, but a) retain the
generic and transferable nature of features, and b) learns
where all (background and foreground) visual content resides
within an image. Unlike previous attempts using grouping
specific architectures [113, 114] or dense human annotations
[36, 38, 57], we explore a minimal set of modifications to
existing CLIP models [85] that leads to grouping of visual
imagery while retaining their weakly supervised and scalable
training procedure. We find that two small adjustments – em-
ploying specific pretraining strategies and adjusting spatial
feature aggregation – results in models that are equally ef-
fective in zero-shot image recognition, but also retain spatial
information regarding object locations (see Fig. 1, 3rd row).

The resulting model termed CLIPpy exhibits perceptual

grouping – that is, the ability to select and combine re-
lated visual signals into semantically meaningful regions
[110, 72, 89]. Endowing models with perceptual grouping –
whether in a bottom up (based solely on visual content) or
top down (guided by external information, language in this
case) manner – in learned representations has been a long
standing goal in computer vision [70, 71]. In this work, our
key contributions are as follows:
• Identify systematic failure of contrastive vision-language

models [85, 50] to properly identify where objects reside
within an image, and group semantically related content.

• Design a minimal set of changes to endow these model
with perceptual grouping, resulting in state-of-the-art zero-
shot segmentation without training on any segmentation
data or performing task specific fine-tuning.

• Emergence of localization ability in our models uniquely
leads to robustness to counterfactual manipulations. The
degree of robustness matches if not surpasses previous
state-of-the-art supervised learning methods employing
specialized training methodologies.

2. Related Work
Vision-language models for grounding. Contrastive

language image pre-training [85] (CLIP) led to a range
of follow up work performing open-vocabulary detection
[38, 51, 58, 59, 120, 28] or segmentation [36, 57, 122].
While these methods leverage dense human annotations for
training, an alternate line of works [113, 114, 126, 115, 22]
attempt to learn alignment between regions of images and
language with only image level noisy captions for su-
pervision. Their weak supervision allows better scalabil-
ity (to more data) leading to learning more generic and
transferable representations. In fact, multiple such works
[113, 114, 126, 26, 57] perform zero-shot semantic segmen-
tation. However, unlike [113, 114] geared to segment a fixed

Component CLIP [85] CLIP† CLIPpy

Image Backbone ViT-B/16 ViT-B/16 ViT-B/16
Text Backbone T-B T-5 T-5
Image Init Random Random DINO
Text Init Random Random Sent T-5
Image Pooling CLS CLS Max
Text Pooling Avg Avg Avg
Dataset 300M⇤ CC-12M CC-12M
VOC mIoU (%) 16.4 17.5 50.8 (+33.3)
VOC JS (%) 28.6 37.3 47.5 (+10.2)

Table 1: We highlight the minimal differences of CLIPy from CLIP.
CLIP† is our implementation following train settings identical to
CLIPpy. ⇤indicates OpenAI private data.

count of foreground objects, our proposed CLIPpy can better
segment arbitrary object counts and background classes. In
contrast to [126] using generic image level features, CLIPpy
explicitly learns local features during training. Moreover,
CLIPpy requires no dense human annotations or task-specific
fine-tuning in contrast to [26, 57]. We also highlight how
[113, 114, 26] perform grouping independent of language
at inference - however CLIPpy can group conditioned on
language, capturing variable object boundaries for different
language prompts.

Multiple contemporary works also explore similar di-
rections as CLIPpy, leveraging pre-trained vision-language
models for various grouping tasks under weak supervision
(no pixel level annotation) [123, 68, 13, 75, 9, 52]. Combin-
ing self-supervised methods that emerge grouping [12] with
CLIP models [85] for cross-modal alignment is explored in
[123] gaining notable improvements at object boundaries. A
clustering mechanism containing learnable centres similar to
[113] is combined with reconstruction and super-pixel align-
ment losses to achieve grouping in [68]. Learning decoder
networks over a frozen CLIP backbone [85] with text to im-
age patch similarity losses are explored in [13, 75] resulting
in similar grouping behaviour. In contrast to these meth-
ods utilizing contrastive vision language training to emerge
grouping, recent works [9, 52] also showcase how text-to-
image generative models (particularly Stable Diffusion [90])
can be leveraged to perform visual grouping.

Zero-shot semantic segmentation. A form of top-down
grouping, this relatively new task [124, 48, 111, 8, 79, 45,
60, 3, 95] attempts to segment unseen classes, usually after
a supervised training phase often involving dense annotation
based supervision. Following two early representative works
[111, 8], most later approaches [60, 39, 40, 53, 95, 102]
formulate the task as a pixel-level zero-shot classification
problem with a closed set vocabulary. While CLIPpy follows
a similar pixel based formulation, in contrast, our method
requires no dense human annotations for supervision, no task
specific fine-tuning, and is open-vocabulary. Recent work
[26, 58] also explores region-level classification leveraging
pre-trained CLIP models [85], but unlike CLIPpy perform
grouping independent of language during inference.
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Figure 2: Architecture diagram. Images and captions are separately embedded into Euclidean spaces, where image features are spatially
aggregated. A contrastive loss trains the aggregated image embedding to be close to the caption embedding. We demonstrate that two
minimal design decisions (indicated in green) are of paramount importance for CLIP [85] models to perform perceptual grouping under
image-level weak supervision.

Unsupervised segmentation. Analogous to bottom-up
grouping, these works perform class-agnostic segmentation
within the visual modality with no explicit language align-
ment [12, 41, 31, 49, 73]. This topic has a long, rich history
in human visual perception [110] and computer vision [70],
and has been explored as means of generalizing to new visual
domains [84, 71]. It is this goal that most closely inspires our
work. Early efforts group pixels based on known spatially-
local affinities [19, 96, 88], with subsequent methods leading
to region proposal networks for object detection [103] and
advances in semantic segmentation [1]. Recent methods em-
ploy self-supervision to learn perceptual grouping [18, 41] or
object-centric groupings [29, 66, 109, 4, 44]. Our proposed
CLIPpy demonstrates competitive performance, but addi-
tionally aligns groups to the language modality explicitly.

Learning robust visual representations. For a long time,
ImageNet [23] accuracy was believed to provide a reasonable
proxy for quality of learned visual representations [37, 55].
However, recent work highlights notable deficiencies in such
learned representations [34, 87, 54] including sensitivity to
low level textures, failure for domain shifts, and reliance
on spurious correlations. These failures inspired a large
literature to mitigate learning spurious correlations [91, 65,
2] by focusing on new optimization techniques. Progress
on this issue may address parallel issues in fairness [21].
Resulting methods have largely focused on synthetic data,
re-balancing data, and shaping learned embeddings [76, 65].
Nonetheless, theoretical results suggest pessimistic bounds
unless additional structure informs the problem (see refs. in
[91]). Therein, the structured output predictions of proposed
CLIPpy provide another promising solution.

3. Methodology
We first set the stage by discussing established core ar-

chitectures and the contrastive learning formulation. Next,
we discuss modifications that are the focus of the analysis
in this work. In particular, we discuss aggregation options,
pre-training alternatives, and token sub-sampling.

3.1. Architecture and Training

We provide a quick overview of our architecture (Fig. 2).
Consider a batch size N , spatial height H , spatial width W ,
and depth D. X is a tensor that has a shape of [N,H,W,D]
and is the output of an image encoder. Y is a tensor that is
of shape [N,D] and is the output of a text encoder.

Language Model. We employ a strong language model
baseline derived from the transformer architecture [104] and
implemented in T5 [86]. T5 models use an encoder-decoder
architecture that is trained using a generative span corruption
task, and have achieved state-of-the-art on a broad range
of NLP tasks including GLUE [106] and Super-Glue [105].
We use the encoder only and discard the decoder part. We
employ the T5-base which consists of 12 transformer layers,
12 attention heads, and 768 token channel dimensions.

Image Model. We explore two architectures for im-
age featurization, CNN-based and Vision-Transformers, al-
though we focus the majority of work on the latter. First,
we employ the EfficientNet architecture [100] as a high
performant CNN architecture, which has been used pre-
viously in vision-language models. The specifics of the
meta-architecture were derived from considerations based
on neural architecture search. Second, we employ the Vision
Transformer (ViT) architecture [27]. We refer the reader to
[27, 104] for details. Briefly, ViT is largely inherited from
the NLP literature and consists of a hierarchical associative
memory. Each layer, termed a transformer, is composed
of a Multi-headed Self-Attention (MSA) layer followed by
a 2-layer feed-forward multi-layer perceptron (MLP). The
primary parameter of ViT is the patch size P specifying the
P ⇥P patch of pixels constituting a token in the architecture.

Contrastive Representation Learning. Let xi and yi

denote the image and text embeddings (post aggregation) of
the i’th example in the batch. A contrastive loss may be spec-
ified as the cross entropy across a batch [85, 50]. The cross
entropy is calculated between a one-hot encoding specifying
the correspondence between the image and text examples,

35573



and a softmax-normalized distribution specifying the dot-
product similarity between image and text embeddings.
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The normalization for the image-to-text and text-to-
image similarity is computed by summing over the potential
matches (indexed by j) to the text and image examples within
a batch, respectively. Note that ⌧ is the temperature of the
softmax for the normalization.

3.2. Aggregation
The goal of the aggregation method is to collapse the im-

age embedding from a [H,W,D] tensor to a D dimensional
vector. Average pooling across space is an established tech-
nique for ensuring that the final embedding is independent of
the image resolution [99, 67], and has been adopted for CNN-
based architectures in vision-language models [50]. Alterna-
tively, maximum pooling has been explored, in particular
with success for point clouds [83] and image-audio [42].
Another approach typical for ViT borrowed from language
modeling [25] is the class token (CLS), which is prepended
to the image patch tokens [27]. A class token learns an em-
bedding that aggregates information across all patch tokens
in order to predict the image label. The class token may be
used to summarize the content for an entire image for ViT-
based models [85, 12]. Subsequent work in vision-language
models has explored learning pooling strategies [15, 115],
heuristically selecting a set of similar neighbors [118] or
learning attention-based mechanisms [117].

In this work we systematically explore these aggregation
strategies. In early experiments we found that many complex
strategies for aggregation yielded poor results (App. A.2).
We found that the application of max pooling across the
spatial dimensions – while extremely simple – was also by
far the most effective (Sec. 4.5). We hypothesize that the
success of max pooling may be due to the gradient updates
being focused solely on a single spatial location, and not
spread across all spatial dimensions.

Why Max Pooling? In particular, the max pooling oper-
ation allows pre-aggregation features (shaped [N,H,W,D])
to determine the spatial location for gradient updates at each
step, conditioned on input images. Across different images
containing a common object at different spatial locations, the
model has to select a conservative and minimal set of spatial
locations for gradient updates. At the same time, given the
cross-modal contrastive train objective, the aggregated fea-
ture of each such image must be aligned towards a common
language concept (i.e. related to the common object). We
hypothesize that gradient updates at the common object’s
spatial location is the simplest optimization for the train ob-
jective in this case, leading to observed perceptual grouping.

3.3. Pretraining
Language Model. For better sentence level representa-

tion, we utilize pre-training from Sentence-T5 [78] which
adapts a T5 encoder to sentence level embedding using a
contrastive objective. We select Sentence-T5 over auto-
regressive models such as [25, 7] because this contrastive
loss is aligned to our setup. The model is trained on Stan-
ford Natural Language Inference (SNLI) dataset with 275K
examples focused on entailment questions [6, 32].

Image Model. We investigate initializing the image
model with several methods. First, we investigate initial-
izing the image model using supervised pre-training and
removing the final layer for logistic regression [37, 55]. We
next investigate self-supervised methods derived from self-
distillation (e.g. [12]). We focused on this latter direction
because such models demonstrated impressive performance
in terms of localization [12, 41]. All image pre-training is
performed on ImageNet-1K [23] dataset.

Suitable Visual Pre-training. The visual encoder rep-
resentation space can be viewed as containing per-image
features (post-aggregation) vs per-spatial location features
(pre-aggregation). We hypothesize that semantics tied bound-
aries of this representation space should operate at the latter
granularity to induce perceptual grouping. Furthermore, we
suggest that initializations facilitating the former will detri-
ment grouping behaviour. In particular, visual pre-training
strategies separating image-level representations by seman-
tics (e.g. supervised ImageNet pre-training) will diminish
perceptual grouping. Self-supervised pre-training strategies
focused on more granular within image representations (e.g.
[12]) will tend to enhance perceptual grouping. This hypoth-
esis is empirically validated in ablations (see Table 8).

3.4. Visual Token Sub-Sampling
Motivated by vision transformers’ ability to process se-

quences of length different to train time, we generate higher
resolution segmentations during inference by sampling more
image patches. In order to increase robustness to such vary-
ing resolution, we utilize up to 2⇥ higher resolution images
during training but randomly drop 80% of visual tokens to
minimize additional compute overhead (similar to [43, 62]).
While improving segmentations, this also provides training
stability possibly due to its regularizing effect (see App. D).

3.5. Inference
CLIPpy performs inference under 3 different settings:

a) classification, b) bottom-up grouping, and c) top-down
grouping. On the visual modality, the first utilizes a spatially
aggregated single per-image token while the latter two utilize
sets of per-region tokens. Classification follows zero-shot
analyses from [85] where the model is prompted at inference
for a selection of labels (App. I for prompts). Bottom-up
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grouping follows a form of spectral clustering inspired by
[12] (refer to their demo). PCA on image features (from
visual encoder pre-aggregation) gives top n(=8) principal
components, which are used as cluster centers. Each of those
same image features are assigned to one of the n clusters
based on proximity (cosine similarity) to the centers, result-
ing in n clusters (or groups). Top-down grouping employs
zero shot analysis similar to [85], but at each spatial loca-
tion, using the per-region tokens. This is similar to [35] and
generates predictions across space exploiting the transitive
property of our aggregation operations.

4. Experiments

Experimental Setup. We train our models on two
datasets: Conceptual Captions 12M (CC-12M) [14] and
High Quality Image Text Pairs (HQITP-134M) consisting
of 12 million and 134 million image-text pairs, respectively
(App. C for details). For both datasets, text is tokenized, and
images resized and center cropped to 224⇥224 pixels. We
report results on EfficientNet-B5 employed by ALIGN [50],
and ViT-B/16 employed by CLIP [85] although we focus
more on the latter. We train models on 32 GPUs across 4
machines with PyTorch [80]. See App. D for more details.
We evaluate across image classification, localization, and
robustness tasks. For image classification, we employ the
validation splits of ImageNet [23] and ImageNet-v2 [87],
and for robustness we employ the test split of Waterbirds
[91]. These datasets contain 1000, 1000, and 3 classes re-
spectively. For segmentation tasks, we employ the validation
splits of PASCAL VOC [30], ADE20K [125, 17], COCO
[64], COCO (Obj) [64], and Cityscapes [20]. Each of these
datasets contain 20, 150, 133, 80, and 27 labels, respectively.

Baselines for comparison. Given that most competitive
baselines are trained on private datasets, we first attempt to
reproduce results by training models on a corpus of image-
text pairs. In more detail, we train on the public CC-12M
dataset [14] to provide reproducible numbers and observe
competitive performance given our data limitations. We also
train on the larger HQITP-134M dataset to verify scalability.

We first measure the performance of CLIP [85] and
ALIGN [50] on zero-shot image classification on ImageNet
and ImageNet-v2. Table 2 highlights these results. We take
this as a starting point for subsequent work. In the following
experiments we attempt to address the following questions:

• What are the limitations of current vision-language
models? (Fig. 1)

• Do we observe perceptual grouping in vision language
models? (Tabs. 3, 4 and 6).

• How resilient are vision-language models to counter-
factual manipulations? (Fig. 4).

• How important are each of the proposed model modifi-
cations? (Tabs. 7 to 10).

Dataset IN IN-v2
ALIGN [50] ALIGN-1800M 76.4 70.1
CLIP [85] CLIP-400M 65.5 60.8

CLIP † CC-12M 46.0 40.3
GroupViT [113] CC-12M+YFCC 42.9 -

GroupViT † CC-12M 25.6 23.8
CLIPpy CC-12M 45.3 40.0

ALIGN † HQITP-134M 51.1 45.6
CLIP † HQITP-134M 61.4 56.4
CLIPpy HQITP-134M 60.3 54.8

Table 2: CLIPpy achieves competitive zero-shot image recogni-
tion. IN and IN-v2 denote ImageNet and ImageNet-v2 accuracy,
respectively. † indicates our implementation. [50] evaluated at
640⇥640; others evaluated at 224⇥224. CLIPpy shows ±0.5 and
±0.9 IN acc. (5 runs) on CC-12M and HQITP-134M, respectively.

4.1. Limitations of vision-language models

Visual representations learned in vision-language models
exhibit an impressive ability to generalize across tasks [85,
50]. However they also exhibit a profound shortcoming –
learned visual representations maintain minimal information
about where an object resides, failing to properly recognize
what parts of an image constitute an object.

Fig. 1 (bottom row) showcases failure of a CLIP model;
namely, the model improperly conflates visual content not
associated with an object with the actual object. This can be
observed by measuring the similarity of each embedding at
each spatial location with a label set using the method in [35]
(Sec. 3.5). One consistently observes that the central object
of interest is incorrectly predicted to reside at every spatial
location. For instance, in the left example, the CLIP model
predicts that a bird resides at every spatial location. In a
CNN architecture, where spatial information is inherently
preserved, we observe some improvement, but the larger
issue of poor localization remains (see App. E for details).

This failure of vision-language models to properly under-
stand the spatial organization of information is consistent
with earlier observations. Ablation experiments in ViT mod-
els demonstrated that removing positional embeddings mini-
mally detriments predictive performance [27, 77, 121, 97].
Without positional information, ViT models effectively learn
representations as a “bag of image patches”, ignoring the
spatial organization.

In contrast, if we perform the same analysis on CLIPpy,
we see that the model retains significant information about
spatial information (Fig. 1, 3rd row). We take these visual-
izations as an impetus for further investigation. In particular,
we start by quantifying the ability of the model to arbitrarily
group together semantically related pixels, and compare this
to previous works.
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Figure 3: Visualizations of bottom-up grouping by CLIPpy.
Each color represents one grouping learned on a given image.

4.2. Emergence of Bottom-Up Perceptual Grouping
Unsupervised segmentation performance is a direct mea-

sure of bottom up perceptual grouping. We apply CLIPpy at
test time to perform semantic segmentation without prompt-
ing it for any labels 1. Fig. 3 shows how the model visually
groups semantically related regions of an image (see also Fig.
5 in App.) as the image embeddings naturally group into
spatially distinct clusters mirroring the image structure. We
emphasize that this analysis does not rely on text prompts
nor segmentation labels, but merely emerges from the im-
age features alone. Hence the model has learned to group

perceptually related pixels merely based on the pixel content
and associated image-level captions during training.

We quantify the accuracy of this bottom-up segmentation
to capture known segmentations within annotated images.
Following evaluation protocol in [12, 113], we compute the
Jaccard Similarity (JS). JS here measures the average in-
tersection over the union across all segmentation instances
regardless of object category. Our results in Tabs. 3 to 5
demonstrate competitive performance by CLIPpy. In VOC,
CLIPpy achieves 54.6% outperforming all previous models;
in comparison, CLIP achieves 38.9%. Additionally, on two
more challenging datasets we note how the model drops in
performance relatively, perhaps indicative of more visually
cluttered scenes (Tab. 4). Our intuition for CLIPpy improv-
ing over CLIP is that CLS and average pooling breaks spatial
structure of features, mixing image-level features across fea-
tures at all spatial locations. We take these results to indicate
that CLIPpy perceptually groups semantically related con-
tent better than previous work, providing state-of-the-art
results in unsupervised segmentation.

4.3. Top-down Grouping
We demonstrated that CLIPpy is able to perceptually

group visual content within an image. Next, we ask how
well this grouping corresponds to semantically meaningful
labels. To measure the emergence of top-down grouping, we
ask how well the perceptual grouping of the model may be
steered by embeddings from the language model. We test

1We perform PCA clustering (see Sec. 3.5). GroupViT [113] & DINO
[12] employ 8 & 6 feature vectors based on their model architectures. Our
visualizations employ 8 feature vectors (cluster centers).

Dataset Train SSP VOC
DeiT [12]

ImageNet

class 7 24.6
MoCo [113] self 3 28.2
DINO [12] self 3 45.9
DSM [73] self 3 37.2

COMUS [119] self 3 47.3
DINO [113]

CC-12M &
YFCC-100M

self 3 41.8
CLIP [113] text 7 28.6

GroupViT [113] text 7 51.8
CLIP †

CC-12M
text 7 37.3

GroupViT † text 3 42.8 (+5.5)

CLIPpy text 3 47.5 (+10.2)

CLIP †
HQITP-134M

text 7 38.9
CLIPpy text 3 54.6 (+15.7)

Table 3: CLIPpy effectively performs bottom-up grouping.
We report Jaccard Similarity, an instance average of IoU between
predicted and annotated segmentations, independent of object la-
bels. †denotes our implementations. SSP indicates the use of
self-supervised visual pre-training.

Dataset ADE20K COCO
CLIP †

CC-12M 22.9 20.4
CLIPpy 28.9 (+6.0) 26.0 (+5.6)

CLIP †
HQITP-134M

24.2 21.6
CLIPpy 29.5 (+5.3) 27.2 (+5.6)

Table 4: More
bottom-up group-
ing: CLIPpy
improves Jaccard
Similarity across
datasets.

Method JS
IIC [49] 6.4
MDC [11] 7.1
PiCIE [18] 12.3
STEGO [41] 21.0
CLIPpy (ours) 22.3

Table 5: More bottom-up
grouping: CLIPpy achieves com-
petitive Jaccard Similarity (JS) on
the Cityscapes Dataset 27 class
segmentation setup [41].

this by comparing the model’s ability to perform zero-shot
semantic segmentation across four datasets. Note that all of
our results and comparisons are solely restricted to models
trained on no segmentation annotations2.

Fig. 1 provides a visualization of the predicted zero-shot
segmentations (see also App. B), and Tab. 6 quantifies the
results using mean intersection over union (mIoU). CLIPpy
outperforms all other approaches on semantic segmenta-
tion when trained on the same datasets, both for CC-12M
and HQITP-134M. We view our datasets in two categories:
ADE20K and COCO contain numerous background classes
while VOC and COCO (obj) contain only foreground object
classes. We particularly highlight the notable performance
improvement of CLIPpy for the former datasets. More-
over, in comparison to CLIP and ALIGN baselines, CLIPpy
achieves significant improvements. We also replicate these
baselines on the largest possible dataset within our com-
pute budget (HQITP), for comparison on a common dataset.

2In App. F, we provide a summary of other zero-shot semantic segmen-
tation results. Some of these prior results achieve superior performance, but
we note that all of these methods were trained explicitly on various forms
of segmentation masks, if not segmentation labels, often with task specific
fine-tuning in contrast to the generic & unsupervised nature of CLIPpy.
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Arch Dataset SSP ADE20K COCO VOC COCO (obj)
GroupViT [113] ViT

CC-12M

7 - - 41.1 -
GroupViT † ViT 3 6.2 12.7 40.1 17.5

MaskCLIP † [126] ViT 7 6.8 8.1 22.1 13.8
OVS [114] ViT 3 7.1 - 44.6 25.1

CLIP † ViT 7 5.0 7.8 17.5 13.2
CLIPpy ViT 3 13.1 (+8.1) 23.8 (+16.0) 50.8 (+33.3) 28.5 (+15.3)

ALIGN [35] CNN ALIGN-1800M 7 9.7 15.6 - -
CLIP [85] ViT CLIP-400M 7 5.8 8.7 16.4 14.5

ALIGN † CNN
HQITP-134M

7 7.5 14.4 29.7 -
CLIP † ViT 7 5.1 8.0 18.1 14.5

CLIPpy ViT 3 13.5 (+8.4) 25.5 (+17.5) 52.2 (+34.1) 32.0 (+17.5)

Table 6: CLIPpy provides competitive localization with no segmentation or location annotations. All models trained without any
segmentation annotations. Results grouped by training dataset (bold highlights best per dataset). Numbers are mean IoU. † indicates our
implementation. SSP indicates image self-supervised pre-training to visual encoder.

These results on HQITP also indicate clear performance
improvements from CLIPpy.

GroupViT [113] and OVS [114] provide important points
of comparison. These models use custom ViT architectures
specific to grouping, are trained on common datasets (con-
taining image-text pairs), and are designed to perform per-
ceptual grouping by optimizing discretized attention masks.
We draw attention to the clear performance improvements
of CLIPpy over these methods across all datasets. We also
highlight that OVS [114] uses pre-training strategies simi-
lar to ours. Our implementation of GroupViT also utilizes
similar pre-training following [114]. We take these results
to mean that our simple changes to existing vision-language
models uncover powerful localization information3.

4.4. Perceptual grouping may improve robustness

We have observed how parsimonious changes to vision-
language models result in state-of-the-art unsupervised and
zero-shot semantic segmentation. In this section, we ask
how the resulting perceptual grouping may be exploited to
improve the robustness of image understanding. A large lit-
erature has consistently observed that models systematically
underperform under domain shifts [87]. For instance, CLIP,
ALIGN, and CLIPpy underperform on ImageNet-v2 versus
ImageNet (Tab. 2). Another means of assessing robustness
is to measure how well a model causally predicts the label
from the appropriate input variates [81, 82]. To probe for
causal dependencies, one can measure model performance to
counterfactual examples where an input is selectively manip-
ulated in order to test for sensitivity to spurious correlations.

A common formulation for this problem is to artificially
synthesize a malicious dataset where a trained model may
correlate inappropriate image features to predict a label
[112, 74, 46, 2]. A large class of supervised learning algo-

3We note that even removing all pretraining and solely training on
CC-12M still retains notable grouping performance (Tab. 8).

rithms have been developed to train on these datasets4 with
the aim of mitigating such spurious correlations [91, 65, 76].
One common synthetic benchmark is Waterbirds [91] which
places segmentations of birds in front of a background
of land or water. The goal of any prediction system is a
two-way classification of whether or not a bird is from the
waterbird or landbird category. What makes this
problem particularly challenging is when the background
is not commensurate with the type of bird. For instance, a
trained model may be prone to predict the type of bird due to
the presence of water in the background in lieu of the visual
appearance of the actual bird.

We first asked how our baseline CLIP model performs
on this task when presented with a zero-shot three-way clas-
sification task (App. H for inference procedure). Model
performance depends heavily on the background (Fig. 4 cen-
tre). For instance, the prediction accuracy of waterbirds
drops by �=32.1% (80.2 ! 48.1) in the presence of an
incommensurate background. Clearly, the baseline CLIP
model performs zero-shot prediction by relying on features
from the background. We note that open-source CLIP [85]
has similar trends (see App. Tab. 11).

We next asked how CLIPpy performs given that it ex-
hibits a unique ability to discriminate the spatial locations of
objects. Fig. 4 shows selected examples from each class col-
ored by the prediction at each spatial location. Clearly, the
model is able to discriminate which locations correspond to
each category. We quantify model accuracy across each task,
and find the model far less sensitive to the background. For
instance, in the case of waterbirds, CLIPpy accuracy, while
slightly less than the baseline CLIP model, only drops by �

4Synthetic datasets are deliberately constructed to contain a class im-
balance such that a minority class may be particularly prone to systematic
worse performance. Consequently, experimenters have focused on the
worse-case performance on the minority class [91, 65]. Our work is in-
stead focused on the domain gap to target the degree to which spurious
correlations inappropriately influence predictions.
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CLIP water land �

waterbird 80.2 48.1 -32.1
landbird 38.8 71.7 -32.9

CLIPpy water land �

waterbird 76.9 74.9 -2.0
landbird 80.0 84.1 -4.1

Figure 4: Perceptual grouping mitigates sensitivity to spurious correlations. (left) Selected segmentation examples by CLIPpy of
waterbirds and landbirds on each background. (centre) Accuracy on the test split (5794 examples) of Waterbirds on CLIP and CLIPpy
evaluated at 448⇥448 resolution. The domain gap � reports the drop in accuracy between on and off diagonal entries within a row. (right)
Zero shot accuracy of CLIPpy across image resolution for landbirds on land (top) and water (bottom). Note log axis. Shading highlights �.

= 2.0% (76.9 ! 74.9) in spite of the background change (Fig.
4 right). Interestingly, the domain gap � is minimal (⇠4%)
around a broad range of image input resolutions centered
about the training resolution of the model (Fig. 4). Hence,
CLIPpy, while still susceptible to some spurious correlations,
is far more robust than a standard vision-language model.

As points of comparison, all prior work train a supervised
model on the training split. In contrast, our predictions are
zero-shot, and we do not use the training set. This difference
makes a direct comparison of the raw accuracy difficult.
That said, the best supervised training methods achieve a
domain gap � of 4% to 8% (Tab. 1 and priv. correspondence,
[65]), comparable to our results. We take these results to
indicate that our zero-shot approach leveraging perceptual
grouping provides another approach for addressing spurious
correlations and learning robust image features.

4.5. Ablation Studies
We next perform experiments to demonstrate how indi-

vidual factors in CLIPpy led to improved localization.
We first explore the effect of pre-trained representa-

tions. In Tab. 7, we freeze each of the backbones with
self-supervised pre-training [12] for the image backbone and
sentence T5 pre-training [78] for the text backbone. Our
ablations indicate that the pre-trained weights alone do not
contribute to the strong perceptual grouping of CLIPpy: our
modified training process is necessary. In fact, both classifi-
cation and semantic segmentation performance is affected
negatively by freezing either backbone.

We also explore how alternate or no pre-training effects
overall performance. Table 8 explores the selective removal
of pre-training on the image model, language model or both.
All models employ maximum pooling aggregation across
spatial locations. Again, we see that CLIPpy exhibits signifi-
cant drops in both zero-shot image recognition and localiza-
tion by selectively dropping out each pre-training step. For
instance, model performance drops from 42.3% to 25.6%
top-1 accuracy. Likewise, the semantic segmentation mIoU
drops from 50.8% to 23.5% accuracy. As expected, Im-

Aggregation I-F T-F IN (Acc) VOC (mIoU)

Cls 3 7 39.9 3.4
Max 3 7 24.2 10.4
Max 7 3 35.9 29.5
Max 7 7 42.3 50.8

Table 7: Ablation on freezing pre-trained backbones: We report
Top-1 accuracy (%) for ImageNet (IN) and mean IoU for VOC. I-P
stands for image backbone pooling, I-F stands for image backbone
frozen, and T-F stands for text backbone frozen.

Dataset
Image T5 ImageNet Pascal VOC

Init Init? Accuracy mIoU Jaccard

CC-12M

DINO 3 42.3 50.8 47.5
IN-1K 3 53.3 22.5 43.3
random 3 28.9 32.9 43.6
DINO 34.1 44.3 47.2
IN-1K 44.5 20.0 42.2
random 25.6 23.5 43.1

Table 8: Ablation on alternate pre-training: We report Top-1
accuracy (%) for ImageNet and mean IoU & Jaccard Similarity for
VOC. Image encoder is initialized with DINO, supervised training
on ImageNet-1K, or random weights. Text encoder is initialized
with Sentence T5 or random weights. Parallel ablations using
HQITP-134M in App. A.3.

ageNet supervised pre-training improves ImageNet top-1
accuracy, but interestingly leads to significant drops in group-
ing performance. For bottom-up segmentation, initializing
from pretrained models benefits from scaling up the joint
training data (Tab. 8 vs. 13). We suspect that these results
indicate how each initialization provides valuable prior in-
formation not readily available in joint training for eliciting
strong grouping properties, while also demonstrating the
need for our training mechanism to emerge such grouping
behaviour.

We next ablate the choice of aggregation mechanism.
CLIPpy employs a maximum operation over all spatial loca-
tions. We likewise train models performing spatial averaging
or employing a class token. We present these results in

85578



Dataset Aggreg.
ImageNet Pascal VOC

Accuracy mIoU Jaccard

CC-12M
Max 42.3 50.8 47.5
Avg 44.0 11.6 38.1
Cls 46.0 4.0 40.4

HQITP-134M
Max 59.0 50.1 54.6
Avg 60.0 17.9 40.5
Cls 60.2 4.1 41.3

Table 9: Ablation across aggregation methods: We report Top-1
accuracy (%) for ImageNet and mean IoU & Jaccard Similarity for
VOC. Global max pooling (Max), global average pooling (Avg),
and class token (Cls) alternatives are explored. All models initial-
ized with the same pre-trained features.

TSS IN VOC COCO ADE20K

7 45.3 50.9 23.5 12.6
3 45.6 51.8 24.1 13.4

Table 10: Ablation on token sub-sampling: We report top-1
accuracy (%) for ImageNet (IN) and mean IoU for the three seg-
mentation datasets (VOC, COCO, ADE20K). TSS stands for token
sub-sampling.

Tab. 9. The standard procedures of class token and average
pooling result in similar performance on zero-shot classi-
fication on ImageNet, but notable reductions in mIoU on
VOC semantic segmentation. For instance, in the model
trained with CC-12M, mIoU on VOC drops from 50.8% to
4.0% representing a relative drop of 91.3%. Similarly, in the
case of bottom-up grouping on the same dataset, we demon-
strate a 10 point drop in JS. We use these results to highlight
the significant role played by the aggregation mechanism in
inducing observed grouping properties.

We finally explore the effect of proposed token sub-
sampling in Tab. 10. Improvements in classification and
semantic segmentation performance across datasets verify
its role in boosting performance.

5. Discussion
In this work we demonstrated how contrastive vision-

language models have a profound lack of understanding
object location. We described a minimal set of changes to
existing vision-language models by modifying the aggre-
gation method, introducing optimal pre-training strategies,
and train-time token sub-sampling techniques to endow the
model with both bottom-up and top-down perceptual group-
ing. We emphasize that our changes are minimal but suffi-
cient to match if not exceed the performance of custom-built
architectures [113, 114] in achieving perceptual grouping.
We demonstrate that our resulting model provides state-of-
the-art results in terms of unsupervised segmentation, and
competitive results in terms of zero-shot semantic segmenta-
tion – even though the model has been afforded no segmen-
tation annotations whatsoever. Finally, we demonstrate the

utility of these representations by demonstrating how per-
ceptual grouping may be leveraged to learn visual features
that are robust to spurious correlations.

We take these results to indicate that contrastive vision-
language models may provide the emergence of perceptual
grouping without supervision. We do see limitations in this
approach as segmentation suffers with increasing visual clut-
ter and label cardinality (e.g. ADE-20K). We suspect that
recent advent of larger-scale open datasets [92, 10] and ad-
vances in self-supervised learning [41, 73] may offer oppor-
tunities to demonstrate further benefits for endowing models
with perceptual grouping. We also note the possibility of bi-
ases in our training data that may be reflected in our models.
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We built a codebase derived from OpenAI CLIP source
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