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Abstract

Despite being highly performant, deep neural networks
might base their decisions on features that spuriously cor-
relate with the provided labels, thus hurting generalization.
To mitigate this, ‘model guidance’ has recently gained pop-
ularity, i.e. the idea of regularizing the models’ explana-
tions to ensure that they are “right for the right reasons”
[49]. While various techniques to achieve such model guid-
ance have been proposed, experimental validation of these
approaches has thus far been limited to relatively simple
and / or synthetic datasets. To better understand the effec-
tiveness of the various design choices that have been ex-
plored in the context of model guidance, in this work we
conduct an in-depth evaluation across various loss func-
tions, attribution methods, models, and ‘guidance depths’
on the PASCAL VOC 2007 and MS COCO 2014 datasets.
As annotation costs for model guidance can limit its ap-
plicability, we also place a particular focus on efficiency.
Specifically, we guide the models via bounding box anno-
tations, which are much cheaper to obtain than the com-
monly used segmentation masks, and evaluate the robust-
ness of model guidance under limited (e.g. with only 1% of
annotated images) or overly coarse annotations. Further,
we propose using the EPG score as an additional evalua-
tion metric and loss function (‘Energy loss’). We show that
optimizing for the Energy loss leads to models that exhibit
a distinct focus on object-specific features, despite only us-
ing bounding box annotations that also include background
regions. Lastly, we show that such model guidance can im-
prove generalization under distribution shifts. Code avail-
able at: https://github.com/sukrutrao/Model-Guidance

1. Introduction
Deep neural networks (DNNs) excel at learning predic-

tive features that allow them to correctly classify a set of
training images with ease. The features learnt on the train-
ing set, however, do not necessarily transfer to unseen im-
ages: i.e., instead of learning the actual class-relevant fea-
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Fig. 1: (a) Model guidance increases object focus. Models may
rely on irrelevant background features or spurious correlations
(e.g. presence of person provides positive evidence for bicycle,
center row, col. 1). Guiding the model via bounding box anno-
tations can mitigate this and consistently increases the focus on
object features (bottom row). (b) Model guidance can improve
accuracy. In the presence of spurious correlations in the training
data, non-guided models might focus on the wrong features. In the
example image in (b), the waterbird is incorrectly classified to be
a landbird due to the background (col. 3). Guiding the model via
bounding box annotation (as shown in col. 2), the model can be
guided to focus on the bird features for classification (col. 4).

tures, DNNs might memorize individual images (cf. [18]) or
exploit spurious correlations in the training data (cf. [68]).
For example, if bikes are highly correlated with people in
the training data, a model might learn to associate the pres-
ence of a person in an image as positive evidence for a bike
(e.g. Fig. 1a, col. 1, rows 1-2), which can limit how well it
generalizes. Similarly, a bird classifier might rely on back-
ground features from the bird’s habitat, and fail to correctly
classify in a different habitat (cf. Fig. 1b cols. 1-3 and [42]).

To detect such behaviour, recent advances in model in-
terpretability have provided attribution methods (e.g. [53,
62, 57, 6]) to understand a model’s reasoning. These meth-
ods typically provide attention maps that highlight regions
of importance in an input to explain the model’s decisions
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Fig. 2: Qualitative results of model guidance. We show model-inherent B-cos explanations (input layer) of a B-cos ResNet-50 and
GradCAM explanations (final layer) of a conventional ResNet-50 before (‘Standard’) and after optimization (‘Guided’) for images from
the VOC test set, using our proposed Energy loss (Eq. (6)). Guiding the model via bounding box annotations consistently increases the
focus on object features for both methods. Specifically, we find that background attributions are consistently suppressed in both cases.

and can help identify incorrect reasoning such as reliance
on spurious or irrelevant features, see for example Fig. 1b.

As many attribution methods are in fact themselves dif-
ferentiable (e.g. [57, 62, 53, 6]), recent work [49, 56, 24,
23, 66, 64] has explored the idea of using them to guide
the models to make them “right for the right reasons” [49].
Specifically, models can be guided by jointly optimizing for
correct classification as well as for attributing importance
to regions deemed relevant by humans. This can help the
model focus on the relevant features of a class, and correct
errors in reasoning (Fig. 1b, col. 4). Such guidance has the
added benefit of providing well-localized explanations that
are thus easier to understand for end users (e.g. Fig. 2).

While model guidance has shown promising results, a
detailed study of how to do this most effectively is crucially
missing. In particular, model guidance has so far been stud-
ied for a limited set of attribution methods and models and
usually on relatively simple and/or synthetic datasets; fur-
ther, the evaluation settings between approaches can signif-
icantly differ, which makes a fair comparison difficult.

Therefore, in this work, we perform an in-depth evalua-
tion of model guidance on large scale, real-world datasets,
to better understand the effectiveness of a variety of design
choices. Specifically, we evaluate model guidance along the
following dimensions: the model architecture, the guidance
depth1, the attribution method, and the loss function. In this
context, we propose using the EPG score [67]—an evalua-
tion metric that has thus far been used to evaluate the qual-
ity of attribution methods—as an additional loss function
(which we call the Energy loss) as it is fully differentiable.

Further, as annotation costs can be a major hurdle for
making model guidance practical, we place a particular fo-

1The layer at which guidance is applied, e.g. typically at the last con-
volutional layer for GradCAM [53] or the first layer for IxG [57].

cus on efficient guidance. Specifically, we use bounding
boxes instead of semantic segmentation masks, and evalu-
ate the robustness of guidance techniques under limited or
overly coarse annotations to reduce data collection costs.

We find that our Energy loss lends itself well to those
settings. On the one hand, it exhibits a high degree of
robustness to limited or noisy bounding box annotations
(cf. Figs. 10 and 12). On the other hand, despite the coarse-
ness of bounding box guidance, it maintains a clear focus
on object-specific features inside the bounding boxes, see
Fig. 1a, row 3. In contrast, prior approaches often regular-
ize for a uniform distribution of the attribution values inside
the annotation masks, and thus tend to exhibit much lower
attribution granularity (cf. Fig. 9).
Contributions. (1) We perform an in-depth evaluation of
model guidance on challenging large scale, multi-label clas-
sification datasets (PASCAL VOC 2007 [16], MS COCO
2014 [34]), assessing the impact of attribution methods,
model architectures, guidance depths, and loss functions.
Further, we show that, despite being relatively coarse,
bounding box supervision can provide sufficient guidance
to the models whilst being much cheaper to obtain than
semantic segmentation masks. (2) We propose using the
Energy Pointing Game (EPG) score [67] as an alternative
to the IoU metric for evaluating the effectiveness of such
guidance and show that the EPG score constitutes a good
loss function for model guidance, particularly when using
bounding boxes. (3) We show that model guidance can be
performed cost-effectively by using annotation masks that
are noisy or are available for only a small fraction (e.g.
1%) of the training data. (4) We show through experiments
on the Waterbirds-100 dataset [51, 42] that model guidance
with a small number of annotations suffices to improve the
model’s generalization under distribution shifts at test time.
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2. Related Work
Attribution Methods [58, 60, 62, 57, 53, 67, 13, 30, 9, 43,
20, 70, 47, 12, 4] are often used to explain black-box models
by generating heatmaps that highlight input regions impor-
tant to the model’s decision. However, such methods are
often not faithful to the model [1, 46, 31, 72, 2] and risk
misleading users. Recent work proposes inherently inter-
pretable models [8, 6] that address this by providing model-
faithful explanations by design. In our work, we use both
popular post-hoc and model-inherent attribution methods to
guide models and discuss their effectiveness.
Attribution Priors: Several approaches have been pro-
posed for training better models by enforcing desirable
properties on their attributions. These include enforcing
consistency against augmentations [45, 44, 25], smoothness
[15, 37, 32], separation of classes [71, 44, 61, 39, 59], or
constraining the model’s attention [22, 3]. In contrast, in
this work, we focus on providing explicit human guidance
to the model using bounding box annotations. This consti-
tutes more explicit guidance but allows fine-grained control
over the model’s reasoning even with few annotations.
Model Guidance: In contrast to the indirect regularization
effect achieved by attribution priors, various approaches
have been proposed (cf. [21, 65]) to actively guide models
by regularizing their attributions, for tasks such as classifi-
cation [49, 24, 23, 48, 42, 26, 63, 36, 66, 64, 52, 55, 35, 56,
69, 17], segmentation [33], VQA [54, 63], and knowledge
distillation [19]. The goal of such approaches is not only to
improve performance, but also make sure that the model is
“right for the right reasons” [49]. For classifiers, this typi-
cally involves jointly optimizing both for classification per-
formance and localization to object features. While various
benefits of model guidance have been reported, most prior
work evaluate on simple datasets [49, 55, 24, 23] and, thus
far, no common evaluation setting has emerged. Recently,
[11] has extended model guidance to ImageNet, showing
that its benefits can scale to large scale problems. In contrast
to [11], who investigated one particular attribution method
[10], our focus lies on a better understanding of the impact
of the different design choices for model guidance.

To distill the most effective techniques for model guid-
ance, in this work, we conduct an in-depth evaluation
on challenging, commonly used real-world multi-label
classification datasets (PASCAL VOC 2007, MS COCO
2014). Specifically, we perform a comprehensive compar-
ison across multiple dimensions of interest: the loss func-
tion, the model architecture, the guidance depth, and the
attribution method. For this, we evaluate the localization
losses introduced in the closest related work, i.e. RRR [49],
HAICS [56], and GRADIA [24]; additionally, we propose
using the EPG metric [67] as a loss function and show that it
has various desirable properties, in particular when guiding
models via bounding box annotations.

Fig. 3: Model guidance overview. We jointly optimize for classi-
fication (Lclass) and localization of attributions to human-annotated
bounding boxes (Lloc), to guide the model to focus on object fea-
tures. Various localization loss functions can be used, see Sec. 3.4.

Finally, model guidance has also been used to mitigate
reliance on spurious features using language guidance [42],
and we show that using a small number of coarse bounding
box annotations can be similarly effective.
Evaluating Model Guidance: The benefits of model guid-
ance have typically been shown via improvements in clas-
sification performance (e.g. [49, 48]) or an increase in IoU
between object masks and attribution maps (e.g. [23, 33]).
In addition to these metrics, we also evaluate on the EPG
metric [67], which has thus far only been used to evaluate
the quality of the attribution methods themselves. We fur-
ther show that it lends itself well to being used as a guidance
loss, as it places only minor constraints on the model, and,
in contrast to the IoU metric, it is fully differentiable.

3. Guiding Models Using Attributions
In this section, we provide an overview of the model

guidance approach that jointly optimizes for classification
and localization (Sec. 3.1). Specifically, we describe the
attribution methods (Sec. 3.2), metrics (Sec. 3.3), and local-
ization loss functions (Sec. 3.4) that we evaluate in Sec. 5.
In Sec. 3.5 we discuss our strategy to train for localization
in the presence of multiple ground truth classes.
Notation: We consider a multi-label classification problem
with K classes with X2RC⇥H⇥W the input image and
y2{0, 1}K the one-hot encoding of the image labels. With
Ak2RH⇥W we denote an attribution map for a class k for
X using a classifier f ; A+

k
denotes the positive component

of the attributions, Âk = Ak
max(abs(Ak))

normalized attribu-

tions, and Â+
k
=

A
+
k

max(A+
k )

normalized positive attributions.

Finally, Mk2{0, 1}H⇥W denotes the binary mask for class
k, which is given by the union of bounding boxes of all oc-
currences of class k in X .

3.1. Model Guidance Procedure
Following prior work (e.g. [49, 56, 24, 23]), the model is

trained jointly for classification and localization (cf. Fig. 3):

L = Lclass + �locLloc . (1)
I.e., the loss consists of a classification loss (Lclass), for
which we use binary cross-entropy, and a localization loss
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(Lloc), which we discuss in Sec. 3.4; here, the hyperparam-
eter �loc controls the weight given to each of the objectives.

3.2. Attribution Methods
In contrast to prior work that typically use GradCAM

[53] attributions, we perform an evaluation over a selec-
tion of popularly used differentiable2 attribution methods
which have been shown to localize well [46]: IxG [57], Int-
Grad [62], and GradCAM [53]. We further evaluate model-
inherent explanations of the recently proposed B-cos mod-
els [6]. To ensure comparability across attribution methods
[46], we evaluate all attribution methods at the input, vari-
ous intermediate, and the final spatial layer.
IxG [57] computes the element-wise product � of the in-
put and the gradients of the k-th output w.r.t. the input, i.e.
X�rXfk(X). For piece-wise linear models such as DNNs
with ReLU activations [38], this faithfully computes the lin-
ear contributions of a given input pixel to the model output.
GradCAM [53] computes importance attributions as a
ReLU-thresholded, gradient-weighted sum of activation
maps. In detail, it is given by ReLU(

P
c
↵k

c
� Uc) with c

denoting the channel dimension, and ↵k the average-pooled
gradients of the output for class k with respect to the activa-
tions U of the last convolutional layer in the model.
IntGrad [62] takes an axiomatic approach and is formu-
lated as the integral of gradients over a straight line path
from a baseline input to the given input X . Approximating
this integral requires several gradient computations, making
it computationally expensive for use in model guidance. To
alleviate this, when optimizing with IntGrad, we use the re-
cently proposed X -DNN models [28] that allow for an exact
computation of IntGrad in a single backward pass.
B-cos [6] attributions are generated using the inherently-
interpretable B-cos networks, which promote alignment be-
tween the input x and a dynamic weight matrix W(x) dur-
ing optimization. In our experiments, we use the contribu-
tion maps given by the element-wise product of the dynamic
weights with the input (WT

k
(x)� x), which faithfully rep-

resent the contribution of each pixel to class k. To be able
to guide B-cos models, we developed a differentiable im-
plementation of B-cos explanations, see supplement.

3.3. Evaluation Metrics
We evaluate the models’ performance on both our train-

ing objectives: classification and localization. For classi-
fication, we use the F1 score and mean average precision
(mAP). We discuss the localization metrics below.
Intersection over Union (IoU) is a commonly used metric
(cf. [23]) that computes the intersection between the ground
truth annotation masks and the binarized attribution maps,

2Differentiability is necessary for optimizing attributions via gradient
descent, so non-differentiable methods (e.g. [47, 43]) are not considered.

normalized by their union; for binarization, a threshold pa-
rameter needs to be chosen. In this work, the ground truth
masks are taken to be the union of all bounding boxes of
a class in the image and, following prior work [20], the
threshold parameter is selected via a heldout set.
Energy-based Pointing Game (EPG) [67] measures the
concentration of attribution energy within the mask, i.e. the
fraction of positive attributions inside the bounding boxes:

EPGk =

P
H

h=1

P
W

w=1 Mk,hwA
+
k,hwP

H

h=1

P
W

w=1 A
+
k,hw

. (2)

In contrast to IoU, EPG more faithfully takes into account
the relative importance given to each input region, since it
does not binarize the attributions. Like IoU, the scores lie
in [0, 1], with higher scores indicating better localization.

3.4. Localization Losses
We evaluate the most commonly used localization losses

(Lloc in Eq. (1)) from prior work. We describe these losses
as applied on attribution maps of an image for a single class
k, as well as the proposed EPG-derived Energy loss.
L1 loss ([24, 23], Eq. (3)) minimizes the L1 distance be-
tween annotation masks and normalized positive attribu-
tions Â+

k
, guiding the model towards uniform attributions

inside the mask and suppressing attributions outside of it.

Lloc,k = 1
H⇥W

P
H

h=1

P
W

w=1kMk,hw � Â+
k,hw

k1 (3)

Per-pixel cross entropy (PPCE) loss ([56], Eq. (4)) applies
a binary cross entropy loss between the mask and the nor-
malized positive annotations Â+

k
, thus guiding the model to

maximize the attributions inside the mask:

Lloc,k = � 1
kMkk1

P
H

h=1

P
W

w=1 Mk,hw log(Â+
k,hw

) . (4)

As PPCE does not constrain attributions outside the mask,
there is no explicit pressure to avoid spurious features.
RRR* loss ([49], Eq. (5)). [49] introduced the RRR loss to
regularize the normalized input gradients Âk,hw as

Lloc,k =
P

H

h=1

P
W

w=1(1�Mk,hw)Â2
k,hw

. (5)

To extend it to our setting, we take Âk,hw to be given by an
arbitrary attribution method (e.g. IntGrad); we denote this
generalized version by RRR*. In contrast to the PPCE loss,
RRR* only regularizes attributions outside the ground truth
masks. While it thus does not introduce a uniformity prior
similar to the L1 loss, it also does not explicitly promote
high importance attributions inside the masks.
Energy Loss. In addition to the losses described in prior
work, we propose to also evaluate using the EPG score
([67], Eq. (2)) as a loss function for model guidance, as it is
fully differentiable. In particular, we simply define it as

Lloc,k = �EPGk. (6)
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Fig. 4: Selecting models for evaluation. For each configuration,
we evaluate every model at every checkpoint and measure its per-
formance across various metrics (F1, EPG, IoU) on the validation
set; i.e. every point in the left graph corresponds to one model (for
B-cos models optimized via the Energy loss at the input layer). In-
stead of evaluating a single model on the test set, we evaluate all
Pareto-dominant models, as indicated in the center and right plot.

Unlike existing localization losses that either (i) do not con-
strain attributions across the entire input (RRR*, PPCE),
or (ii) force the model to attribute uniformly within the
mask even if it includes irrelevant background regions (L1,
PPCE), maximizing the EPG score jointly optimizes for
higher attribution energy within the mask and lower attribu-
tion energy outside the mask. By not enforcing a uniformity
prior, we find that the Energy loss is able to provide effec-
tive guidance while allowing the model to learn freely what
to focus on within the bounding boxes (Sec. 5).

3.5. Efficient Optimization

In contrast to prior work [49, 56, 24, 23], we perform
model guidance on a multi-label classification setting, and
consequently there are multiple ground truth classes whose
attribution localization could be optimized. Computing and
optimizing for several attributions within an image would
add a significant overhead to the computational cost of
training (multiple backward passes). Hence, for efficiency,
we sample one ground truth class k per image at random for
every batch and only optimize for localization of that class,
i.e., Lloc=Lloc,k. We find that this still provides effective
model guidance while keeping the training cost tractable.

4. Experimental Setup
In this section, we describe our experimental setup and

how we select the best models across metrics; for full
details, see supplement. We evaluate across all possible
choices for each category, and discuss our results in Sec. 5.
Datasets: We evaluate on PASCAL VOC 2007 [16] and MS
COCO 2014 [34] for multi-label image classification. In
Sec. 5.5, to understand the effectiveness of model guidance
in mitigating spurious correlations, we also evaluate on the
synthetically constructed Waterbirds-100 dataset [51, 42],
where landbirds are perfectly correlated with land back-
grounds on the training and validation sets, but are equally
likely to occur on land or water in the test set (similar for
waterbirds and water). With this dataset, we evaluate model
guidance for suppressing undesired features.

Attribution Methods and Architectures: As described in
Sec. 3.2, we evaluate with IxG [57], IntGrad [62], B-cos
[6, 7], and GradCAM [53] using models with a ResNet-50
[27] backbone. For IntGrad, we use an X -DNN ResNet-50
[28] to reduce the computational cost, and a B-cos ResNet-
50 for the B-cos attributions. To emphasize that the results
generalize across different backbones, we further provide
results for a B-cos ViT-S [14, 7] and a B-cos DenseNet-121
[29, 7]. We evaluate optimizing the attributions at differ-
ent network layers, such as at the input image and the last
convolutional layers’ output3, as well as at multiple inter-
mediate layers. Within the main paper, we highlight some
of the most representative and insightful results, the full set
of results can be found in the supplement. All models were
pretrained on ImageNet [50], and model guidance was ap-
plied when fine-tuning the models on the target dataset.
Localization Losses: As described in Sec. 3.4, we compare
four localization losses in our evaluation: (i) Energy, (ii) L1

[24, 23], (iii) PPCE [56], and (iv) RRR* (cf. Sec. 3.4, [49]).
Evaluation Metrics: As discussed in Sec. 3.3, we evaluate
both for classification and localization performance of the
models. For classification, we report the F1 scores, similar
results with mAP scores can be found in the supplement.
For localization, we evaluate using the EPG and IoU scores.
Selecting the best models: As we evaluate for two distinct
objectives (classification + localization), it is not trivial to
decide which models perform ‘the best’, e.g. a model that
provides the best classification performance might provide
significantly worse localization than a model that provides
only slightly lower classification performance. Finding the
right balance and deciding which of those models in fact
constitutes the ‘better’ model depends on the preference of
the end user. Hence, instead of selecting models based on a
single metric, we select the set of Pareto-dominant models
[40, 41, 5] across three metrics—F1, EPG, and IoU—for
each training configuration, as defined by a combination of
attribution method, layer, and loss. Specifically, as shown
in Fig. 4, we train each configuration using three different
choices of �loc, and select the set of Pareto-dominant mod-
els among all checkpoints (epochs and �loc). This provides
a more holistic view of the general trends on the effective-
ness of model guidance for each configuration.

5. Experimental Results
In this section, we discuss our experimental findings. In

particular, in Sec. 5.1, we first discuss the impact of the
loss functions on the EPG and IoU scores of the models;
in Sec. 5.2, we then analyze the impact of the models and
attribution methods; further in Sec. 5.3, we show that guid-
ing the models via their explanations can lead to improved
classification accuracy. In Sec. 5.4, we present additional

3As typically used in IxG (input) and GradCAM (final) respectively.
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(a) PASCAL VOC results for EPG vs. F1.
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Fig. 5: EPG vs. F1, for different datasets ((a): VOC; (b): COCO), losses (markers) and models (columns), optimized at different layers
(rows); additionally, we show the performance of the baseline model before fine-tuning and demarcate regions that strictly dominate (are
strictly dominated by) the baseline performance in green (grey). For each configuration, we show the Pareto fronts (cf. Fig. 4) across
regularization strengths �loc and epochs (cf. Sec. 5 and Fig. 4). We find the Energy loss to give the best trade-off between EPG and F1.
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the baseline model in green (grey). For each configuration, we show the Pareto fronts (Fig. 4) across regularization strengths �loc and all
epochs; for details, see Secs. 4 and 5. Across all configurations, we find the L1 loss to provide the largest gains in IoU at the lowest cost.

65 70 75 80
30

40

50

60

70

80

90

EP
G

Sc
or

e(
%

)

Dominated

D
om

in
at

in
g

In
pu

t
La

ye
r

B-cos DenseNet-121
baseline Energy L1 PPCE RRR*

B-cos

65 70 75 80
Dominated

D
om

in
at

in
g

B-cos ViT-S
baseline Energy L1 PPCE RRR*

B-cos

Fig. 7: EPG vs. F1 on VOC. We observe the same trends as in
Fig. 5a for different backbone architectures, specifically a B-cos
DenseNet-121 and a B-cos ViT-S. For IoU results, see supplement.

studies in which we evaluate and discuss the cost of model
guidance approaches: in particular, we study model guid-
ance with limited additional labels, with increasingly coarse

bounding boxes, and at deep layers in the network. Finally,
in Sec. 5.5, we show the utility of model guidance in im-
proving accuracy in the presence of distribution shifts. For
easier reference, we label our individual findings as R1–R9.
Note. To draw conclusive insights and highlight general and
reliable trends in the experiments, we compare the Pareto
curves (see Fig. 4) of individual configurations. If the Pareto
curve of a specific loss (e.g. Energy in Fig. 5) consistently
Pareto-dominates the Pareto curves of all other losses, we
can confidently conclude that for the combination of evalu-
ated metrics (e.g. EPG vs. F1), this loss is the best choice.
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Fig. 8: Faster training by guiding at later layers. While input-level attributions tend to be more detailed (cf. Fig. 2), they are costlier to
compute than attributions at later layers. However, we find that guidance at later layers (e.g. @Mid3) also significantly improves input-level
attributions, yielding similar EPG results as input-level guidance (@Input) at up to twice the training speed; for IoU results, see supplement.

5.1. Comparing loss functions for model guidance
In the following, we highlight the main insights gained

from the quantitative evaluations. For a qualitative com-
parison between the losses, please see Fig. 9; note that we
show examples for a B-cos model as the differences become
clearest; full results can be found in the supplement.
R1 The Energy loss yields the best EPG scores. In
Fig. 5, we plot the Pareto curves for EPG vs. F1 scores
for a wide range of configurations (see Sec. 4) on VOC
(a) and COCO (b); specifically, we group the results by
model type (Vanilla, X -DNN, B-cos), the layer depths at
which the attribution was regularized (Input / Final), and the
loss used during optimization (Energy, L1, PPCE, RRR*).
From these results it becomes apparent that the optimiza-
tion with the Energy loss yields the best trade-off between
accuracy (F1) and the EPG score: e.g., when looking at the
upper right plot in Fig. 5a we can see that the Energy loss
(red dots) improves over the baseline B-cos model (white
cross) by improving the localization in terms of EPG score
with only a minor cost in classification performance (i.e.
F1 score). Further trading off F1 scores yields even higher
EPG scores. Importantly, the Energy loss Pareto-dominates
all the other losses (RRR*: blue diamonds; L1: green trian-
gles; PPCE: yellow pentagons). This is is also true for the
other network types (Vanilla ResNet-50, Fig. 5a (top left),
and X -DNN, Fig. 5a (top center)) and at the final layer (bot-
tom row), and generalizes across backbone architectures
(Fig. 7). When comparing Fig. 5a and Fig. 5b, we also find
these results to be highly consistent between datasets.
R2 The L1 loss yields the best IoU performance. Sim-
ilarly, in Fig. 6, we plot the Pareto curves of IoU vs. F1
scores for various configurations at the final layer; for the
IoU results at the input layer and on the COCO dataset,
please see the supplement. For IoU, the L1 loss provides the
best trade-off and, with few exceptions, L1-guided models
Pareto-dominate all other models in all configurations.
R3 The Energy loss focuses best on on-object features.
By not forcing the models to highlight the entire bound-
ing boxes (see Sec. 3.4), we find that the Energy loss
also suppresses background features within the bounding
boxes, thus better preserving fine details of the explanations

ca
r

Input Baseline PPCE L1 Energy RRR*

Fig. 9: Loss comparison for input attributions (atts.) of a B-cos
model. We show atts. before (baseline, col. 2) and after guidance
(cols. 3-6) for a specific image (col. 1) and its bounding box anno-
tation. We find that Energy and RRR* yield sparse atts, whereas
L1 yields smoother atts, as it is optimized to fill the entire bound-
ing box. For PPCE we observe only a minor effect on the atts.

(cf. Figs. 9 and 11). To quantify this, we evaluate the distri-
bution of Energy (Eq. (2)) just within the bounding boxes.
For this, we take advantage of the segmentation mask anno-
tations available for a subset of the VOC test set. Specifi-
cally, we measure the Energy contained in the segmentation
masks versus the entire bounding box, which indicates how
much of the attributions actually highlight on-object fea-
tures. We find that the Energy loss outperforms L1 across
all models and configurations; see supplement for details.

In short, we find that the Energy loss works best for im-
proving the EPG metric, whereas the L1 loss yields the
highest gains in terms of IoU; depending on the use case,
either of these losses could thus be recommendable. How-
ever, we find that the Energy loss is more robust to annota-
tion errors (R8, Sec. 5.4), and, as discussed in R3, the En-
ergy loss more reliably focuses on object-specific features.

5.2. Comparing models and attribution methods

In the following, we highlight our findings regarding dif-
ferent attribution methods and models. Given the similar-
ity of the results between GradCAM and IxG, and since B-
cos attributions performed better than GradCAM for B-cos
models, we show GradCAM results in the supplement.
R4 At the input layer, B-cos explanations perform best.
We find that the B-cos models not only achieve the high-
est EPG/IoU performance before applying model guidance,
(‘baselines’) but also obtain the highest gains in EPG and
IoU and thus the highest overall performance (for EPG see
Fig. 5, right; for IoU, see supplement): e.g., an Energy-
based B-cos model achieves an EPG score of 71.7 @ 79.4%
F1, thus significantly outperforming the best EPG scores of
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both other model types at a much lower cost in F1 (Vanilla:
55.8 @ 69.0%, X -DNN: 62.3 @ 68.9%). This is also ob-
served qualitatively, as we show in the supplement.
R5 Regularizing at the final layer yields consistent gains.
As can be seen in Fig. 5 (bottom) and Fig. 6, all models can
be guided well via regularization at the final layer, i.e. all
models show improvements in IoU and EPG score.

In short, we find model guidance to work well across all
tested models when optimizing at the final layer (R5), high-
lighting its wide applicability. However, to obtain highly
detailed and well-localized attributions at the input layer,
the model-inherent explanations of the B-cos models seem
to lend themselves much better to such guidance (R4).

5.3. Improving accuracy with model guidance
R6 Model guidance can improve accuracy. For both the
Vanilla models (final layer) and the X -DNNs (input+final),
we found models that improve the localization metrics and
the F1 score. These improvements are particularly pro-
nounced for the X -DNN: e.g., we find models that improve
the EPG and F1 scores by �=7.2 p.p. and �=1.4 p.p. re-
spectively (Fig. 5, center top), or the IoU and F1 scores by
�=11.9 p.p. and �=1.4 p.p. (Fig. 6, center).

However, overall we observe a trade-off between local-
ization and accuracy (Figs. 5 and 6). Given the similarity of
the training and test distributions, focusing on the object
need not improve classification performance, as spurious
features are also present at test time. Further, the guided
model is discouraged from relying on contextual features,
making the classification more challenging. In Sec. 5.5, we
show that guidance can significantly improve performance
when there is a distribution shift between training and test.

5.4. Efficiency and robustness considerations
While bounding boxes decrease the data collection cost

with respect to segmentation masks, they can nonetheless
be expensive to obtain, especially when expert knowledge
is required. To further reduce those costs, in this section,
we assess the robustness of guiding the model with a lim-
ited number (R7) or increasingly coarse annotations (R8).
Apart from data efficiency, we further explore how training
efficiency can be improved for fine-grained (i.e. input-level)
explanations (R9), as explanations at early layers are more
costly to obtain than those at later layers.
R7 Model guidance requires only few add. annotations.
In Fig. 12, we show that the EPG score can be significantly
improved with a very limited number of annotations; for
IoU results, see supplement. Specifically, we find that when
using only 1% of the training data (25 annotated images)
for VOC, improvements of up to �=23.0 p.p. (�=1.4) in
EPG (IoU) can be obtained, at a minor drop in F1 (�=0.3
p.p. and �=2.5 p.p. respectively). When annotating up to
10% of the images, very similar results can be achieved as

with full annotation (see e.g. cols. 2+3 in Fig. 12).
R8 The Energy loss is highly robust to annotation er-
rors. As discussed in Sec. 3.4, the Energy loss only directs
the model on which features not to use and does not im-
pose a uniform prior on the attributions within the bound-
ing boxes. As a result, we find it to be much more stable
to annotation errors: e.g., in Fig. 10, we visualize how the
EPG (top) and IoU (bottom) scores of the best performing
models under the Energy (left) and L1 loss (right) evolve
when using coarser bounding boxes; for this, we simply
dilate the bounding box size by p2{10, 25, 50}% during
training, see Fig. 11. While the models optimized via the L1

loss achieve increasingly worse results (right), the Energy-
optimized models are essentially unaffected by the coarse-
ness of the annotations.
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Fig. 10: Quantitative results for dilated bounding boxes for a
B-cos model at the input layer. We show EPG and IoU (top and
bottom) results for models trained with various amounts of anno-
tation errors (increasingly large bounding boxes, see Fig. 11). The
Energy loss yields highly consistent results despite training with
heavily dilated bounding boxes (left), whereas the results of the
L1 loss (right) worsen markedly; best viewed in color.
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Fig. 11: Qualitative results for dilated bounding boxes for a
B-cos model at input. Examples for attributions (rows 2+3) of
models trained with dilated bounding boxes (row 1). In contrast
to L1, models trained with Energy show significant gains in object
focus even with significant noise (e.g. ‘Baseline’ vs. ‘50%’).

In short, we find that the models can be guided effec-
tively at a low cost in terms of annotation effort, as only few
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annotations (e.g. 25 for VOC) are required (cf. R7), and, es-
pecially for the Energy loss, these annotations can be very
coarse and do not have to be ‘pixel-perfect’ (cf. R8).
R9 Guidance at deep layers can be effective. While
guided input-level explanations of B-cos networks exhibit a
high degree of detail, regularizing those explanations comes
at an added training cost. In particular, optimizing at the in-
put layer requires backpropagating through the entire net-
work to compute the attributions. In an effort to reduce
training costs whilst maintaining the benefits of fine-grained
explanations at input resolution, we evaluate if input-level
attributions benefit from an optimization at deeper layers.

Specifically, we regularize B-cos attributions at the final
and at three intermediate layers (Mid{1,2,3}), and evaluate
the localization of attributions at the input. We find (Fig. 8)
that training at a deeper layer can provide significant speed-
ups in training time with often a negligible cost in localiza-
tion performance. E.g., since we do not have to compute a
full backward pass through the entire model during training,
optimizing at Mid2 (col. 2 in Fig. 8) provides similar gains
in localization but with a 1.7x speed-up in training time.
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Fig. 12: EPG results with limited annotations for a B-cos model
at the input layer, optimized with the Energy and the L1 loss. Us-
ing bounding box annotations for as little as 1% (left) of the images
yields significant improvements in EPG, and with 10% (center)
similar gains as in the fully annotated setting (right) are obtained.

5.5. Effectiveness against spurious correlations
To evaluate the potential for mitigating spurious corre-

lations, we evaluate model guidance with the Energy and
L1 losses on the synthetically constructed Waterbirds-100
dataset [51, 42]. We perform model guidance under two set-
tings: (1) the conventional setting to classify between land-
birds and waterbirds, using the region within the bounding
box as the mask; and (2) the reversed setting [42] to classify
the background, i.e., land vs. water, using the region out-
side the bounding box as the mask. To simulate a limited
annotation budget, we only use bounding boxes for a ran-
dom 1% of the training set, and report results averaged over
four runs. We show the results for the worst-group accuracy
(i.e., images containing a waterbird on land) and the overall
accuracy using B-cos models in Tab. 1; full results for all
attributions and models can be found in the supplement.

Both losses consistently and significantly improve the
accuracy in the conventional and the reversed settings by

Waterbird

on land

Baseline

Land/Landbird
Conf.: 65%

Energy

Waterbird
Conf.: 88%

L1

Waterbird
Conf.: 96%

Energy

Land
Conf.: 86%

L1

Land
Conf.: 65%

Conventional setting Reversed setting

Fig. 13: Qualitative Waterbirds-100 results. Without guidance,
a model might focus on the background to classify birds (baseline)
and thus misclassify waterbirds on land (col. 2). Guided mod-
els can correct such errors and focus on the desired feature: in
cols. 3+4 (5+6) the model is guided to classify by using the bird
(background) features and arrives at the desired prediction. Model
predictions and confidence scores are indicated below the images.

Conventional Reversed
Model Worst Overall Worst Overall

Baseline 43.4 (±2.4) 68.7 (±0.2) 56.6 (±2.4) 80.1 (±0.2)

Energy 56.1 (±4.0) 71.2 (±0.1) 62.8 (±2.1) 83.6 (±1.1)

L1 51.1 (±1.9) 69.5 (±0.2) 58.8 (±5.0) 82.2 (±0.9)

Table 1: Waterbirds-100 results. We find that model guidance is
effective in improving both worst-group (‘Waterbird on Land’) and
overall accuracy in the conventional (Landbird vs. Waterbird) and
reversed (Land vs. Water) settings; full results in the supplement.

guiding the model to select the ‘right’ features, i.e. birds
(conventional) or background (reversed). This guidance can
also be observed qualitatively (cf. Fig. 13).

6. Discussion And Conclusion

In this work, we comprehensively evaluated various
models, attribution methods, and loss functions for their
utility in guiding models to be “right for the right reasons”.

In summary, we find that guiding models via bounding
boxes can significantly improve EPG and IoU performance
of the optimized attribution method, with the Energy loss
working best to improve the EPG score (R1) and the L1

loss yielding the highest gains in IoU scores (R2). While
the B-cos models achieve the best results in IoU and EPG
score at the input layer (R4), all tested model types (Vanilla,
X -DNN, B-cos) lend themselves well to being optimized
at the final layer (R5), which can even improve attribution
maps at early layers (R9). Further, we find that regular-
izing the explanations of the models and thereby ‘telling
them where to look’ can increase the object recognition per-
formance (mAP/accuracy) of some models (R6), especially
when strong spurious correlations are present (Sec. 5.5). In-
terestingly, those gains (EPG, IoU), can be achieved with
relatively little additional annotation (R7). Lastly, we find
that by not assuming a uniform prior over the attributions
within the annotated bounding boxes, training with the en-
ergy loss is more robust to annotation errors (R8) and re-
sults in models that produce attribution maps that are more
focused on class-specific features (R3).
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