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Abstract

While the design of blind image quality assessment (IQA)
algorithms has improved significantly, the distribution shift
between the training and testing scenarios often leads to a
poor performance of these methods at inference time. This
motivates the study of test time adaptation (TTA) techniques
to improve their performance at inference time. Existing
auxiliary tasks and loss functions used for TTA may not
be relevant for quality-aware adaptation of the pre-trained
model. In this work, we introduce two novel quality-relevant
auxiliary tasks at the batch and sample levels to enable
TTA for blind IQA. In particular, we introduce a group con-
trastive loss at the batch level and a relative rank loss at
the sample level to make the model quality aware and adapt
to the target data. Our experiments reveal that even us-
ing a small batch of images from the test distribution helps
achieve significant improvement in performance by updat-
ing the batch normalization statistics of the source model.

1. Introduction
The problem of image quality assessment (IQA) is ex-

tremely important in diverse image capture, processing, and
sharing applications. However, a reference image is often
not available for quality assessment. No reference (NR) or
blind IQA primarily deals with the question of predicting
image quality without using a reference image. Such NR
IQA algorithms are often designed using machine learn-
ing approaches. More recently, deep learning based ap-
proaches have been extremely successful in achieving im-
pressive performance. However, IQA applications are quite
diverse and deal with several different distortions and distri-
butional shifts. IQA models often have poor generalization
ability and find it difficult to perform well under such shifts.

Test time adaptation (TTA) has emerged as an important
approach to address distributional shifts at test time [8]. It
has been shown that by modifying a few global parameters
of the model using a suitable loss that does not require the
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ground truth, one can significantly improve the performance
of the model on the test data. Further, source-free adap-
tation, where the source data on which the original model
was trained is not available while updating the model, is a
realistic setting. While such approaches have been studied
extensively in image classification literature [31, 33], there
is hardly any literature on TTA for IQA.

There are multiple challenges in designing TTA for IQA.
Typical losses used for TTA, such as entropy minimiza-
tion [33], are not applicable for IQA. For example, IQA
is often studied in the regression context. This makes it
difficult to extend models based on class confidences [24]
or class prototypes [10] for classification to IQA. Also, the
relevance of other self-supervised tasks such as rotation pre-
diction [14], context prediction [5], colorization [15], noise
prediction [1], feature clustering [3] for adapting IQA mod-
els is not clear. While contrastive learning has also been
employed for TTA [20], such a framework is not explicitly
based on contrasting image quality, and its relevance is also
not clear.

Our main contribution is in the design of auxiliary tasks
to enable TTA for IQA. We start with a source model trained
on a large IQA dataset and fine-tune the model on individ-
ual batches of test samples. The first task we introduce
for adaptation is based on contrasting groups of low and
high quality images in a batch. Thus, we exploit the initial
knowledge of the source model and try to adapt it by enforc-
ing quality relationships among the batch of samples. Such
a group contrastive (GC) learning approach fits naturally to
our setting to account for any errors on individual samples
that the source model may be prone to.

In contrast to the GC learning that depends on the batch,
our second auxiliary task is an image specific task based on
distorted augmentations of different types. Here, our goal is
to enable the model to rank the image quality of further dis-
torted versions of each test sample. We explore the role of
different distortion types to leverage the maximum benefit
of this task. While GC learning is more effective when sam-
ples in a batch are diverse in quality, the rank order based
learning is more effective when the quality of the images
is not extremely poor. Thus, a combination of the tasks
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helps overcome the shortcoming of both tasks and leads to
an overall superior performance.

We study the TTA problem under different settings of
source and target datasets for multiple state of the art IQA
models. Our results show significant improvements of the
source model and the importance of TTA for IQA. We sum-
marize our main contributions as follows:

• We propose source-free test time adaptation tech-
niques in the context of blind image quality assess-
ment to mitigate distribution shifts between train and
test data.

• We formulate two novel quality-aware self-supervised
auxiliary tasks to adapt to the test data distribution.
While group contrastive learning helps capture qual-
ity discriminative information among several images
within a batch, rank ordering helps maintain the qual-
ity order between two different distorted versions of
the same image.

• We show that our TTA method can significantly
improve the performance of four different quality-
aware source models, each on four different test IQA
databases.

2. Related Work

2.1. Test Time Adaptation

One of the first pieces of work on TTA [31] introduces
a joint training framework using a loss for the main task
and a self-supervised auxiliary task loss. The choice of a
relevant auxiliary task is a challenging part of the design.
Sun et al. [31] use rotation prediction as a pre-text task for
image classification applications. Researchers also explore
simpler tasks that are highly correlated with the main task,
such as feature alignment with the batch and a simple con-
trastive loss framework [20] for adaptation. However, these
methods require the source data to train the source model
all over again to enable TTA.

TENT [33] studies source-free TTA, where entropy
minimization-based adaptation even outperforms some
methods that use the source data. Moreover, only the
batch normalization parameters of the model are adapted
in TENT. There are several works on batch norm statistics
adaptation [25, 28] to improve the robustness of the model
at test time. SHOT [16] presents a clustering-based pseudo-
labeling method to align features from the target domain to
the source domain using an information maximization loss.
While a plethora of methods exists as above, the auxiliary
tasks in these methods are not relevant for IQA.

2.2. No-Reference Image Quality Assessment

Most classical NR IQA algorithms are mainly based on
natural scene statistics (NSS) [19, 22, 38]. In [23], the nat-
uralness of the distorted image in the wavelet domain is
modeled based on NSS. Saad et al. [27] also design the
NSS model in the discrete cosine transform (DCT) do-
main. CORNIA [35], and HOSA [34] are among the ear-
liest codebook learning based methods to predict quality.
With the emergence of deep learning and the availability of
large subject-rated IQA databases, various general-purpose
NR IQA methods have been designed based on convolu-
tional neural network (CNN) architectures [2, 18, 21, 36].
Some of these methods require end-to-end training [2, 21]
of deep neural networks (DNN), while others [7, 12, 30, 39]
are based on updating pre-trained models with some modi-
fications.

More recently, Zhang et al. [39] propose a method to
train bilinear DNNs to simultaneously model both authen-
tic and synthetic distortions. Su et al. [30] design a self-
adaptive hyper network to provide weights for the qual-
ity prediction module parameters and handle various types
of distortions and content in the images. Several methods
[7,12] explore transformer-based architectures along with a
CNN to capture dependencies between local and global fea-
tures. MetaIQA [40] proposes meta-learning on synthetic
distortions by using a shared quality prior knowledge model
to adapt to any kind of distortion.

All the existing methods assume that the train and test
data come from the same distribution. If there is a distribu-
tion shift across different databases, we need adaptation of
the pre-trained model to learn about the target distributional
information.

3. Methodology
We propose a novel self-supervised Test Time

Adaptation technique for Image Quality Assessment (TTA-
IQA) to adapt pre-trained quality models and mitigate dis-
tribution shifts between the source and target data. We
consider source-free TTA, where we only have access to
the pre-trained quality-aware models and no access to the
source training data. When a batch of test data D =
{xj}nj=1 arrives, we adapt the model using the batch with-
out knowledge of corresponding ground truth {yj}nj=1.

3.1. Approach

Let the model trained on the source data be fθ where
θ = (θe, θc) corresponds to the parameters of the network,
and θe and θc correspond to the parameters of the feature
extractor and regression layers. Thus, for an input image
x, we denote fθ(x) = fθc(fθe(x)). Since our goal is to
learn the distribution shift between train and test data, we
only update the parameters of the feature extractor, θe, to
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Figure 1. Block diagram of a general architecture for test time adaptation. At test time training, the normalization layers of the feature
extractor are adapted by optimizing the combination of rank and GC loss. At inference time, we predict the quality scores of test images
using the updated feature extractor and pre-trained quality regressor.

align the features between the train and test distributions in
a lower dimensional space.

The key challenge in TTA is the choice of a self-
supervised auxiliary task that is highly correlated with the
main task of IQA. However, relying too much on the aux-
iliary task can affect the performance of the main task. To
prevent loss of learnt information induced by the auxiliary
task [4], we first project the features to a lower dimensional
space using a non-linear projection head fθs , parameterized
by θs. The auxiliary task drives the adaptation of the fea-
ture extractor through the projection head. Thus our model
now has three parts parametrized by (θe, θs, θc) to resemble
a Y-shape as shown in Figure 1.

When a batch of test instances D arrives, we extract fea-
tures from the feature extractor, followed by the projection
head, and update the set of parameters (θe, θs) by optimiz-
ing a self-supervised objective function Ls(D). Updating
all the model parameters of the feature extractor θe can
cause the model to diverge too much from training, and the
performance can drop drastically. Inspired by prior work on
test time entropy minimization [33] and improving robust-
ness for test data [28], we only update the linear and lower-
dimensional feature modulation parameters. In a neural net-
work, normalization layers satisfy these properties. So we
only adapt the batch normalization layers by updating the
affine parameters to mitigate distributional shifts. Thus we
update these parameters by optimizing the auxiliary task
loss given by

θ∗e , θ
∗
s = argmin

(θe,θs)

Ls(D) (1)

After optimizing the above loss function, we use the up-
dated feature extractor parameters θ∗e and pre-trained qual-
ity regressor parameters θc to predict the quality for a batch
of test data. Since the distribution across batches can vary
significantly, we ignore the earlier updated model and start
the TTA based on source model weights for new test in-
stants. Thus the updated target model always only depends

on the incoming test data.

3.2. Self-Supervised Auxiliary Tasks

Our goal is to carefully choose self-supervised auxiliary
tasks that capture quality-aware distributional information
to adapt the feature encoder. We formulate two novel and
complementary self-supervised learning techniques which
help to learn the distribution shift between train and test
data. These self-supervised objective functions are - 1)
Group Contrastive Loss and 2) Rank Loss. While the GC
loss works well when there is a reasonable separation of
quality among the samples in a batch, the rank loss works
better even when the quality of the batch samples is sim-
ilar. On the other hand, the rank loss is meaningful only
when the quality of the input image is not extremely low,
while the GC loss is independent of the quality of a given
image. Thus, a combination of the two losses renders our
TTA extremely effective across various scenarios.

3.2.1 Group Contrastive Loss

While contrastive learning has been used for TTA of deep
image classification, its direct application does not appear
relevant to the task of IQA. Thus, we introduce group con-
trastive (GC) learning as an auxiliary task for TTA of IQA
models. In particular, we make two groups of images from a
single batch of N images based on the pseudo-labels given
by the pre-trained source model. We sort the images in as-
cending order as x(1),x(2),. . . ,x(N) based on the pseudo-
labels, where x(i), i = 1, 2, . . . , N , corresponds to the ith

lowest quality image in the batch. We then segregate im-
ages with high quality scores (say, top p fraction of the data
in a batch) and include them in a group of higher-quality im-
ages. Similarly, we separate out lower quality images (say,
the lowest p fraction of the images in a batch) together to
form another group. Here we assume that pN and (1−p)N
are integers for simplicity; else, they can be rounded off to
the nearest integers.
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Figure 2. The overview framework of group contrastive loss for test time adaptation. For a batch of images, two different groups
are formed based on pseudo-labels given by the source model. The group contrastive loss tries to minimize the distance between features
extracted from images belonging to the same group while maximizing the distance between features from different groups.

The premise behind our loss for GC learning is that im-
ages from the same quality group should give similar fea-
ture representations in a lower dimensional space while fea-
tures of images from different groups are separated out.
Thus image pairs from the same group act as positive pairs,
and image pairs from different groups act as negative pairs.
By separating out these two groups, the model adapts itself
by better separating the intermediate quality samples.

Let a positive pair x(i) and x(j) come from the same
group, i.e., either both i, j ≤ pN or i, j > (1 − p)N . We
use a modified NT-Xent contrastive loss [4] as our objective
function. For a pair of images coming from the lower qual-
ity group where i, j ≤ pN and i ̸= j, the GC loss is defined
as

Lgc
i,j = − log

exp
(
sim

(
z(i), z(j)

)
/τ

)∑N
k>(1−p)N exp

(
sim

(
z(i), z(k)

)
/τ

) , (2)

where z(i) = fθs(fθe(x(i))) represents the feature at the
output of the projection head for sample x(i), sim refers
to the cosine similarity between two features. and z(k) is
the feature extracted from an image from the higher quality
group with k > (1 − p)N . Also, τ represents temperature
scaling parameter. While we define the loss above when
i, j ≤ pN , we can define a similar loss when i, j > (1 −
p)N . For all pairs of images within the same group, we
obtain the GC loss and add them together to obtain the final
loss, Lgc as

Lgc =

pN∑
i=1

pN∑
j=1
j ̸=i

Lgc
i,j +

N∑
i=(1−p)N+1

N∑
j=(1−p)N+1

j ̸=i

Lgc
i,j . (3)

A block diagram of the GC loss is shown in Figure 2.

3.2.2 Rank Loss

Given a sample of images from test data, the rank loss helps
adapt the features by capturing quality-aware distributional
information at the sample level. We introduce a ranking ob-
jective to learn the quality orders between two distorted ver-
sions of the test images that are quality discriminable. We
distort each test image xi, i = 1, 2, . . . , N , in the minibatch
of size N with two different degrees of degradation of a
given distortion type. Let xhigh

i and xlow
i denote the higher

and lower distorted image, respectively. The degradation
types include synthetic distortions such as blur, compres-
sion, and noise. We choose degradation levels randomly
from two sets of parameters sufficiently farther apart. Ide-
ally, the distance between the features extracted from the
test image and the highly distorted image should be greater
than that between the features extracted from the test image
and the lower distorted image. Our rank loss tries to capture
this order and adapt the model to the test data.

We project the triplet of images (xi, x
high
i , xlow

i ) in the
feature space through the feature extractor and the projec-
tion head. We measure the distance between the distortion-
augmented image and the original test data using the Eu-
clidean distance in the projected feature space. Mathemati-
cally, let zi = fθs(fθe(xi)) be the feature extracted for test
sample xi. Similarly we define zhighi and zlowi . Let dhighi

denote the distance between zi and zhighi . Similarly, dlowi

denotes the distance between zi and zlowi . The target model
is now fine-tuned to obtain the correct ranking between the
distances by achieving dhighi ≥ dlowi shown in Figure 3.

The probability of achieving this order is estimated by
passing the difference in distances through a sigmoid func-
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Figure 3. The rank loss framework for test time adaptation. We distort the test image with two different degrees of degradation. We then
project the triplet of images in the features space through the shared feature extractor and projection head. Distances calculated between
the features extracted from each distorted image and the original test image are used to compare their rank order.

tion as

Pi = Pr
(
dhighi ≥ dlowi

)
=

exp
(
dhighi − dlowi

)
1 + exp

(
dhighi − dlowi

) .
(4)

We use binary cross-entropy loss between true label P̄i = 1
and the predicted probability Pi to obtain the rank loss as

Lr
i

(
P̄i, Pi

)
= −P̄i logPi −

(
1− P̄i

)
log (1− Pi) . (5)

For a batch of size N , the overall rank loss is given as

Lr =
N∑
i=1

Lr
i . (6)

One of the challenges in the rank loss is selecting the dis-
tortion type for every image. The original test image may
already be distorted, which poses difficulties in deciding the
distortion type that can help TTA. For example, if the test
image is extremely blurred and we blur it again with two
different levels, both images may be visually indistinguish-
able, thereby limiting the extent to which adaptation can
help. We exploit the source model’s knowledge to over-
come this limitation in choosing the distortion type. We
predict the quality scores of the pair (xhigh

i , xlow
i ) for each

distortion type using the source model. We hypothesize that
the pair with the maximal difference in predicted quality is
sufficiently different in visual quality. Thus choosing such
a pair in Equation (5) can help adapt the model.

Our overall self-supervised TTA objective function is a

combination of both the rank and GC loss given as

Ls = Lgc + λLr, (7)

where λ is a hyper-parameter used to combine the losses.

4. Experiments
4.1. Quality Models, Datasets and Metrics

We evaluate TTA on four popular IQA databases using
four different quality-aware models. In particular, we con-
sider state-of-the-art deep IQA models such as TReS [7],
MUSIQ [12] , HyperIQA [30], and MetaIQA [40]. These
models contain a ResNet backbone with batch normaliza-
tion layers, which we model as the feature extractor fθe and
only update its batch normalization parameters. We model
the rest of the network as the quality regressor part, fθc .
TReS and MUSIQ use transformers as a part of their archi-
tecture, which we include as a part of the quality regressor
in all our main experiments. We also explore the adapta-
tion of transformers by including them as part of the feature
extractor and updating their layer normalization statistics in
the supplementary material.

We project the features extracted from the last layer of
ResNet through a 256-dimensional fully connected (FC)
layer corresponding to the self-supervised projection head
fθs . These lower dimensional features are used to adapt
the model at test time. Three IQA models, TReS, MUSIQ,
and HyperIQA are trained on the LIVEFB database [37]
containing 39,810 images. MetaIQA is trained on two syn-
thetically distorted databases, TID2013 [26] and KADID-
10k [17].
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Backbone Database KonIQ-10k PIPAL CID2013 LIVE-IQA
Method SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

TReS
Baseline 0.6520 0.6955 0.3845 0.4078 0.5272 0.6463 0.5435 0.4450
Rotation 0.6506 0.6805 0.4061 0.4114 0.5706 0.6651 0.5866 0.5311

TTA-IQA 0.6578 0.7074 0.4278 0.4204 0.6032 0.6710 0.6722 0.5963

MUSIQ
Baseline 0.6304 0.6802 0.3190 0.3414 0.5173 0.6032 0.2596 0.3351
Rotation 0.6577 0.7154 0.3665 0.3693 0.5487 0.6164 0.3512 0.3976

TTA-IQA 0.6693 0.7230 0.3743 0.3731 0.5499 0.6220 0.3649 0.4031

HyperIQA
Baseline 0.5861 0.6313 0.3037 0.3304 0.4895 0.6123 0.5143 0.4377
Rotation 0.6033 0.6536 0.3268 0.3482 0.4902 0.6150 0.6268 0.5469

TTA-IQA 0.5960 0.6495 0.3653 0.3767 0.5039 0.5988 0.6218 0.5438

MetaIQA
Baseline 0.5162 0.4460 0.3287 0.2955 0.7213 0.6817 0.7323 0.6732
Rotation 0.5823 0.5311 0.3353 0.3042 0.7177 0.6745 0.7271 0.6868

TTA-IQA 0.5838 0.5428 0.4073 0.3510 0.7809 0.7399 0.7999 0.7726
Table 1. Comparison of TTA-IQA with popular NR IQA methods and one popular auxiliary task - rotation prediction on authentically and
synthetically distorted datasets. Bold entries imply the best performance for every individual quality-aware model on respective datasets.

We choose challenging databases to evaluate the gen-
eralization capability of our TTA-IQA method. The test
datasets are described as follows:

KonIQ-10k [9] is a popular in-the-wild authentically
distorted database consisting of 10,073 quality-scored im-
ages.

PIPAL [11] is a large-scale IQA database for evaluat-
ing perceptual image restoration. It contains 29k distorted
images, including 19 different GAN-based algorithms.

CID2013 [32] consists of 480 images in six image sets
captured by 79 imaging devices.

LIVE-IQA [29] consists of 779 synthetically distorted
images from 29 reference images.

We evaluate our results using Spearman’s rank-order cor-
relation coefficient (SROCC) and Pearson’s linear correla-
tion coefficient (PLCC).

4.2. Implementation Details

We implement our setup in PyTorch and conduct all the
experiments with an 16 GB NVIDIA RTX A4000 GPU.
During TTA, we randomly select a patch of size 224× 224
from the input image and apply quality preserving augmen-
tations such as horizontal flip and vertical flip before pass-
ing it through the network for TTA. We use the ADAM [13]
optimizer with a learning rate of 0.001 and set the number
of iteration as 3. All the experiments were run on five differ-
ent seeds using a batch size of 8, and the final results were
obtained by averaging.

With regard to the self-supervised auxiliary tasks, we use
a combination of rank loss and GC loss as our objective
function using λ = 1 given in Equation (7). We choose
p = 0.25 to determine the groups. We calculate the GC
loss using τ = 1. For the rank loss, the test image is syn-
thetically blurred using a Gaussian blur filter of size 5 × 5
with two sets of standard deviations σ, for the Gaussian

blur kernel. We keep σ ∈ [40, 80] for highly distorted im-
ages and σ ∈ [1, 20] for less blurred images. For com-
pression distortions, we specify the quality factor in [80, 95]
for lower compression and [30, 60] for higher compression
rates. Similarly, we add zero mean Gaussian white noise to
the test image with variance in [0.05, 0.1] for higher distor-
tion and in [0.005, 0.01] for lower distortion.

4.3. Performance Evaluation

Table 1 shows the performance of our method on all four
test datasets using all four quality-aware models. In addi-
tion to the source model, we also compare with rotation pre-
diction [31] as the auxiliary task during TTA. A comparison
with such a task helps understand the role of quality-aware
losses for the TTA of IQA models.

We observe that TTA-IQA using the combination of rank
and GC loss outperforms the source models in all the cases.
Note that the PIPAL dataset has a huge distribution shift
from the authentically distorted LIVEFB dataset on which
three of the models were trained. While most source mod-
els perform very poorly on PIPAL, we achieve 10%-20%
improvement over the source models. On the KonIQ-10k
dataset, TTA-IQA gives around 1%-10% improvement over
the source model. As both KonIQ-10k and LIVEFB are
authentically distorted datasets, the distribution shift is rea-
sonably small, leading to smaller improvements using adap-
tation. CID2013 is also an authentically distorted dataset
and gives similar improvements of around 2%-13% over the
source models. Our experiments on the LIVE-IQA database
provide a significantly greater improvement of 10%-33%
owing to the shift from authentic to synthetic distortions for
three models.

We also observe from Table 1 that our approach outper-
forms the rotation prediction task in most cases. Other TTA
ideas, such as TENT [33] and training using masked autoen-
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Backbone Database KonIQ-10k PIPAL CID2013 LIVE-IQA
Rank GC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

TReS
✓ × 0.6562 0.6989 0.4171 0.4204 0.6016 0.6736 0.6705 0.5908
× ✓ 0.6516 0.6946 0.4666 0.5183 0.5366 0.6493 0.7160 0.6290
✓ ✓ 0.6578 0.7074 0.4278 0.4204 0.6032 0.6710 0.6722 0.5963

MUSIQ
✓ × 0.6549 0.7149 0.3768 0.3718 0.5216 0.6034 0.3634 0.4024
× ✓ 0.6611 0.7176 0.3585 0.3642 0.5446 0.6159 0.3299 0.3914
✓ ✓ 0.6693 0.7230 0.3743 0.3731 0.5499 0.6220 0.3649 0.4031

HyperIQA
✓ × 0.5928 0.6455 0.3616 0.3732 0.5039 0.5991 0.5505 0.5050
× ✓ 0.6094 0.6567 0.3333 0.3552 0.5120 0.6255 0.6331 0.5592
✓ ✓ 0.5960 0.6495 0.3653 0.3767 0.5039 0.5988 0.6218 0.5438

MetaIQA
✓ × 0.5580 0.5118 0.3992 0.3437 0.7579 0.7282 0.7894 0.7534
× ✓ 0.5414 0.4636 0.3710 0.3287 0.7861 0.7067 0.7566 0.6927
✓ ✓ 0.5838 0.5428 0.4073 0.3510 0.7809 0.7399 0.7999 0.7726

Table 2. Ablation study results on authentically and synthetically distorted datasets using popular quality aware source models. Bold entries
imply the best performance among all three settings.

Figure 4. Scatter plot for predicting quality of similar quality images from LIVE-IQA dataset for the source model and TTA using only
rank loss or GC loss. We mark two sets of images having similar human opinion score (DMOS) by ellipses in each case.

coders [6] are not applicable for the IQA task. In particular,
the notion of entropy in regression tasks is not clear. On the
other hand, masked reconstructions tend to lead to quality
degradation. Thus, we do not compare with them.

4.4. Ablation Study & Other Experiments

Need for Rank Loss and GC Loss for TTA. We per-
form an ablation study with respect to the two losses in Ta-
ble 2. We see from the results that the rank loss and the
GC loss individually always improve on the source mod-
els. Further, the combination of the rank and GC loss pro-
vides an even better performance over the individual losses
in most evaluation scenarios. Even in scenarios, where the
combination loss achieves the second-best performance, its
performance is very close to the best. For the rest of the
experiments in this section, we present results on all four
datasets using the TReS method alone.

We now discuss scenarios where the GC loss is partic-
ularly more useful than the rank loss. If the test image is
extremely distorted, none of the three kinds of distortion
types can create much difference in the perceptual quality of
the two degraded versions. To understand this further, we
consider highly distorted images (corresponding to a dif-

ferential mean opinion score (DMOS) greater than 70) of
different distortion types in the LIVE-IQA dataset. We ap-
ply TTA only for these images using different losses. The
SROCC performance for these images in Figure 5 reveal
that the rank loss is not very effective. However, the GC
loss works well in such scenarios.

Conversely, we also discuss scenarios where the rank
loss is more useful than the GC loss. To illustrate this
idea, we select multiple images having similar quality with
DMOS in [28, 44] from the LIVE-IQA dataset. We adapt
the source model for this set of images using both the GC
and rank losses. From Figure 4, we observe that the rank
loss leads to much better adaptation in terms of the resulting
model correlating with the ground truth scores. Intuitively,
when the input images have a similar quality, the pseudo-
labels given by the source model may be noisy, leading to
an inaccurate grouping of the images into the lower and
higher quality groups. This can adversely affect the GC
loss. So the rank loss is more effective than the GC loss
for test batches with similar quality images.

Effect of Selecting Multiple Distortion Types in the
Rank Loss. We experiment with the impact of different
kinds of distortion types while incorporating the rank loss.
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Figure 5. TTA-IQA on different distortion-specific images from
LIVE-IQA dataset with respect to individual losses

In particular, we consider three scenarios: one where only
one of the distortion types is used in the rank loss, another
where all the three types are used to obtain three loss terms
which are summed together to update the model, and a third,
where only one of the distortion types is chosen based on the
discussion in Section 3.2.2. We observe from Table 3 that
choosing the distortion type with the maximal difference in
quality gives the best performance for the rank loss. This
experiment validates our hypothesis that only a rank loss
that can discriminate between the degraded image pairs is
useful for TTA.

Database Blur Comp Noise All Best
KonIQ-10k 0.656 0.656 0.667 0.615 0.656

PIPAL 0.384 0.415 0.389 0.415 0.417
CID2013 0.527 0.609 0.606 0.560 0.609

LIVE-IQA 0.578 0.605 0.618 0.634 0.671
Table 3. Impact of selecting multiple distortion types on rank loss

Selection of Group Size by Varying p. We explore dif-
ferent values of p for constructing the GC loss. For a batch
size of 8, possible choices of the group size are 2, 3, 4 corre-
sponding to p = 0.25, 0.375, 0.5 respectively. From Table
4, we observe that the performances are roughly similar for
different values of p with a slightly superior performance
for p = 0.25. We note that as p increases, the groups are
larger and probably less discriminative in terms of quality,
leading to a slightly poorer performance.

Database p=0.25 p=0.375 p=0.5
KonIQ-10k 0.6516 0.6497 0.6467

PIPAL 0.4666 0.4602 0.4616
CID2013 0.5366 0.5486 0.5536

LIVE-IQA 0.7160 0.7171 0.6937

Table 4. Impact of varying group size using p for GC loss

Selection of Number of Groups for GC Loss. In our
formulation, we define the GC loss only between two con-

trastive groups. In principle, we can extend our idea of GC
loss to multiple groups. In particular, we can cluster the
images in a batch into multiple groups and apply the GC
loss between every pair of groups and sum the loss terms.
Thus, images coming from the same group act as positive
pairs, and images from two different groups are considered
as negative pairs. From Table 5, we observe that the number
of groups G does not impact the performance much.

Database G = 2 G = 3 G = 4
KonIQ-10k 0.6516 0.6524 0.6509

PIPAL 0.4666 0.4668 0.4663
CID2013 0.5366 0.5327 0.5388

LIVE-IQA 0.7160 0.7011 0.6883

Table 5. Impact of varying number of groups G for GC loss

Choice of Number of Iterations for Learning Auxil-
iary Task. We also examine the effect of the number of
iterations of parameter updates during TTA. Figure 6 shows
that the performance on CID2013 dataset is fairly robust un-
til 4 iterations. Beyond that, the model overfits the auxiliary
task and leads to poor performance at test time.

Figure 6. Effect of increasing number of iterations

5. Conclusion
Test time adaptation has become very popular due to

its simplicity and the lack of need for end-to-end training.
Our work is perhaps one of the first attempts to design the
method of TTA in the context of blind IQA. While most
IQA methods focus on making the models robust enough
to perform well for cross-database experiments, our TTA-
IQA method can outperform existing state-of-the-art meth-
ods because of the adaptation at test time. We formulate
novel self-supervised auxiliary tasks using the rank and
group contrastive losses, which can learn quality-aware in-
formation from the test data. While primarily explored TTA
for IQA, it would be interesting to understand the role of
TTA for video quality assessment as well.
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