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Abstract

Most model-free visual object tracking methods formu-
late the tracking task as object location estimation given
by a 2D segmentation or a bounding box in each video
frame. We argue that this representation is limited and in-
stead propose to guide and improve 2D tracking with an ex-
plicit object representation, namely the textured 3D shape
and 6DoF pose in each video frame. Our representation
tackles a complex long-term dense correspondence problem
between all 3D points on the object for all video frames, in-
cluding frames where some points are invisible. To achieve
that, the estimation is driven by re-rendering the input video
frames as well as possible through differentiable rendering,
which has not been used for tracking before. The proposed
optimization minimizes a novel loss function to estimate the
best 3D shape, texture, and 6DoF pose. We improve the
state-of-the-art in 2D segmentation tracking on three differ-
ent datasets with mostly rigid objects.

1. Introduction
Visual object tracking is an important task in com-

puter vision. A wide range of challenges [20, 21], bench-
marks [22], and methods [34, 33, 49] have been proposed
in recent years. Given an input video and an annotation of
the object in the first frame, tracking methods localize the
object with a 2D segmentation (or a 2D bounding box) in
all following frames. However, they do not attempt to re-
construct the 3D shape and its 6DoF motion and settle for
2D segmentation as a low-level representation of the object
state. On the one hand, this makes those methods general in
terms of prior assumptions on object shape and motion. On
the other hand, the information extracted by the segmenta-
tion is limited, e.g. to whole object editing, and does not
support many applications.

In this paper, we propose a generic approach for tracking
that is fundamentally different from what standard trackers
perform [22, 21]. Instead of a mere 2D segmentation, we
estimate the latent object 3D shape, texture, and 6DoF pose
in each video frame to improve 2D tracking. This formula-
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Figure 1. Improving 2D tracking with explicit 3D modeling.
Starting from initial segmentations given by a tracker [49] (top
row), we jointly optimize all object parameters to re-render the
input video as close as possible. Long-term correspondences are
visualized by colored points and their visibility by colored lines
underneath. In contrast, the standard tracker reports essentially no
motion (just slightly changing 2D segmentation). We use S2DNet
features [8] for reprojection error (middle row) and back-project
RGB values only for visualization (bottom row).

tion of tracking solves a more complex long-term dense cor-
respondence problem between all 3D points on the object,
even of points that are not visible (Fig. 1, colored lines).
This is useful in many applications, e.g. augmented real-
ity, motion interpretation and analysis, point matching, per-
pixel editing, robotics, object manipulation and grasping.

The core of the approach is to find the object shape, pose,
and texture – the parameters that define the object – whose
reprojection is most consistent with input video frames. The
parameter estimation is driven by re-rendering the input
video via differentiable rendering instead of directly pre-
dicting the 2D segmentation in the next frame based on fea-
tures extracted in the previous frames. This modern differ-
entiable rendering way of thinking was demonstrated to be
successful in various applications, such as 3D reconstruc-
tion [28, 3], structure-from-motion [26], reconstruction of
clothed humans [16], and deblurring of motion-blurred ob-
jects [39, 40], but never in tracking. To initialize our op-
timization process, we use segmentations given by a stan-
dard 2D tracker. We demonstrate experimentally that the
proposed tracking method improves segmentation accuracy
of this initial tracker.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Another related line of research is multi-view 3D ob-
ject reconstruction [5, 35, 52]. Those methods solve the
task with given additional information, usually with cam-
era poses (or alternatively object poses), camera calibration
matrix, depth information, object segmentation, etc. More-
over, these methods do not process the sequences causally
and reconstruct the whole scene at once. Most methods as-
sume either a perfect segmentation or objects in front of a
blank background [5, 38]. They usually require distinctive
texture and are trained on large datasets, in some cases even
for a particular object class [38].

A third group, methods for 6DoF pose estimation [13,
14, 23], require another type of additional information as in-
put – the 3D shape of the object appearing in the video [13]
(or a small set of 3D shapes [27, 23]). Some methods recon-
struct higher than 6DoF poses [51] or poses of articulated
objects [30]. In contrast, our method requires no additional
information and only uses RGB information as input. To
summarize, we make the following contributions:

(1) we propose the first model-free object tracking method
that explicitly estimates the latent object 3D shape, tex-
ture, and 6DoF motion from an RGB sequence. The
tracker is aware of which part of its surface is visible,

(2) we introduce differentiable rendering to tracking to op-
timize object parameters to re-render the input video,

(3) we introduce deep surface textures to improve tracking
robustness under view-dependent illumination changes,

(4) experiments demonstrate improved tracking accuracy
compared to the initial tracker, more accurate 2D seg-
mentation, and dense long-term correspondences on the
object surface, even after self-occlusion. It sets new
state-of-the-art results on tracking datasets with rigid
objects such as CDTB (part of VOT challenge), coin
tracking, and In-hand Object Manipulation.

2. Related work

Visual object tracking in 2D. Visual object tracking is
one of the oldest tasks in computer vision dating back to
the Lucas-Kanade tracker [31, 42]. Discriminative Corre-
lation Filters have been successfully used for the tracking
task [11, 34]. More recently, methods based on deep learn-
ing have been developed [7, 33, 49]. Most trackers localize
the object only in 2D by a 2D bounding box or a 2D seg-
mentation. In contrast, we aim to improve tracking by ex-
plicitly recovering rough 3D shape, texture, and 6DoF pose.
3D reconstruction. In recent years, 3D reconstruction
has gained significant attention. Structure-from-Motion
pipelines, such as COLMAP [41], have become widely
used. Other methods are based on Neural Radiance
Fields [35, 52], Transformers [44], Recurrent Neural Net-
works [5]. Methods designed specifically for 3D object

reconstruction have also been proposed [44, 38, 5] How-
ever, they always assume a perfect segmentation or trivial
backgrounds and impose strong priors on object shape [38].
Similarly, BackFlow [45] reconstructs simple objects that
are manipulated by human hands in RGB-D videos (we
use only RGB). Moreover, they assume that a user provides
scribbles to segment out the background in the first frame.
3D and 6DoF object pose estimation or tracking. An ap-
proach to enhance 2D tracking with 3D reconstruction was
proposed by [17], but it requires depth information as in-
put and estimates latent 3D representation as a point cloud
by concatenating RGB-D segmentations, without any opti-
mization, viewpoint consistency, and explicit surface mod-
eling. Thus, it looses many desirable properties, e.g. self-
occlusions awareness and long-term point-to-point corre-
spondence. The field of 6DoF object pose estimation is vast.
A number of challenges and benchmarks have been pro-
posed [13, 14], comprising of various methods [23, 12, 46].
However, the main limiting factor of these methods is that
they need the known 3D shape of the object as input. Some
methods were proposed for 6D tracking of unknown ob-
jects [37, 24, 9, 47, 36]. In contrast to our approach, these
methods do not estimate the 3D shape but only try to predict
6DoF object pose given initial object segmentation.
Differentiable rendering. The classical computer graph-
ics rendering pipeline was recently made differentiable in
various ways. Most methods are based on soft rasteriza-
tion [28, 3, 4], differentiable sphere tracing [29], neural ra-
diance fields (NeRF) [35], etc. NeRF was also combined
with pose estimation, e.g. [50, 25]. Differentiable rendering
techniques were also used in various applications: 3D re-
construction [28, 3], monocular 6DoF pose estimation [46],
reconstruction of clothed humans [16], and deblurring of
motion-blurred objects [39, 40]. Differentiable rendering
was used in [10] with a primary focus on 3D object scan-
ning. It is intended for offline use as it requires all video
frames at the same time. Hence, it is non-causal and cannot
be used for a general tracking case. These methods are
related to our work in their use of differentiable rendering,
but we apply it to a different task.

As a consequence, the proposed method is the first to use
differentiable rendering in the object tracking task in videos
with joint 3D reconstruction and 6DoF pose estimation of
unknown objects in the wild.

3. Method
We assume that the input is a video stream {I1, . . . , IN}

of N frames and the position of the object in the first frame,
given either by a segmentation or a bounding box. As the
first step of our method, we approximately segment the ob-
ject with a state-of-the-art 2D tracker, e.g. [49, 48], resulting
in a binary segmentation per frame {M1, . . . ,MN}. The
desired output of our method is improved binary segmenta-
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Figure 2. Method Overview. Left-to-middle: The proposed method processes a stream of images and coarse masks and jointly estimates
3D object shape, texture, and 6DoF poses. As a first step, the input images are transferred using a feature encoder (FE) to better handle
view-dependent brightness changes. The feature encoder is pre-trained and remains unchanged in our optimization (as indicated by the
µ-symbol). The feature encoder is optional and can be replaced with an identity map in which case our method computes the reconstruction
loss in RGB space rather than the more general feature space, e.g. S2DNet [8]. Concurrently, we collect keyframes that serve as reference
information for object motion estimation. Right-to-middle: The method can be seen as a generative approach: Starting from an object
shape (mesh), texture, and 6DoF object poses, we generate images and corresponding masks with a differentiable renderer (DR). At test
time, the inverse problem is solved by refining the object motion representation to minimize the reconstruction loss. Further regularization
on the object shape, texture, and motion further stabilizes the optimization and helps avoiding undesired local minima.

tion and additional latent object representation, which is a
textured 3D shape of the tracked object and its 6DoF pose
in each frame. We obtain improved segmentations by ren-
dering the estimated 3D object at the estimated 6DoF pose
in each frame. The improvement comes from seeking for a
3D shape, texture, and 6DoF poses that re-render the input
video frames as accurately as possible. We optimize over
the space of 3D shapes, textures, and 6DoF poses with dif-
ferentiable rendering.

The whole pipeline (Fig. 2) is designed in such a way
that the initial segmentations only guide the object’s 6DoF
tracking and 3D reconstruction without being overly depen-
dent on their accuracy. We run the optimization sequentially
for each frame, making the method causal, i.e. depending
only on the past. Hence, we perform online tracking.

In principle, at each new frame we could optimize the
object 3D shape, texture, and 6DoF poses over all past video
frames. However, for efficiency we maintain a subset of so-
called keyframes indexed by Kn ⊆ [1, . . . , n−1], which act
as sparse anchors on which the optimization is performed.
The main idea is that each keyframe provides a significantly
different view of the object. The subset of keyframes is
sequentially updated every time the process moves to a new
frame, based on criteria described in Sec. 3.3.

3.1. Representations

Object shape representation. We estimate a single 3D
object shape that is fixed throughout the video. The object
is represented in its canonical space by a textured triangu-

lar mesh with a set of vertices, faces, and texture mapping.
The shape parameters P are vertex offsets from a prototype
mesh, which deform it into the actual shape of the object in
the video. The mesh topology and faces are fixed.
Object appearance representation. The appearance of
the object is represented by a texture map of features T .
The function that maps RGB values to a feature represen-
tation is denoted by F (·). In the simplest case, F can be
an identity mapping. Then, the features are simply RGB
values. However, in most cases, when the object moves,
the RGB values change due to lighting effects, shadows,
illumination changes, etc. To overcome this problem, in-
variant features have been studied in image matching and
structure-from-motion, e.g. [26]. We use a similar approach
and extract 128-dimensional S2DNet [8] features, leading
to a deep surface texture. Texture mapping is a function
that denotes the correspondences between pixels in the tex-
ture map and mesh faces, and it is fixed throughout the op-
timization.
Object motion representation. The object motion N is a
temporal sequence of 6DoF poses. The 6DoF pose Nn =
(Tn, Qn) in each frame n is represented by 3D translation
and 3D rotation. Translations are represented by 3D vectors
Tn and rotations by normalized 4D quaternions Qn.

3.2. Loss terms

Appearance and silhouette rendering. Let us define a
rendering function R that takes three inputs, object shape
P , object appearance T , and 6DoF pose (Tn, Qn), and ren-
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Figure 3. Evaluation on a vacuum cleaner sequence. This example highlights the need for more robust features like S2DNet [8] (middle
row) that are robust to various illumination changes. RGB color values vary significantly within the input sequence (top row), and directly
optimizing RGB texture leads to failures. In contrast, we back-project RGB features (bottom row) after optimization has finished. Long-
term correspondences are marked with colored points and their visibility with colored lines. Texture visualization is a UV map [6].

ders the object at the given pose. This function provides
two outputs, namely object appearance RF (P, T ,Nn) and
object silhouette RS(P, T ,Nn) (subscript F for ’Features’,
and S for ’Silhouette’). We assume that the camera is static.
The camera projection matrix is fixed to 45◦ field-of-view
angle. Given the rendered appearance and silhouette, we
define below loss terms for every frame n.

Appearance rendering loss. This loss measures how
well the estimated 3D shape and texture re-renders the input
video frames. This re-rendering is the main driving force of
the proposed approach. Concretely, we compare the object
appearance features rendered at the given pose to the ob-
served video features F (Ii). We use the Cauchy loss γ with
a scale of 0.25 as in [26]:

LF = µn

∑
i∈{Kn∪n}

∥∥∥RS(P, T ,Ni) ·
(
RF (P, T ,Ni)− F (Ii)

)∥∥∥
γ

(1)
Here, the summation runs over the current set of frames
Kn and the current frame n. The factor µn = (|Kn|+1)−1

normalizes the loss.

Silhouette rendering loss. This loss is based on the initial
segmentations of the 2D tracker we start from. This loss
keeps the method anchored to the correct object since there
might be multiple objects in the scene. We define it as a

sum of two terms:

LS = µn

∑
i∈{Kn∪n}

((
1− IoU

(
Mi,RS(P, T ,Ni)

))
+

+∥DT(Mi) · RS(P, T ,Ni)∥
)
.

(2)

The first term is the intersection-over-union (IoU) between
the rendered silhouette of the estimated 3D shape and the
initial segmentation Mi. When the rendered silhouette and
the initial segmentation are near, this loss behaves well.
However, when they are far away, this term is zero, lead-
ing to zero gradient flow during optimization (Sec. 3.3). To
address this case, the second term in (2) attracts the object
silhouette to move closer to the initial segmentation. It mea-
sures the average distance of each pixel of the silhouette to
the closest point in the initial segmentation Mi. It is ef-
ficiently implemented by computing a distance transform
(DT) image of the initial segmentation and multiplying it
by the rendered silhouette.
Motion regularization. To encourage motion smoothness,
we penalize the difference between the translation Tn in the
current frame and the latest previous keyframe. Similarly,
we penalize the angular difference in rotations Qn:

LM = max
(
0,

1

Kn[−1]− n
∥TKn[−1] − Tn∥2 − νT

)
+

+max
(
0,

1

Kn[−1]− n
∡(QKn[−1], Qn)− νQ

)
,

(3)
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where Kn[−1] denotes the index of the most recent
keyframe before the current frame. We do not penalize dif-
ferences of rotations and translations to the last keyframe
smaller than thresholds νT = 0.1 and νT = 30◦, as we con-
sider these motions to be in a normal range. Effectively, the
loss penalizes drastic pose changes w.r.t. the last keyframe.
Shape regularization. To promote 3D shape smoothness,
we use the Laplacian loss LL as defined in [28].
Texture regularization. For a smooth texture map, we use
a total variation loss LT that computes the average appear-
ance difference between neighboring pixels in the texture
map (using LF to measure the difference).
Total loss. The total loss is a weighted sum of all the above
loss terms: L = αFLF+αSLS+αMLM+αLLL+αTLT .
In our experiments, we set αF = 1, αS = 1, αM = 1,
αL = 1000, and αT = 0.001.

3.3. Optimization

To minimize the total loss L in each frame, we use the
ADAM [18] optimizer with a learning rate of 0.1. The
optimization is stopped early when the appearance render-
ing loss reaches LF < τF , where τF is the convergence
threshold. For RGB features we use τF = 0.2, while for
S2DNet [8] features we use τF = 0.05. If this stopping cri-
terion is not reached within 500 iterations, we declare the
current frame a failure. This automatic self-assessment de-
clares that the initial segmentation cannot be improved by
the proposed method. Failure can happen due to various
reasons, e.g. bad initial segmentation, difficult object mo-
tion, non-rigid object deformation (we assume rigid object),
extreme lighting or texture changes on the object itself in
the real world (we assume constant texture throughout the
sequence). The self-assessment is especially helpful when
the method is evaluated on large datasets, where a rigid ob-
ject in the scene cannot be guaranteed. When a failure is
detected, our method automatically degenerates to return-
ing the initial segmentation for that frame. This allows our
method to operate in more general conditions, improving
over the initial tracker when it can and simply returning its
output when it cannot. In our experiments, self-assessment
detects a failure in 1-5% of frames depending on the dataset.
Keyframe selection criteria. Since the optimization is an-
chored to the subset of keyframes, they have to be carefully
selected. The subset of keyframes is dynamic, as it changes
over time. Selection criteria are re-evaluated after the opti-
mization has finished for each frame. Thus, keyframes can
fall out of the subset when one of the selection criteria do
not hold anymore. We have four selection criteria for the
current frame to become a keyframe:

(1) The rendered object silhouette aligns well with the 2D
segmentations, i.e. LS < 0.3.

(2) The rendered object appearance is consistent with the

Method IoU ∆

CSR-DCF [34] 0.498 -
CSR-DCF [34] + Ours 0.512 2.8 %

D3S [33] 0.732 -
D3S [33] + Ours 0.765 4.5 %

OSTrack [49] 0.758 -
OSTrack [49] + Ours 0.788 4.0 %

Table 1. Segmentation accuracy on the CDTB dataset [32]. Our
method improves initial segmentations from trackers in all cases.

input frame, i.e. LF < τF .

(3) The current frame and the latest keyframe provide sig-
nificantly different views of the object, i.e. relative
translation is greater than half the object size or rela-
tive rotation is greater than 45◦.

(4) Finally, the number of keyframes is restricted to a max-
imum αK frames; thus, only the most recent αK are
kept (discussed in Sec. 4.4).

Differentiable rendering. As part of the forward model,
we render object appearance and silhouette. To make this
step differentiable, we apply differentiable rendering pro-
posed in [3].
Initialization. The object 3D shape is initialized to a pro-
totype mesh, which is a sphere with 1212 vertices. Vertex
offsets are initialized to zero. The texture map has dimen-
sion 300 × 300 and is initialized to zero values. The 6DoF
pose in the first frame is initialized to 2D location in the
center of the image, depth such that the object covers the
whole image, and zero 3D rotation. Every next 6DoF pose
is initialized to the pose estimated in the previous frame.
Runtime. Currently, the method runs at 2 sec. per frame on
average. However, the runtime can be improved by simpler
shape representations, better motion prediction, and hierar-
chical optimization. Moreover, the method is highly paral-
lelizable, e.g. all keyframes can be rendered in parallel.

4. Evaluation
The first step of the proposed method is running a state-

of-the-art 2D tracker to obtain initial segmentation masks
(by default OSTrack [49] with AlphaRefine [48], the winner
of VOT-ST 2022 challenge [19]). Hence, we evaluate the
improvement in 2D segmentation brought by our method
by rendering the silhouette of the reconstructed object on
the video frames.

Our method assumes the object is rigid. Most track-
ing datasets, e.g. [22, 15], contain non-rigid objects such
as humans and animals. Therefore, we selected datasets
with mostly rigid objects. First, we evaluate on the large
CDTB [32] dataset that contains mostly rigid objects (part
of the VOT dataset collection [22]). Second, we evaluate
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Figure 4. Results with slight non-rigid deformations. Our method successfully reconstructed and improved the segmentation accuracy
(by 11.1% IoU on average) on a human body sequence from the CDTB dataset [32].

Method Input IoU

OSVOS [1] RGB 87.97 %
OSTrack [49] RGB 93.26 %
Ours (OSTrack init) RGB 94.05 %
BackFlow [45] RGB-D 93.52 %

Table 2. In-hand object manipulation dataset [45]. Our method
achieves the highest segmentation accuracy.

on two smaller datasets, the Coin Tracking dataset [43] and
the in-hand object manipulation dataset [45], both of which
contain only rigid objects.

4.1. CDTB dataset

The ”Color-and-Depth general visual object Tracking
Benchmark” (CDTB) [32] is part of the VOT-RGBD chal-
lenge suite [22]. It is the only standard tracking dataset that
contains mostly rigid objects. Since we do not require depth
information, we drop the depth channel. The dataset con-
tains 80 sequences with an average of 1274 frames each.

To test how much the initial 2D tracker influences the fi-
nal results of our method, we use three modern 2D trackers:
D3S [33], CSR-DCF [34], and OSTrack [49] (the most re-
cent state-of-the-art from ECCV 2022). When the tracker
output is a bounding box (as most of the trackers, e.g. CSR-
DCF, OSTrack), we apply AlphaRefine [48] to extract fore-
ground segmentations (as suggested by OSTrack [49]). As
in standard tracking tasks, we are given the ground truth
segmentation (or bounding box) in the first frame of the
video. Then, the 2D tracker runs for the whole sequence
without any re-initialization, producing a segmentation in
each frame, which we feed as initialization to our method.

The proposed method processes every sequence in an on-

Method IoU ∆

Coin tracking [43] 0.704 -
Ours (RGB feat.) 0.718 2.0 %
Ours (RGB feat., flat prior) 0.731 3.8 %
Ours (S2DNet [8] feat.) 0.740 5.1 %
Ours (S2DNet [8] feat., flat prior) 0.764 8.5 %

Table 3. Coin tracking dataset [43]. We achieve the highest seg-
mentation accuracy with S2DNet [8] features and flat-object prior.

line manner. For evaluation, we compute the Intersection-
over-Union (IoU) between the ground truth segmentation
and our output (Sec. 3.3).

As Table 1 shows, our approach improves segmentation
performance when built on top of any of the evaluated track-
ers. Average improvement is above 4% for recent meth-
ods [33, 49]. For an older discriminative correlation filter
based tracker with bounding box output, the improvement
is only 2.8%, probably because the initial segmentations are
poor. Many objects in this dataset are close to rigid but not
perfectly rigid. Nevertheless, our method still successfully
reconstructs such objects in motion, e.g. a human body in
Fig. 4 and a backpack in Fig. 7 (top).

4.2. Coin Tracking dataset

The Coin Tracking dataset [43] was proposed to address
a new problem, namely tracking of both sides of flat, poten-
tially fast-rotating rigid objects as cards, books, and coins.
The dataset creators also introduced a method to tackle the
flat-object tracking problem. Therefore, we also integrate a
flat-object prior to our method by projecting all vertices to
a single plane after each iteration of optimization.

When using simple RGB values as appearance features,
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Figure 5. Coin tracking dataset. The proposed method successfully tracks with 6DoF and estimates 3D shape of flat objects. Since the
object in motion has different lighting effects, e.g. first and second columns, the RGB back-projection contains noisy estimates.

Ablated version IoU ∆

OSTrack [49] 0.703 -
Ours (RGB feat.) 0.717 +2.0 %

Ours (S2DNet [8] feat.) 0.740 +5.3 %
No LF (1) 0.727 +3.4 %
No LM (3) 0.689 -2.0 %
No LL (Sec. 3.2) 0.692 -1.6 %
No LT (Sec. 3.2) 0.734 +4.4 %

Table 4. Ablation study. Each row in the bottom part represents
segmentation accuracy change w.r.t. OSTrack [49] when each of
the introduced loss terms (in Sec. 3.2) is disabled.

the segmentation accuracy improves by 2%, and by 3.8%
with the flat-object prior (Table 3). In contrast, when using
S2DNet [8] features, the improvement is 5.1%, and 8.5%
with the flat-object prior. The final reconstruction with the
flat-object prior is shown in Fig. 5 and Fig. 7 (third and
fourth rows).

4.3. In-hand object manipulation dataset

This dataset proposed by [45] contains 13 sequences of
in-hand manipulation of objects from the YCB dataset [2].
Each sequence ranges from 300 to 700 frames in length.
The ground truth is provided as manually labeled segmen-
tation masks for every tenth frame. We again evaluate ac-
curacy of our reprojected silhouettes (with OSTrack initial
segmentations and S2DNet features). As shown in Table 2,
our method brings a small improvement from 93.26% to
94.05%. We believe that the performance on this dataset
is already saturated and larger improvements are hardly
achievable due to inaccurate ground truth annotations. Final

2 4 6 8 10
0.7

0.71

0.72

0.73

0.74

0.75
Io

U

Figure 6. Influence of the number of keyframes. When the num-
ber of keyframes is increased, the average IoU increases as well
thanks to more constraints from different views.

reconstructions are shown in Fig. 7 (bottom row).

4.4. Ablation study

We ablate the main components of the proposed method
on 16 random sequences from the CDTB dataset [32]. As
shown in Table 4, disabling any part of the total loss func-
tion L (Sec. 3.2) decreases performance, indicating that all
components of our method contribute to the overall accu-
racy. The silhouette rendering loss (2) cannot be disabled
since in that case, the method does not know where the ob-
ject of interest is and never converges. Another interesting
observation is that using RGB features (’RGB feat.’ row)
is worse than completely discarding the feature rendering
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Input example Rendered appearance at keyframes
Figure 7. Final 3D textured shape reconstructions. We visualize RGB back-projections (after optmizing with S2DNet [8] features) on
a backpack and container sequences from the CDTB dataset [32] (top two rows), a beermat sequence from the coin tracking dataset [43]
(third and fourth rows), and sugar and banana sequences from [45] (bottom row).

loss (’No LF row’; +2% vs +3.4% improvement) since
the lighting and illumination effects make the RGB fea-
tures rather unreliable. For instance, this can be observed
in a vacuum cleaner example where the direct light does not
move with the object (Fig. 3, top row), and in a card track-
ing example where shadows change colors drastically in the
first and second columns (Fig. 5). The influence of the num-
ber of keyframes αK is shown in Fig. 6. As expected, the
more keyframes are used, the better are results, but it comes
at the cost of the increased runtime. In all experiments, we
used αK = 6, which is a reasonable trade-off value.

4.5. Benchmark for 6DoF Object Pose

As a by-product of the proposed tracker, we additionally
produce an approximate 3D shape and 6DoF pose of the ob-
ject. To evaluate these estimates, we use the TUD-L dataset
from the Benchmark for 6D Object Pose (BOP) [14]. We
chose this dataset because it contains videos of one moving
object with limited occlusions, matching the common set-
ting in standard 2D tracking datasets, which we target. As
shown in Table 5, our method produces results competitive
with several recent methods, while being the only one that

does not need the 3D object model as input, neither at the
training nor the test time. Instead, we estimate it along with
the 6DoF pose. Hence, this is a strong result. Moreover, we
do not train on the TUD-L dataset at all: our optimization-
based method works out of the box, showing strong gener-
alization across datasets. In fact, all other compared meth-
ods are trained on large synthetic and real datasets and use
various refinement steps (ICP).

4.6. Limitations

Runtime. Currently, our method runs on average at 5 sec-
onds per video frame. This prevents it from being used in
real-time tracking applications. However, the runtime can
be improved by simpler shape representations, better mo-
tion prediction, and hierarchical optimization. Moreover,
the method is highly parallelizable, e.g. all keyframes can
be rendered in parallel.
Fixed topology. The topology of the object of interest
is one of the hyperparameters of our method. While the
spherical prototype we currently use is sufficient for many
objects, in future work, we could have multiple prototypes
as done by [39] in a different domain.
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given requires
Method AR↑ 3D model training

CosyPose-ECCV20-Synt+Real 82.3 yes yes
CDPNv2 BOP20-RGB 77.2 yes yes
CDPN BOP19-RGB 76.9 yes yes
Zhigang-CDPN-ICCV19 75.7 yes yes
Leaping from 2D to 6D-ECCVW20 75.1 yes yes
CosyPose-ECCV20-PBR 68.5 yes yes
CDPNv2 BOP20-PBR 58.8 yes yes
EPOS-BOP20-PBR 55.8 yes yes
Ours 54.5 no no
Pix2Pose-BOP20-ICCV19 42.0 yes yes
Sundermeyer-IJCV19 40.1 yes yes
Pix2Pose-BOP19-ICCV19 34.9 yes yes
SingleMultiPathEncoder-CVPR20 33.4 yes yes
DPOD (synthetic) 24.2 yes yes

Table 5. Evaluation on TUD-L dataset from the BOP bench-
mark [14]. We compare to methods that operate on RGB images
at test time. Only our method does not require a given 3D model
and requires no training. AR: average recall as in [14].

Camera motion. While we assumed a static camera, our
method does not strictly require it. If the camera is mov-
ing, our method still works, but the estimated “object pose”
combines the camera and the object pose. They could po-
tentially be disentangled in a post-processing stage by esti-
mating camera motion, e.g. with SfM, and then subtracting
it from the estimated object pose.

5. Conclusion
We proposed a novel model-free tracking method that

jointly estimates 3D shape, texture, and 6DoF pose of un-
known rigid objects in videos, as opposed to just a 2D
segmentation, which is commonly used in tracking. As
a result, the proposed tracker provides dense long-term
correspondences on the object surface. The core of our
method uses differentiable rendering, which is used in vi-
sual object tracking for the first time. The experiments
demonstrated improved tracking accuracy on several track-
ing benchmarks. The proposed method produces an object
representation that supports diverse applications, such as
augmented reality, object manipulation, and grasping.
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