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Abstract

Previous research has studied the task of segmenting cine-
matic videos into scenes and into narrative acts. However,
these studies have overlooked the essential task of multi-
modal alignment and fusion for effectively and efficiently
processing long-form videos (> 60min). In this paper, we in-
troduce Multimodal alignmEnt aGgregation and distillAtion
(MEGA) for cinematic long-video segmentation. MEGA tack-
les the challenge by leveraging multiple media modalities.
The method coarsely aligns inputs of variable lengths and
different modalities with alignment positional encoding. To
maintain temporal synchronization while reducing compu-
tation, we further introduce an enhanced bottleneck fusion
layer which uses temporal alignment. Additionally, MEGA
employs a novel contrastive loss to synchronize and transfer
labels across modalities, enabling act segmentation from
labeled synopsis sentences on video shots. Our experimental
results show that MEGA outperforms state-of-the-art meth-
ods on MovieNet dataset for scene segmentation (with an
Average Precision improvement of +1.19%) and on TRI-
POD dataset for act segmentation (with a Total Agreement
improvement of +5.51%).

1. Introduction

In the world of video production, movies are composed
of smaller units called shots, scenes, and acts. Shots are
a continuous set of frames, a scene is a sequence of shots
that tell a story, and an act is a thematic section of a narra-
tive [14]. While computer vision has made significant strides
in shot detection [39], scene and act segmentation remain a
challenge, despite their potential for smart video navigation,
advertisement insertion, and movie summarization. Cine-
matic content comprises of different data sources, including
audio, visual, and text data, as well as derivative data sources
from the narrative, including location, appearance, tone, or
acoustic events. In this work, we will refer to all of these
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Figure 1: MEGA works well on both scene segmentation
and act segmentation tasks, outperforming previous work
with significant margin. V,T*,T,A denotes video, screenplay,
subtitle and audio respectively.

input components as “modalities” of cinematic content. Pre-
vious work has not fully explored how to align and aggregate
these modalities which have different granularities.

We propose to address scene and act segmentation tasks
with an unified multimodal Transformer. However, this
approach presents two main challenges. Firstly, there is
the issue of cross modality information synchronization
and fusion at the shot level. Previous studies which use
multimodal fusion for scene and act segmentation perform
early [8, 32] or late fusion of features [35], and have not
explored fusion strategies which utilize multimodal tempo-
ral alignment. Additionally, the fusion strategies that utilize
temporal alignment such as merged attention or cross modal-
ity attention [9, 21] are computationally expensive and not
generalizable to a large number of modalities. Secondly, due
to the challenges associated with labeling a long video on act
segmentation, the labels for act segmentation are provided
on synopsis sentences [30] which do not provide timestamps.
To avoid the more challenging task of cross-modal synchro-
nization, previous studies on act segmentation [30, 32] rely
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on textual screenplay to transfer the labels from synopsis to
movie, ignoring the rich multimodal information from the
video, and introducing an additional dependency on screen-
play data which is not always available.

To address these challenges, we introduce Multimodal
alignmEnt aGgregation and distillAtion (MEGA). MEGA
includes a novel module called alignment positional encod-
ing which aligns inputs of variable lengths and different
modalities at a coarse temporal level. To fuse the aligned
embeddings of different modalities in an efficient and effec-
tive manner, we adopt the bottleneck fusion tokens [28] and
append a set of fusion tokens to each modality. These tokens
share the same sequence length as the normalized positional
encoding for different modalities, allowing us to inject them
with the coarse temporal information, enabling information
fusion in a better aligned embedding space. To address the
issue of cross-domain knowledge transfer, we introduce a
cross-modal synchronization approach. This method allows
us to transfer the manually labeled act boundaries from syn-
opsis level to movie level using rich multimodal information,
enabling us to train MEGA directly on videos without re-
lying on screenplay – which was a hard requirement for
previous works [30, 32].

We test our proposed alignment and aggregation modules
on the Movienet-318 [18] and the TRIPOD datasets [30],
and we test our cross modality synchronization module on
TRIPOD alone, as the labels are provided on a different
modality during training. Our proposed MEGA outperforms
previous SoTA on scene segmentation on the Movienet-318
dataset (by +1.19% in AP) and on act segmentation on the
TRIPOD dataset (by +5.51% in TA). Our contributions are:

1. Alignment positional encoding module and a fusion
bottleneck layer that performs multimodal fusion with
aligned multi-modality inputs.

2. A cross-domain knowledge transfer module that syn-
chronizes features across-domain, and enables knowl-
edge distillation without requiring extra information.

3. SoTA performance on scene and act segmentation tasks,
with detailed ablations, which can be used as reference
for future work.

2. Related Work
Scene Segmentation in Cinematic Content: Recent

works on scene segmentation have explored self-supervised
learning (SSL) [8,27,45]. Self-supervised pretext tasks have
included maximizing the similarity between nearby shots
compared to randomly selected ones [8], maximizing the
similarity between pairs of images selected according to
scene consistency [45], and maximizing the similarity be-
tween pairs of images selected according to pseudo scene
boundaries [27]. While several previous works have used
multimodal inputs for this task [8,35,45], they have either uti-
lized late fusion of features with predefined weights for each

modality [35] or have utilized early integration of features
derived via SSL [8, 45]. In this paper, we explore how to
better align and integrate features from different modalities
for scene segmentation.

Act Segmentation in Cinematic Content: Movie screen-
plays follow a general narrative structure on how a plot un-
folds across the story. Several theories have been proposed
in this domain dating as far back as Aristotle, who defined a
3 act structure with a beginning (protasis), middle (epitasis),
and end (catastrophe) [33]. Modern screenplays are usually
written with a 6 act structure [14], named as “the setup”,
“the new situation”, “progress”, “complications and higher
stakes”, “the final push”, and “the aftermath”, separated by
five turning points (TPs). Prior approaches in narrative seg-
mentation on movies have adopted the aforementioned 6 act
structure and posed the problem as identifying the 5 TPs that
separate these 6 acts. [32] is to our knowledge the only prior
work that utilizes visual domain in act segmentation by using
a pre-trained teacher model trained on textual input to train a
student Graph Convolutional network with audio-visual-text
representations as input. In contrast, our work uses a new
multimodal fusion and distillation applied on the modalities
which are available with the movie.

Multimodal Aggregation: Previous SoTAs on multi-
modal fusion with transformers perform early fusion of the
features as inputs to the transformer [19], merge attention
between them requiring more memory [9,21], use cross atten-
tion between two modalities [9,44], or add cross-modal inter-
actions more efficiently via bottleneck tokens or exchanging
some of their latents [15, 28]. [28] provides information
flow between modalities efficiently by utilizing bottleneck
tokens to tame the quadratic complexity of pairwise atten-
tion. This global exchange between modalities may not be
enough for long videos, which require an adaptive fusion
in different temporal locations. Our model considers [28]
as baseline and extends it to incorporate local information
during information exchange between modalities.

Positional Encoding: Previous studies on improving
the positional encoding in long sequence modeling have
mostly focused on adding relative distance positional encod-
ing [24, 38, 40]. However, they do not offer solutions on
better maintaining the relative position of latent tokens with
respect to their starting point in time in long sequences with
variable lengths, which is important for long movie narrative
understanding [5, 14]. We propose Alignment Positional
Encoding to bridge this gap.

Cross-Modality Synchronization & Distillation: To
transfer the labels from synopsis to movie shots, we use
cross-modality distillation. Previous cross-modality distilla-
tion studies for label transfer across modalities are focused
on parallel data with the same granularity [2,3,12], or where
the alignment is known [31]. Alignment of features at dif-
ferent granularities in the same modality, such as screenplay
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scenes to synopsis sentences [26, 49] and across modalities
such as aligning synopsis sentences to visual shots [42, 47],
book chapters to visual scenes [43] have been previously ex-
plored. While majority of these works rely on unsupervised
optimization techniques [26,42,43,49], there are studies that
use supervised labels to improve the representations used
for optimization [47]. We present an alignment approach
with self-supervised loss for synchronizing data in different
modalities of cinematic content to enable distillation.

3. Methodology
MEGA processes long videos and performs video seg-

mentation in three major steps (Fig. 2). First, a video V
is chunked into shots, and multiple features such as scene
related features and sound event features are extracted at
the shot-level (Sec. 3.1). The system is built on shot-level
representation for two reasons: (1) scene and act boundaries
always align with shot boundaries, and (2) the content within
a shot remains similar, which allows efficient yet meaningful
sampling without losing important information. Second, the
embeddings from different input samples and each modality
are coarsely aligned with a proposed alignment embedding
(Sec. 3.2), and the alignment positional tokens are used to
refine the commonly used bottleneck fusion tokens for cross-
modal feature fusion (Sec. 3.2). Third, a linear layer is
applied on top of the fused representations to generate scene
and act boundaries (Sec. 3.3). Finally, to address the chal-
lenge of cross-domain knowledge transfer where labels from
one domain may not directly align with another domain (e.g.
act labels on synopsis sentences do not have movie-level tim-
ing information), we propose a cross-modal synchronization
module that is simple yet effective (Sec. 3.4).

3.1. Preprocessing

We chose to utilize Transnet-v2 [39] for shot segmen-
tation due to its superior performance and efficiency. We
list our selection of pre-trained models and associated pa-
rameters in Tab. 1. As each pretrained feature extraction
model has different requirements for input resolution and
sampling rate, we first sample the input at various sample
rates (as shown in Table 1). It is worth noting that the
CLIPmovie model is the CLIP [34] model with ViT-B/32
backbone fine-tuned on paired IMDB-image/text dataset.
IMDB-image dataset comprises 1.6M images from 31.3K
unique movies/TV series with 761 unique textual labels. The
features attributed to each shot are the ones with overlap with
the shot time stamp (More details are in Appendix). After
feature extraction, we aggregate the features for each shot
and normalize the feature dimension with linear projection
as:

Em
i = gm

 1

Tm
i

Tm
i∑

j=1

Sm
ij

 (1)

Feature extractor Input Freq. Input Res. Feature dim.

Visual input
BASSL [27] (bassl) Varying 2242 2048
ResNetPlace [50] (place) 1Hz 2242 2048
ResNeXt101 [46] (appr) 1Hz 2242 2048
I3D [6] (action) 16Hz 16× 2242 2048
CLIPmovie (clip) 1Hz 2242 768
Acoustic input
PANNs [23] (audio) 1Hz 10× 32K 2048
Linguistic input
all-MiniLM-L6-v2 [1] (text) Varying - 384

Table 1: Sampling strategy and feature extraction backbones
used for different modalities.

where Em
i ∈ RC denotes the embedding from the i-th shot

of m-th modality, Sm
ij ∈ RDm

is the j-th sampled feature of
m-th modality from i-th shot, and gm is a linear projection
layer that projects feature dimension for m-th modality to a
common dimension C across all modalities.

While it is possible to create an end-to-end system start-
ing from raw shot inputs and training the model from scratch,
pre-extracting the features from pretrained models is gener-
ally more scalable and efficient in actual industrial scenarios,
hence we rely on the latter.

3.2. Cross-modality Alignment and Fusion

For long video segmentation into scenes and acts it is
important to model short and long term context and perform
effective multimodal fusion. However, the commonly used
learnable positional embedding only provides fine-grained
granularity and is not suitable for high-level semantic align-
ment across modalities. Furthermore, for tasks such as act
segmentation we expect consistent patterns at normalized po-
sition of temporal inputs as the theory suggests approximate
locations for each turning point (i.e., 10%, 25%, 50%, 75%,
95% [5, 14, 30]). Hence, in addition to using the traditional
positional encoding, we introduce Alignment Positional En-
coding layer ∈ RLn×C , which is a learnable embedding
layer, for which the index at i-th temporal unit (e.g., shot) is
derived by:

ialign = floor

(
Ln

L
i

)
(2)

where L is the temporal dimension (e.g., number of shots)
and Ln is the length of alignment positional encoding which
is a hyper-parameter (Ln < L). We add the alignment
positional encoding to the features in conjunction with the
conventional positional encoding (see Fig 2). This module
is shared across different modalities. This module provides
extra information to the network that can be helpful in learn-
ing from long training samples with varying lengths, and
in coarsely aligning inputs from different modalities before
information fusion.

Inspired by previous works [9, 28, 44], we choose cross-
modal feature fusion, which has been shown to be more effec-
tive than early or late fusion. To make our approach scale to
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Figure 2: The pipeline of the proposed method includes 1) Preprocessing: splitting the video into shots, extraction of
features from each shot, pooling and normalization 2) Cross modality fusion and alignment: with the help of alignment
positional encoding and bottleneck fusion tokens, 3) Scene/Act Segmentation comprising the segmentation heads. For Scene
Segmentation, CE loss is used and for Act Segmentation knowledge transfer loss is used (refer to Sec. 3.4 for details)

.

multiple modalities, we propose an efficient temporal bottle-
neck fusion based on [28], and follow their mid-fusion strat-
egy, which comprises of an unimodal transformer encoder
followed by a multimodal transformer encoder (See Fig. 2).
While [28] proposes to use bottleneck tokens for fusing in-
formation across different modalities, these tokens learn to
integrate the information across modalities in a global man-
ner. We propose to use Ln fusion tokens, and then integrate
them with the same Normalized Positional Encoding to align
them with features on the coarse temporal scale (Fig. 3).

The transformer layer per modality then takes in an ex-
tra set of aligned fusion tokens concatenated with its input
(Fig 2), making it much more efficient compared to other
methods such as merged attention or pairwise cross-attention
with respect to the number of modalities [9, 21]. Finally, the
latent tokens per modality from the last fusion layer (i.e.,
Zm for m-th modality) are concatenated as the fused repre-
sentation:

Z fused = concatC (Z) = concatC
([
Z1, ..., ZM

])
(3)

where concatC(∗) stands for channel-wise concatenation
and M is the number of modalities.

3.3. Scene/Act Segmentation

MEGA adopts a similar approach to previous works [8,
27, 45], where scene segmentation is framed as a binary
classification task using a key-shot representation from a
window of 2× k + 1 shots (k-shots before and after):

yi = φ
(
Z fused
i ; θs

)
(4)

where yi is the logit prediction for the i-th key-shot. φ
denotes the linear layer with learnable parameters θs and a
cross entropy loss is utilized [8, 27, 45].
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Figure 3: Illustration of Normalized Positional Encoding
integration to the temporal tokens in one modality. This fig-
ure shows the integration of normalized Positional Encoding
with 1) temporal shots for one modality and 2) bottleneck
fusion tokens, where L = 15 and Ln = 3. For (1) ialign
is obtained per shot index, i, and then each shot is inte-
grated with normalized PE. For (2) each randomly initialized
bottleneck token is integrated with normalized PE for its
corresponding index.

The act segmentation task is formulated as Ntp linear
prediction heads (Ntp is the number of turning points, and
θan

denotes the head parameters for n-th turning point [32]),
for each individual shot from a temporal model that takes all
the shots of the movie as input. To make a prediction at the
i−th shot for the n-th act boundary (n ∈ {1, . . . , Ntp}), we
use:

yin = φ
(
Z fused
i ; θan

)
(5)

where yin is the logit prediction for i-th shot and n-th turning
point.
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3.4. Cross-domain Knowledge Transfer

It is quite common during machine learning that certain
modalities may lack annotations that are directly available in
other modalities with different information granularity. To
address this, we propose a cross-modality synchronization
scheme that enables cross-modal distillation. We utilize this
module for act segmentation where we aim to transfer act
labels from synopsis sentences to movie-level timestamps.
Importantly, our approach does not require additional infor-
mation, such as screenplay [32], to bridge the gap.

Our knowledge distillation utilizes (1) an individual net-
work to learn the synopsis-based act segmentation in a su-
pervised manner with cross-entropy loss similar to [31]; and
(2) a novel synchronization approach between synopsis and
movie. For (1) we use the same architecture mentioned in
Secs. 3.1, 3.2, setting Cfused equal to the multimodal shot
model setting. Additionally, similar to shot level linear pre-
diction head (See Eq. 5), we use a sentence level linear pre-
diction head, resulting in qin logits for the i-th sentence of
n-th TP. A supervised Cross Entropy loss is used to learn the
synopsis labels from predictions for each turning point (Lce).
For (2) we seek a synchronization matrix W ∈ RLsh×Lsyn

between Lsh shots and Lsyn synopsis sentences for a sam-
ple, where wij = 1 if the i-th shot matches with the j-th
synopsis sentence and wij = 0, otherwise. Assuming F (.; θ)
represents a parametric reward function (with parameters θ),
to find W , we define an objective as:

max
W,θ

∑
i,j

wijF (.; θ)− λ
∑
i,j

|wi,j |

s.t. 0 ≤ wij ≤ 1

(6)

Expectation-Maximization algorithm is used to solve the ob-
jective in Eq. 6. We estimate the target variable W via fixed
parameters (i.e., θ) in the E-step, and update the parameters
while the target variable is known in the M-step.
E-step: Assuming F (.; θ) returns the similarity of input shot
and synopsis sentence pair, the E-step has a closed form
solution. In the E-step, following [26], we reduce the search
space during optimization to only the pairs which are inside a
diagonal boundary (see the proof for E-step and visualization
of expected synchronization matrix for different examples
in Appendix).
M-step: Using all samples in a batch with LSH, LSYN total
number of shots and synopsis sentences, we form their cosine
similarity matrix of dimension LSH×LSYN. For each query
(synopsis sentence/movie shot, respectively), the positive
keys (movie shot/synopsis sentence, respectively) are derived
from the expectation step. Negative keys are the keys lying
outside the diagonal boundary of the similarity matrix of
shot-synopsis pairs for one movie [26], and all the keys from
other movies within the batch. Here each query (synopsis
sentence/movie shot, respectively) can have more than one

positive key (movie shot/synopsis sentence, respectively)
attached to it. Following [20], we adopt a modified version
of the InfoNCE loss and combine it with the symmetric
contrastive loss [34] as:

Lc =−
LSYN∑
i=1

1

|ŷi|

LSH∑
k=1

ŷiklog
exp(viuk/τ)∑LSH

j=1 exp(viuj/τ)
−

LSH∑
i=1

1

|ŷTi |

LSYN∑
k=1

ŷTiklog
exp(uivk/τ)∑LSYN

j=1 exp(uivj/τ)

(7)

where τ is a learnable temperature parameter, and ŷij is
a binary indicator of positive vs. negative pairs, ui is the
normalized feature for the i-th shot and vi is the normalized
feature for the i-th synopsis sentence.
Knowledge distillation: Knowledge distillation is used to
transfer the knowledge available for the training samples
on synopsis. The predictions from the synopsis model are
mapped to shots using a matrix of their similarities as cal-
culated in the maximization step, for each sample. The
similarity scores for each shot are normalized along the syn-
opsis sentences with softmax. The logit predictions from
synopsis model are transferred to shots by multiplication
with the normalized similarity matrix. A softmax along
the shots is applied to the transferred logits to derive the
probability scores for each shot. Following [31], we use a
Kullback–Leibler divergence loss between predicted outputs
for each shot and the transferred probabilities (Lkd) (More
details are provided in Appendix.).

The cross-domain knowledge transfer module can be
trained by simply adding the losses together as:

L = αcLc + αceLce + αkdLkd (8)

where αc, αce, and αkd are hyperparameters that control the
weights of the three losses.

4. Experiments
4.1. Dataset

We test our model on two commonly used dataset:
Movienet-318 [18]: consists of 1100 movies, out of which
318 movies are annotated for the task of scene segmentation.
The annotated dataset is split into 190, 64, and 64 movies for
train, validation and test splits, respectively. We report the
Average Precision (AP) and F1-score (F1) on the test split
following previous work [35, 45].
TRIPOD [32] includes 122 movies, split into 84, and 38
movies for train and test, respectively. This dataset includes
the annotations of 6 act boundaries (“the setup”, “the new
situation”, “progress”, “complications and higher stakes”,
“the final push”, “the aftermath”) on the movie synopsis
sentences for the training set, and on the movie screenplay
scenes for the test set. The authors also have released soft
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probability scores (silver annotations) for the training set,
using [30]1. To find the timestamps for the screenplay scenes
in the movie, following [32] we used Dynamic Time Warping
(DTW) to align the timed subtitles from the movie to the
monologue lines in the screenplay. Following [32], we use
total agreement (TA), partial agreement (PA) and distance
(D) as evaluation metrics.

4.2. Implementation Details

For scene segmentation: We train our model with 8 V100
GPUs with total batch size of 1024. The Adam [22] opti-
mizer is used with learning rate of 1e-4. We train the model
for 20 epochs. GeLU [16] is used as activation function
by default, we use weighted cross entropy to balance the
positive and negative samples at batch level. We choose
shot sequence length of 17 (k = 8) following [27]. We set
Ln = 2 for this model.
For act segmentation: We train our model with 4 V100
GPUs with total batch size of 4. The SGD optimizer is used
with learning rate of 1e-3. We train the model for 10 epochs.
λ in Eq. 6 is empirically set differently for each synopsis
sentence of each sample, by finding 99% percentile of the
similarity scores between the synopsis sentence and all the
shots corresponding to that sample. αc, αce, αkd are set to
1, 1, and 10. We set Ln = 100 for this the shot model and
Ln = 20 for the synopsis model. We use max pooling to
aggregate the shot-level predictions to scene level. We use
all shots from a video for act segmentation.

4.3. Main Results

SoTA on Scene Segmentation. We first show MEGA out-
performs previous SoTA on MovieNet318 [27] for scene
segmentation (+1.19% on AP and +8.28% on F1). With
the same input visual features, MEGA outperforms pre-
vious SoTA [27] (Tab. 2 +0.52% on AP and +3.69% on
F1), which indicates that the proposed approach is effective.
Thanks to the proposed cross-modality fusion module, the
MEGA generalizes and benefits from additional information
extracted from visual signals. MEGA with 3 visual modal-
ities (clip, place, and bassl) outperforms single modality
model by +0.67% on AP and +4.59% on F1, which shows
the proposed fusion works as expected. It is worth men-
tioning that the proposed method is scalable and generalizes
to various number of modalities at different scales, which
makes it flexible for real-world applications.
SoTA on Act Segmentation. We then show that MEGA
establishes the new SoTA performance on act segmentation
on TRIPOD dataset (Tab. 3). We first show that MEGA
outperforms previous SoTA on TRIPOD [32] dataset With
only visual signals as input. Comparing to other works that
take textural inputs [29, 32], MEGA is able to achieve better
performance. Furthermore, in real-world applications, the

1https://github.com/ppapalampidi/GraphTP

Approach Modality Pretrained on AP ↑ F1↑
[%] [%]

Random [35] - - 8.2 -
Visual only input
GraphCut [36] V Places [50] 14.1 -
SCSA [7] V Places [50] 14.7 -
DP [13] V Places [50] 15.5 -
Grouping [37] V Places [50] 17.6 -
StoryGraph [41] V Places [50] 25.1 -
Siamese [4] V Places [50] 28.1 -
LGSS [35] V Places [35] 39.0 -
LGSS [35] V Cast [17, 48] 15.9 -
LGSS [35] V Action [11] 32.1 -
ShotCoL [8]† V Movienet [18] 52.89 49.17
SCRL [45] V Movienet [18] 54.82 51.43
BaSSL [27] V Movienet [18] 57.4 47.02
MEGA V Movienet [18] 57.92 50.71
MEGA V M+P+I 58.59 55.30

Table 2: Scene boundary detection: comparison with SoTA.
†means the numbers are copied from [45]. M+P+I denotes
pre-trained on Movienet [18], Places [50] and IMDB.

visual input (the video) is often easier to obtain than tex-
tual inputs such as screenplay [32]. We further show that
MEGA* (Tab. 3), which swaps our synchronization module
to use similar synchronization as SoTA [32], outperforms
GRAPHTP, which demonstrates the effectiveness of pro-
posed approach including the alignment and fusion modules.
It is worth mentioning that, with multiple features extracted
from visual media modality alone, MEGA outperforms pre-
vious SOTA which makes the proposed model applicable for
real-world scenarios, as it is usually harder to get additional
media modalities (e.g., screenplay) which are used in other
works.

By further aggregating the results from text input, MEGA
establishes the new state-of-the-art on TRIPOD dataset
(Tab. 3). MEGA almost doubles the performance of pre-
vious work [29, 32] with +5.51% TA, +9.15% PA, -%0.81
D. This shows the proposed multimodal fusion scales and
generalizes well to multiple modalities. The cross-modality
distillation also works robustly for various settings. We no-
ticed that adding the acoustic features is not always helpful
to the performance (Tab. 3), probably because acoustic infor-
mation provides redundant or not useful information for the
task of act boundary segmentation.

4.4. Ablations

We perform ablations to examine the effectiveness of ma-
jor building blocks of MEGA. We use features extracted
from visual media modality (for scene segmentation: clip,
place, bassl and for act segmentation: clip, appr, action,
place), with the proposed normalized positional encoding,
multi-modality bottleneck fusion, and cross-modality syn-
chronization by default unless specified. The training and
evaluation follows same protocols as mentioned in Sec. 4.3.
Alignment Positional Encoding. We report the ablations
on Alignment PE in Tab. 4a. We notice that the proposed
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Approach Modality Modality TA↑ PA↑ D↓
for synch. [%] [%] [%]

Random (Evenly dist.) [32] - T* 4.82 6.95 12.35
Theory [14, 30] - T* 4.41 6.32 11.03
Distribution position [32] - T* 5.59 7.37 10.74
Single modality input
TEXTRANK [25] T* T* 6.18 10.00 17.77
SCENESUM [10] T* T* 4.41 7.89 16.86
TAM [29] T* T* 7.94 9.47 9.42
GRAPHTP [32] T* T* 6.76 10.00 9.62
MEGA* V T* 10.51 14.54 8.98
MEGA V V 13.93 20.72 9.19
Multi-modality input
TEXTRANK [25] T*+A+V T* 6.18 10.00 18.90
SCENESUM [10] T*+A+V T* 6.76 11.05 18.93
TAM [29] T*+A+V T* 7.36 10.00 10.01
GRAPHTP [32] T*+A+V T* 9.12 12.63 9.77
MEGA* T+V T* 11.14 15.20 8.96
MEGA T+V T+V 14.63 21.78 8.96
MEGA* T+A+V T* 10.00 14.08 8.96
MEGA T+A+V T+A+V 14.19 22.10 9.68

Table 3: TP identification: comparison with SoTA. MEGA*
denotes the MEGA using the same synchronization as [30]
for fair comparison. T*,V,T,A denote Textual-screenplay,
Visual, Textual-subtitle and Acoustic features, respectively.

alignment PE consistently improves the performance on
both scene and act segmentation tasks, while act segmen-
tation benefits more significantly from it. This is because
of two reasons: 1) inputs to the act segmentation model
have variable lengths (all the shots from a video) as op-
posed to scene segmentation which has fixed length inputs,
hence the alignment PE adds more information to the act
segmentation model; and 2) Alignment PE is shared across
all modalities and fusion layer and its absence causes more
harm to sequences with longer lengths, as act segmentation
takes longer shot sequences (entire video) compared to scene
segmentation (17 shots). Overall, the drop in performance
indicates that the proposed Alignment P.E. is an essential
component for video segmentation tasks.

We further remove the proposed Alignment PE from bot-
tleneck fusion tokens and show results in Tab. 4b. We ob-
serve a performance drop when removing the Alignment PE.
It is worth mentioning that the performance drop is more
noticeable when multiple modalities are involved, (e.g. V +
T model), which suggests that the information from subtitles
requires precise temporal alignment in order to be effective
during multimodal fusion.
Multimodal Fusion Strategies. Tab. 4c compares our pro-
posed fusion tokens with the commonly used late fusion
strategy. The results show that the temporal bottleneck fu-
sion clearly outperforms late fusion, demonstrating the ef-
fectiveness of aligned bottleneck tokens in improving the
performance across both tasks.
Different Input Modalities. We study the impact of differ-
ent modalities by removing them from the input and present
results on scene segmentation and act segmentation. In scene
segmentation (Tab. 4d), we find that the bassl feature fol-

Scene Seg. Act Segmentation

case AP↑ TA↑ PA↑ D↓

w/o align. PE 57.77 5.29 7.37 31.04
w. align. PE 58.59 13.93 20.72 9.19

(a) Effectiveness of Alignment Positional Encoding.

Scene Seg. Act Segmentation

case modality AP↑ TA↑ PA↑ D↓

w/o align.PE V 58.31 13.60 20.53 9.47
w. align.PE V 58.59 13.93 20.72 9.19
w/o align.PE V + T - 13.01 20.13 9.56
w. align.PE V + T - 14.63 21.78 8.96

(b) Effectiveness of Normalized Positional Encoding in bottleneck tokens.

Scene Seg. Act Segmentation

MM. integ. type AP↑ TA↑ PA↑ D↓

LateFusion 58.24 12.57 19.21 10.00
Bottleneck 58.59 13.93 20.72 9.19

(c) Multi-modal fusion strategies.

change AP↑

-clip 58.09
-place 57.51
-bassl 51.88
-clip-place 57.92
- 58.59

(d) Impact from input
modalities on scene seg.

change TA↑ PA↑ D↓

-clip 6.09 10.66 21.81
-place 13.57 19.87 9.22
-action 13.31 20.20 10.38
-appr 13.42 20.59 8.85
- 13.93 20.72 9.19
+subtitle 14.63 21.78 8.96

(e) Impact from input modalities on act
segmentation.

synopsis synch. by M for synch. TA↑ PA↑ D↓

[30] T* 10.51 14.54 8.98
MEGA V 13.93 20.72 9.19
MEGA V + T 14.63 21.78 8.96

(f) Impact of Synchronization with multimodal video features on act
segmentation.

Approach Feature Set Pretrained on AP↑ Params↓ SPS↑

BaSSL [27] Movienet 57.4 15.77M 6244.99
LGSS [35] M+P+I 52.93 66.16M 206.36
MEGA M+P+I 58.59 67.57M 1736.13

(g) Impact from feature set and model size on scene seg. SPS denotes # of
samples per second.

Approach Feature Set TA↑ PA↑ D↓ Params↓ SPS↑

GRAPHTP [32] Set1 [32] 9.12 12.63 9.77 0.745M 25.40
GRAPHTP [32] Set2 4.72 7.37 9.69 6.78M 14.36
MEGA Set2 14.19 22.10 9.68 6.78M 18.24

(h) Impact from feature set and model size on act seg. Set1 includes
Visual (appr), Audio (YAMNet), Textual (script-USE). Set2 has Visual
(appr,clip,action,place), Audio (audio), Textual (text from subtitle).

Table 4: Ablation studies on MEGA components.

lowed by place are the most important. This is because
the BaSSL [27] model is pretrained for scene segmenta-
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tion and place consistency is critical for scene segmenta-
tion. In act segmentation (Tab. 4e), we find that the CLIP
feature pre-trained on IMDB, followed by subtitle are the
most important features. This is because the clip model is
pre-trained on abstract concepts (e.g. genre, micro genre,
character type and coarse key places), thus the CLIP feature
contains richer semantics, and subtitle provides complemen-
tary rich semantic information. These high level semantics
are considered useful for act segmentation. Overall, when
all the features are included, the model is able to leverage
the unique information provided by each feature and yields
the best performance.
Cross-modality Synchronization. Tab. 4f studies the ef-
fectiveness of the proposed cross modality synchronization
on act segmentation. To establish a baseline, we use the
probability scores provided by [32] and derived by aligning
synopsis sentences to scenes using screenplay [30] (T* in
Tab. 4f denotes screenplay). For a fair comparison, we re-
peat the scores provided for each scene on all of its shots
and then re-normalize2. MEGA with visual only input out-
performs [30] across two metrics (PA and TA) and when
we add the subtitle features (T in Tab. 4f denotes subtitle),
MEGA outperforms [30] across all the metrics. The results
demonstrate that the proposed cross-domain synchronization
works effectively and generalize well to various modalities.
It is worth mentioning that the proposed method generates
act segmentation without requiring the screenplay, which
makes it practical for various industrial applications.
Impact of Feature Set. In Tab. 4g, we examine whether
feature set plays an outsized role in MEGA’s improved per-
formance over other methods. On the same feature set of
M + P + I, we outperform LGSS [35] while only introduc-
ing a small number of additional parameters. BaSSL [27]
achieves slightly lower performance using only Movienet
features, indicating that the use of additional features is not
the primary reason for our improved performance.
Impact of Model Size. We finally look into the impact of
model size on the performance. To establish the fair compar-
ison, we first expand GRAPHTP [32] which shares the same
input as MEGA to roughly the same number of parameters as
MEGA. Our results on act segmentation (Tab. 4h) show that
MEGA outperforms the previous SoTA, GRAPHTP [32],
which indicates the MEGA has efficient and effective design.

4.5. Fusion with Audio Modality

We also experimented with the effect of adding audio.
Movienet [18] has released Short Time Fourier Transform
(STFT) features extracted from audio files. We use the same
audio backbone as [35]. However, by adding audio features

2This strategy maintains the rank of probability scores for different
turning points across different segments of the movie, and is consistent with
the max-pooling of prediction scores on shot level to derive the scene level
predictions during evaluation (see Sec. 4.2).

Approach Modality AP↑ [%]

LGSS [35] V(place) 39.00
ShotCoL [8]‡ V 46.77
SCRL [45] V 54.55
MEGA V(place,clip,bassl) 58.59

LGSS [35] V(place)+A 43.4
ShotCoL [8]‡ V+A 44.32
SCRL [45] V+A 50.80
MEGA V(place,clip,bassl)+A 55.36

Table 5: Scene Seg. with audio. ‡denotes copying from [45].

in MEGA, we see a drop in the performance (see Tab. 5).
Although [8, 35] have shown improvements across multiple
models by adding the audio modality across Movienet-150
dataset [35] (where the split is not publicly available) or a
private dataset: AdCuepoints [8], Wu et al. [45] have ob-
served a similar trend as our experiments, where adding the
released audio features in Movienet [18] to SCRL [45] and
ShotCoL [8] drops the performance (see Tab. 5). Possible
reasons can be 1) the audio features published by Movienet
via STFT3 are an incomplete view of the shot from audio
modality either in representation or in terms of the audio
chunk from each shot they used, and the raw audio files
are not available. 2) our multimodal fusion strategy cannot
exploit the possible complementary information or filter the
harmful or confusing signals from the audio modality.

5. Discussion and Conclusion
Limitations. The explorations in this work are limited to
appearance, location, activity, acoustic and textual features.
For long movie segmentation, however, providing the name
of actors (tabular data) and having a specific component for
actor identification in the movie can help both the synchro-
nization and the act/scene segmentation models. We will
explore the use of this data.

The results demonstrated that richer semantic represen-
tations from the clip features enhanced the performance for
long video segmentation. To obtain better performing rep-
resentations for long video understanding one can use large
amount of unlabeled data with carefully selected pretext
tasks for understanding long context. We will investigate the
use of SSL to train a rich multimodal representation from
videos and will examine the learned representations across
multiple long video understanding tasks.
Conclusion. This paper introduces MEGA, a unified solu-
tion for long video segmentation. Our design of normalized
positional encoding, and their integration into fusion tokens
allows MEGA to learn consistent patterns from inputs with
variable lengths and efficiently and effectively align and
fuse them across different modalities. Our synchronization
schema further allows the use of rich multimodal tokens to

3https://github.com/movienet/movienet-tools
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be used in transferring the labels from synopsis sentences
to movie shots, facilitating the knowledge distillation from
synopses to movies. MEGA achieves state-of-the-art perfor-
mance compared with previous works.
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